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A B S T R A C T

Multiple kernel clustering (MKC) aims to determine the optimal kernel from several pre-computed basic
kernels. Most of MKC algorithms follow a common assumption that the optimal kernel is linearly combined by
basic kernels. Based on a min–max framework, a newly proposed MKC method termed simple multiple kernel
𝑘-means can acquire a high-quality unified kernel. Although it has achieved promising clustering performance,
we have observed that it cannot benefit from any regularization or prior knowledge, thus the learned kernel
weight coefficients may be seriously sparse or over-selected. To tackle this issue, we have developed a new
algorithm termed simple multiple kernel 𝑘-means with kernel weight regularization (SMKKM-KWR), where
we introduce average coefficients to avoid too sparse kernel weights. Specially, we add the average kernel
coefficients as a regularization term to prevent the learned weight coefficients being far from the average
values. After that, an efficient optimization strategy is proposed to solve the new resultant problem. By this
way, the unified partition can learn clustering structure from fusion information of all the kernel views, with
the goal to reach better clustering performance. Extensive experiments on nine benchmark datasets and four
large-scale datasets have demonstrated the effectiveness and efficiency of the proposed algorithm.
. Introduction

Non-linearly separable data pose a challenge for clustering tech-
iques [1–5]. Kernel K-means is a popular method that can handle
uch data, but it depends on the choice of the kernel function and
elated parameters, such as the bandwidth of Gaussian kernels [6–11].

solution to this problem is multiple kernel clustering (MKC), which
earns an optimal kernel from a set of pre-computed basic kernels with
ifferent characteristics [12–18]. MKC generally follows the principle
f multiple kernel learning and assumes that the optimal kernel is a
inear combination of the base kernels.

A common approach in MKC is to jointly optimize the kernel
eights and the clustering assignment in one unified framework. Du
t al. [19] aim to enhance the robustness of clustering by using a differ-
nt error measure than the squared error, such as the 𝓁2,1-norm based
rror. Liu et al. [20] seek to increase the variety of chosen kernels by
dding a regularization term that favors kernels with more distinctive
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information. Li et al. [21] exploit the sample-specific information to
localize the base kernels and then obtains the partition matrix by locally
maximizing the kernel alignment. Liu et al. [22] learn a neighbor kernel
from the combination of basic kernels and use it for clustering. The
work in [23] tries integrating different fusion methods corresponding
to different strategic stages. The work in [24] tries dealing with the
scalable kernel 𝑘-means problem with randomized sketching.

Simple multiple kernel k-means (SMKKM) is a novel method that
uses a minimization–maximization learning criterion [25]. It aims to
optimize the kernel alignment by jointly minimizing the kernel weights
and maximizing the partition matrix. This objective is then converted
to a minimization problem that can be solved by a reduced gradient
descent method. The authors provide theoretical insights into the con-
vexity and differentiability of the objective function, which guarantees
the global optimality of the solution. SMKKM outperforms most MKC
algorithms that rely on alternating optimization and often converge
to local optima. It achieves state-of-the-art clustering performance on
vailable online 1 July 2023
566-2535/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.inffus.2023.101902
eceived 6 April 2023; Received in revised form 21 May 2023; Accepted 27 June 2
023

https://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
mailto:miaomiaolinudt@gmail.com
mailto:zhangy@nudt.edu.cn
mailto:suyuanliu@nudt.edu.cn
mailto:zhe.liu@zhejianglab.edu.cn
mailto:zhe.liu@nuaa.edu.cn
mailto:zxz@zjnu.edu.cn
https://doi.org/10.1016/j.inffus.2023.101902
https://doi.org/10.1016/j.inffus.2023.101902
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2023.101902&domain=pdf


Information Fusion 100 (2023) 101902M. Li et al.

k
p
m
f
m

c

several benchmark datasets. A localized variant of SMKKM is also
developed to better exploit the local structure of the data. In common
with other MKKM approaches, SMKKM and its variants imposes a sum-
of −1 constraint on the kernel combination coefficients to avoid trivial
solutions. However, the existing objective formula still inevitably yields
sparse weight coefficients as the optimization ends, which means that
some kernels are much less useful in multi-view learning than the other.
It is not reasonable to judge the importance of a view only by its
corresponding loss term. It is expected that the fusion yields a common
representation that makes full and fair use of the information from all
kernels.

To solve the above problem, a simple way is to replace the ex-
isting adaptive weighting strategy by directly using average kernels.
Nevertheless, considering the qualitative differences between the ker-
nels, it is necessary to measure the merits of the kernels by different
weights and to balance their impact on the common kernel. In this
paper, we propose Simple Multiple Kernel K-Means with Kernel Weight
Regularization (SMKKM-KWR) to regulate the sparsity of the adaptive
weights so that each kernel can participate effectively in the learning
process. Specifically, a kernel weight regularization is introduced in the
original SMKKM method, which align adaptive coefficient to a uniform
vector. The alignment module helps more kernel to contribute the
combined kernel. With the corresponding parameter on regularization,
we can easily balance the average kernel and the loss-adaptive kernel.
To solve the resulting optimization problem, we adopt a singular value
decomposition based method to alternately update the partition matrix,
and a reduced gradient descent method to update the kernel weights.
We prove that our algorithm converges to a global optimum under
mild conditions. Extensive experiments compared our algorithm with
nine state-of-the-art MKC algorithms are conducted on nine benchmark
datasets and four large-scale datasets. The experiments have demon-
strated that our proposed SMKKM-KWR reaches superior clustering
performance and robustness.

Our contributions can be summarized as:

• A novel kernel weight alignment module is proposed to encourage
more kernels participating in the combined kernel learning. The
sparsity of kernel weight can be controlled with the inductive
parameter, which helps balance between the adaptive kernel and
the average kernel.

• To solve the resulting optimization problem, we have designed
an efficient and effective algorithm with the reduced gradient de-
scent method. Moreover, we theoretically prove that the proposed
algorithm is able to converge to the global optimal results under
mild conditions.

• Carefully designed experiments conducted on nine benchmark
datasets and four large-scale datasets compared with a set of
MKKM algorithms demonstrate the effectiveness of SMKKM-KWR.

2. Related work

This section provides a brief overview of multiple kernel 𝑘-means
and simple multiple kernel 𝑘-means, both of which are closely con-
nected to our method. In the manuscript, 𝑛, 𝑚, 𝑘 denotes the number
of samples, views, and clusters, respectively.

2.1. Multiple kernel 𝑘-means clustering

For the given data matrix 𝐗 ∈ R𝑛×𝑑 , 𝑥𝑖 is the 𝑖th row, corresponding
to the 𝑖th sample point with dimension of 𝑑. The goal of 𝑘-means is
to divide the 𝑛 sample points into 𝑘 clusters based on the distance
relationship. Although 𝑘-means works well in dividing linearly divisible
data, it is difficult to handle complex and high-dimensional data. To
solve the above problem, mapping these linearly indistinguishable data
sets into the Hilbert space  with mapping function 𝜙 is an effective
2

approach. Note that the dimensionality of the data after mapping can
be very large and may even reach infinite dimensions. Kernel 𝑘-means
therefore employs the kernel trick 𝐾𝑖𝑗 = 𝜙(𝑥𝑖)⊤𝜙(𝑥𝑗 ) to compute the
ernel matrix 𝐊, addressing the computational risk associated with
otentially high-dimensional mappings. Based on the predefined kernel
atrix 𝐊, the objective function of Kernel 𝑘-means can be written as

ollows:
in
𝐇

Tr
(

𝐊(𝐈𝑛 −𝐇𝐇⊤)
)

𝑠.𝑡. 𝐇 ∈ R𝑛×𝑘, 𝐇⊤𝐇 = 𝐈𝑘,
(1)

where 𝐇 ∈ R𝑛×𝑘 is the clustering partition matrix, 𝐈𝑛 ∈ R𝑛×𝑛 and
𝐈𝑘 ∈ R𝑘×𝑘 are both identity matrices.

Extended to multiple views, 𝐊𝑝 represents the predefined kernel
matrix on the 𝑝th view. Multi-kernel 𝑘-means aims to learn the exact
partition of data points based on the optimal combined kernel matrix.
A simple and intuitive strategy is to average the predefined kernels on
each view by adding them together to obtain the combined kernel. This
strategy of having all kernels participate uniformly in the learning of
the clustering matrix ignores differences in the quality of the different
kernels. The strategy of allowing all kernels to participate uniformly in
the learning of the clustering partition matrix ignores differences in the
quality of the different kernels. To measure the quality of individual
kernels, existing MKKM algorithms typically weight the kernels to
obtain the final combinatorial kernel 𝐊𝜸 . specifically, 𝜸 =

{

𝛾1,… , 𝛾𝑚
}

represents the weights of the different kernels, and 𝐊𝜸 =
∑𝑚

𝑝=1 𝛾
2𝐊𝑝

onsists of a linear combination of all base kernels
{

𝐊1,… ,𝐊𝑚
}

. Fur-
thermore, the pre-specified weight coefficient 𝜸 is not flexible enough.
MKKM unifies the learning of 𝜸 with the optimization of the clustering
partition matrix in a unified framework as:

min
𝐇,𝜸

Tr
(

𝐊𝜸 (𝐈𝑛 −𝐇𝐇⊤)
)

𝑠.𝑡. 𝐇 ∈ R𝑛×𝑘, 𝐇⊤𝐇 = 𝐈𝑘,
𝜸⊤𝟏𝑚 = 1, 𝛾𝑞 ≥ 0,

(2)

The constraint of 𝜸⊤𝟏𝑚 = 1 avoids trivial solutions and ensures that
all kernels can contribute to the learning of the cluster partition matrix.

Optimizing the two variables together in Eq. (2) is a hard prob-
lem, which is not jointly convex. Therefore, an alternative coordinate
descent algorithm is often employed to solve the above problems.
Specifically, when optimizing 𝐇 with fixed 𝜸, the original optimization
problem can be transformed into a common kernel 𝑘-means problem,
which can be easily solved through corresponding solutions. When
optimizing 𝜸 with fixed 𝐇, it is easy to obtain an analytical solution
to update 𝜸. After alternately optimizing the two variables until the
objective convergence, the classical 𝑘-means are performed on the
assignment matrix 𝐇 to obtain the final clustering result.

2.2. Simple multiple kernel 𝑘-means clustering

As described in the previous section, the existing MKKM methods
solve the joint variable optimization problem by the block coordinate
descent algorithm. The algorithm that optimizing one variable with
others fixed leads to the objective function value falling into a local
optimum. Liu et al. [20] solves the above problem by adding regular-
ization terms. However, the additional introduced hyperparameters are
difficult to determine and need to be searched in a predefined range. In
construct, SMKKM proposes a new solution. Specifically, SMKKM uses
the min–max framework to replace the original MKKM framework and
proposes an efficient optimization algorithm to obtain a stable global
optimal solution. The objective function of SMKKM is as follows:

min
𝜸

max
𝐇

Tr(𝐊𝜸𝐇𝐇⊤),

𝑠.𝑡. 𝐇 ∈R𝑛×𝑘, 𝐇⊤𝐇 = 𝐈𝑘, 𝜸⊤𝟏𝑚 = 1, 𝛾𝑞 ≥ 0,
(3)

By requiring the kernel matrices with lower alignment values to
acquire greater combination weights, SMKKM can significantly enhance

the diversity of the multiple kernel information in Eq. (3). SMKKM
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exhibits the most advanced performance in a range of applications
in addition to the theoretical results. However, the kernel weight
coefficients of SMKKM are still inevitably too sparse, resulting in some
kernels playing a much smaller role in multi-kernel combinations than
others.

3. Proposed algorithm

The aforementioned SMKKM is empirically verified to be effective,
and has promising performance in many applications. However, Upon
observation, it can be noted that the algorithm does not facilitate
the inclusion of prior knowledge, which could be critical to improve
clustering performance in practical applications.

To take full advantage of prior knowledge, we propose a novel
SMKKM-KWR which takes the average as a regularization term. As
a result, the objective optimization of our proposed algorithm is as
follows,

min
𝜸∈𝛥

max
𝐇∈𝛤

Tr(𝐊𝜸𝐇𝐇⊤) + 𝜆‖𝜸 − 𝜸0‖22, (4)

here 𝛤 = {𝐇 ∈ R𝑛×𝑘
|𝐇⊤𝐇 = 𝐈𝑘} and 𝛥 = {𝜸 ∈ R𝑚

|𝜸⊤𝟏𝑚 = 1, 𝜸 ≥ 0}.
According to the analysis in [25], the optimization in Eq. (4) cannot

e directly solved by coordinate descent optimization, which is widely
dopted in MKKM. This is because the entire objective function cannot
e proven to decrease monotonically in such optimization mode. In-
tead, we have developed an efficient gradient descent based method to
ptimize it. To do so, we firstly transform the Eq. (4) into the following
quivalence,

in
𝜸∈𝛥

(𝜸), (5)

with

(𝜸) =
{

max
𝐇∈𝛤

Tr
(

𝐊𝜸𝐇𝐇⊤) + 𝜆‖𝜸 − 𝜸0‖22

}

. (6)

By this way, the min–max problem in Eq. (4) is equivalently trans-
formed into a minimization one. The objective function of this op-
timization is a value function that depends on the optimization of
𝐇.

Significantly, it can be proven that (𝜸) in Eq. (5) is differentiable,
which will be demonstrated below.

Theorem 1. (𝜸) in Eq. (5) is differentiable.

Proof. For any given 𝜸 ∈ 𝛥, the optimization of (𝜸) w.r.t. 𝜸 in Eq. (6)
reduces to max𝐇∈𝛤 Tr

(

𝐊𝜸𝐇𝐇⊤), which has the global optimal solutions
though it is not convex. As a result, (𝜸) in Eq. (5) is differentiable
according to Theorem 4.1 in [26]. Further, the 𝑝th component of its
gradient is calculated as 𝜕(𝜸)

𝜕𝛾𝑝
= 2𝛾𝑝Tr

(

𝐇∗⊤�̃�𝑝𝐇∗) + 2𝜆(𝛾𝑝 − 𝛾0𝑝), where
∗ is the global optimal solution of Eq. (6) with a given 𝜸, and 𝛾0𝑝 is

he 𝑝-component of 𝜸0. □

Based on Theorem 1, we then show how to compute the reduced
radient of (𝜸) w.r.t. 𝜸, and adopt the gradient descent method to
ptimize Eq. (5).

.1. Calculating the reduced gradient and the whole optimization

We solve the resultant optimization problem with the reduced gra-
ient descent method in Eq. (5). Firstly, we can calculate the gradient
f (𝜸). Then, we update 𝜸 with a descent direction while keeping the
onstraints on 𝜸.

To achieve this goal, we start by computing the reduced gradient
sing the method in [27] to handle the equality constraint. Make 𝛾𝑢
non-zero component of 𝜸 and ▽(𝜸), which represents the reduced

radient of (𝜸). The 𝑞th (1 ≤ 𝑞 ≤ 𝑚) element of ▽(𝜸) is
[

▽(𝜸)
]

𝑞 =
𝜕(𝜸)

−
𝜕(𝜸)

∀ 𝑞 ≠ 𝑢, (7)
3

𝜕𝛾𝑞 𝜕𝛾𝑢
Table 1
Specification of used nine used datasets.

Dataset Number of

Samples Kernels Clusters

Sonar 207 10 2
MSRA 210 6 7
Wdbc 569 10 2
Pima 768 8 2
Flower17 1360 7 17
Caltech101 1530 25 102
Mfeature 2000 3 10
Segment 2310 12 7
Cora 2708 2 7

and
[

▽(𝜸)
]

𝑢 =
𝑚
∑

𝑞=1, 𝑞≠𝑢

(

𝜕(𝜸)
𝜕𝛾𝑢

−
𝜕(𝜸)
𝜕𝛾𝑞

)

. (8)

We select 𝑢 as the index of the maximum component of the vector 𝜸
because it improves numerical stability by following the advice in [27].
After that, we consider the descent direction which guarantees the
positivity constraints on 𝜸. Because our goal is to minimize (𝜸), we
now that −▽(𝜸) is a descent direction. However, we cannot directly
dopt it as the descent direction, because the positivity constraints
ould be violated in the case that if there is a component 𝑞 such

that 𝛾𝑞 = 0 and
[

▽(𝜸)
]

𝑞 > 0. In this condition, we should set the
descent speed for the component as 0. Together considering all the
aforementioned condition, we can update 𝜸 by using the following
descent direction

𝑑𝑞 =

⎧

⎪

⎨

⎪

⎩

0 if 𝛾𝑞 = 0 and
[

▽(𝜸)
]

𝑞 > 0

−
[

▽(𝜸)
]

𝑞 if 𝛾𝑞 > 0 and 𝑞 ≠ 𝑢

−
[

▽(𝜸)
]

𝑢 if 𝑞 = 𝑢.

(9)

After a descent direction 𝐝 = [𝑑1,… , 𝑑𝑚]⊤ is calculated by Eq. (9),
we can compute 𝜸 by the updating scheme 𝜸 ← 𝜸+𝛼𝐝, where 𝛼 is termed
the optimal step size. Usually, a line search approach, such as Armijo’s
rule, can be utilized to determine it. We outline the entire algorithm
procedure which optimizes Eq. (4) in Algorithm 1.

Algorithm 1 SMKKM-KWR
1: Input: {𝐊𝑞}𝑚𝑞=1, 𝜸0, 𝑘, 𝑡 = 1.
2: Initialize 𝜸(1) = 𝟏∕𝑚, f lag = 𝑇 𝑟𝑢𝑒.
3: while flag do
4: compute 𝐇∗ by solving KKM problem with 𝐊𝜸(𝑡) =

∑𝑚
𝑞=1

(

𝛾 (𝑡)𝑞
)2𝐊𝑞 .

5: compute 𝜕(𝜸)
𝜕𝛾𝑞

(𝑞 = 1,⋯ , 𝑚) and the descent direction 𝐝(𝑡) in Eq.
(9).

6: update 𝜸(𝑡+1) ← 𝜸(𝑡) + 𝛼𝐝(𝑡).
7: if max |𝜸(𝑡+1) − 𝜸(𝑡)| ≤ 𝑒−4 then
8: flag=Flase.
9: end if
0: 𝑡 ← 𝑡 + 1.
1: end while

3.2. The global convergence

To analyze the convergence of the proposed algorithm, we need to
prove the convexity of the objective in Eq. (5).

Theorem 2. (𝜸) in Eq. (5) is convex.
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Fig. 1. The objective value learned by proposed algorithm across iterations on nine datasets.
roof. Let 1(𝜸) =
{

max𝐇∈𝛤 Tr
(

𝐊𝜸𝐇𝐇⊤)} and 2(𝜸) = 𝜆‖𝜸 − 𝜸0‖22.
1(𝜸) has been proven to be convex. Furthermore, 2(𝜸) is a quadratic
term w.r.t. 𝛾, obviously convex. Moreover, the feasible solution set of
𝜸 is a simplex which is a convex set. So that, (𝜸) = 1(𝜸) + 2(𝜸) is
convex. The proof is complete. □

The reduced gradient descent algorithm makes (𝜸) decrease mono-
tonically. Moreover, (𝜸) in Eq. (5) is convex. Thus, the objective can
be guaranteed to converge to a minimum. The convergence of our
proposed algorithm is experimentally verified by the results in Fig. 1.
4

3.3. Discussion

We end up this section by discussing the computational complexity
of the proposed SMKKM-KWR. From Algorithm 1, at each iteration, our
proposed algorithm needs to perform a kernel k-means algorithm with
complexity of (𝑛2𝑡), calculate the reduced gradient with complexity
of (𝑚𝑛3), and search the optimal step size with complexity of (𝑚𝑛0),
where 𝑛0 is the maximal number of operations required to search the
optimal step size. As seen, our proposed algorithm does not signifi-
cantly increase the computational complexity of existing MKKM and
SMKKM, which is also verified in Fig. 5.
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Table 2
Clustering performance comparison on the nine benchmark datasets.

Dataset Avg-KKM MKKM LMKKM ONKC MKKM-MiR LKAM LF-MVC MKKM-MM SMKKM Proposed

ACC

Sonar 57.1 ± 1.0 57.2 ± 0.7 57.2 ± 0.9 61.8 ± 0.0 57.0 ± 0.0 57.0 ± 0.0 56.0 ± 0.1 57.1 ± 1.0 63.8 ± 0.0 64.7 ± 0.0
MSRA 83.3 ± 0.8 81.3 ± 3.1 81.9 ± 0.7 85.4 ± 0.4 88.1 ± 0.1 89.1 ± 0.2 87.8 ± 0.4 83.3 ± 0.8 86.5 ± 0.2 91.2 ± 0.4
Wdbc 91.0 ± 0.0 91.0 ± 0.0 91.0 ± 0.0 81.4 ± 0.0 81.5 ± 0.0 79.4 ± 0.0 91.0 ± 0.0 91.0 ± 0.0 90.5 ± 0.0 91.7 ± 0.0
Pima 50.7 ± 0.0 51.3 ± 0.0 51.6 ± 0.7 65.8 ± 0.0 65.9 ± 0.0 63.8 ± 0.0 63.4 ± 0.0 50.7 ± 0.0 54.3 ± 6.3 67.4 ± 0.7
Flower17 50.8 ± 1.5 44.9 ± 2.4 37.5 ± 1.6 54.2 ± 2.2 58.5 ± 1.5 50.0 ± 0.8 61.0 ± 0.7 50.8 ± 1.5 59.5 ± 1.3 59.9 ± 1.6
Caltech101 34.2 ± 1.0 32.8 ± 0.9 27.9 ± 0.8 34.0 ± 0.9 34.8 ± 1.0 32.3 ± 1.0 34.4 ± 1.3 34.2 ± 1.0 35.8 ± 0.7 36.6 ± 1.2
MFeature 77.8 ± 1.5 63.2 ± 1.6 64.1 ± 1.5 80.4 ± 1.1 80.0 ± 1.4 90.7 ± 0.0 82.6 ± 0.0 77.8 ± 1.5 94.3 ± 2.4 95.4 ± 0.0
Segment 66.0 ± 0.0 65.9 ± 0.0 43.4 ± 4.3 60.9 ± 0.2 60.8 ± 0.1 54.0 ± 0.9 66.0 ± 0.0 66.0 ± 0.0 60.3 ± 0.8 68.9 ± 0.1
Cora 30.7 ± 0.8 25.3 ± 0.4 22.5 ± 0.2 40.8 ± 0.3 35.7 ± 0.1 34.5 ± 0.1 41.0 ± 1.1 30.7 ± 0.8 35.7 ± 0.1 41.2 ± 0.0

NMI

Sonar 1.6 ± 0.3 1.6 ± 0.3 1.6 ± 0.3 3.8 ± 0.0 1.2 ± 0.0 1.2 ± 0.0 1.1 ± 0.1 1.6 ± 0.3 5.3 ± 0.0 6.1 ± 0.0
MSRA 74.0 ± 1.0 73.2 ± 1.7 75.0 ± 1.4 74.9 ± 0.7 77.6 ± 0.3 79.8 ± 0.2 79.4 ± 0.8 74.0 ± 1.0 75.2 ± 0.5 82.7 ± 0.9
Wdbc 55.2 ± 0.0 55.0 ± 0.0 55.0 ± 0.0 37.0 ± 0.0 36.3 ± 0.0 34.2 ± 0.0 55.3 ± 0.0 55.2 ± 0.0 54.3 ± 0.0 59.5 ± 0.0
Pima 0.0 ± 0.0 0.1 ± 0.0 0.2 ± 0.1 7.8 ± 0.0 7.8 ± 0.1 7.5 ± 0.0 6.4 ± 0.0 0.0 ± 0.0 1.5 ± 4.3 9.3 ± 0.3
Flower17 49.7 ± 1.0 44.9 ± 1.5 38.8 ± 1.1 52.6 ± 1.2 56.4 ± 0.9 49.8 ± 0.6 58.9 ± 0.4 49.7 ± 1.0 57.8 ± 0.9 58.1 ± 0.9
Caltech101 59.3 ± 0.6 58.6 ± 0.5 55.3 ± 0.5 59.3 ± 0.5 59.7 ± 0.5 58.5 ± 0.6 59.5 ± 0.6 59.3 ± 0.6 60.4 ± 0.5 60.8 ± 0.7
MFeature 73.4 ± 1.0 63.5 ± 1.1 65.1 ± 0.6 72.1 ± 0.9 71.9 ± 1.2 82.3 ± 0.1 78.2 ± 0.0 73.4 ± 1.0 89.1 ± 2.2 90.5 ± 0.0
Segment 57.1 ± 0.0 57.4 ± 0.1 43.7 ± 1.5 60.5 ± 0.8 54.7 ± 0.0 42.8 ± 0.7 56.9 ± 0.0 57.1 ± 0.0 60.4 ± 0.5 61.5 ± 0.3
Cora 15.7 ± 1.4 9.5 ± 0.2 6.7 ± 0.3 23.1 ± 0.3 18.9 ± 0.2 16.1 ± 0.1 22.4 ± 0.5 15.7 ± 1.4 18.8 ± 0.2 23.6 ± 0.1

Purity

Sonar 57.1 ± 1.0 57.2 ± 0.7 57.2 ± 0.9 61.8 ± 0.0 57.0 ± 0.0 57.0 ± 0.0 56.0 ± 0.1 57.1 ± 1.0 63.8 ± 0.0 64.7 ± 0.0
MSRA 83.3 ± 0.8 81.5 ± 2.7 81.9 ± 0.7 85.4 ± 0.4 88.1 ± 0.1 89.1 ± 0.2 87.8 ± 0.4 83.3 ± 0.8 86.5 ± 0.2 91.2 ± 0.4
Wdbc 91.0 ± 0.0 91.0 ± 0.0 91.0 ± 0.0 81.4 ± 0.0 81.5 ± 0.0 79.4 ± 0.0 91.0 ± 0.0 91.0 ± 0.0 90.5 ± 0.0 91.7 ± 0.0
Pima 65.1 ± 0.0 65.1 ± 0.0 65.1 ± 0.0 65.8 ± 0.0 65.9 ± 0.0 65.1 ± 0.0 65.1 ± 0.0 65.1 ± 0.0 65.9 ± 2.3 67.4 ± 0.7
Flower17 51.9 ± 1.5 46.2 ± 2.0 39.2 ± 1.3 55.4 ± 2.2 59.7 ± 1.6 51.4 ± 0.7 62.4 ± 0.7 51.9 ± 1.5 60.9 ± 1.2 61.2 ± 1.5
Caltech101 36.2 ± 1.0 34.9 ± 0.9 29.6 ± 0.8 36.2 ± 0.9 36.8 ± 0.8 34.3 ± 0.9 36.7 ± 1.3 36.2 ± 1.0 38.0 ± 0.7 38.6 ± 1.2
MFeature 78.2 ± 0.7 63.9 ± 0.9 65.1 ± 1.0 80.4 ± 1.1 80.0 ± 1.4 90.7 ± 0.0 82.6 ± 0.0 78.2 ± 0.7 94.3 ± 2.4 95.4 ± 0.0
Segment 67.0 ± 0.0 66.9 ± 0.0 50.3 ± 2.1 63.5 ± 0.5 61.6 ± 0.1 56.7 ± 0.2 67.0 ± 0.0 67.0 ± 0.0 64.8 ± 0.8 69.3 ± 0.1
Cora 41.5 ± 1.3 36.1 ± 1.0 35.0 ± 0.2 48.6 ± 0.3 47.0 ± 0.1 43.3 ± 0.1 47.2 ± 0.5 41.5 ± 1.3 47.0 ± 0.1 49.3 ± 0.1

Rand index

Sonar 1.6 ± 0.5 1.6 ± 0.4 1.6 ± 0.4 5.1 ± 0.0 1.5 ± 0.0 1.5 ± 0.0 1.0 ± 0.1 1.6 ± 0.5 7.1 ± 0.0 8.2 ± 0.0
MSRA 68.1 ± 1.0 66.2 ± 3.1 68.0 ± 1.1 69.8 ± 0.7 74.5 ± 0.1 76.7 ± 0.4 74.5 ± 0.8 68.1 ± 1.0 71.2 ± 0.5 80.3 ± 0.8
Wdbc 67.2 ± 0.0 67.2 ± 0.0 67.2 ± 0.0 39.3 ± 0.0 39.7 ± 0.0 34.5 ± 0.0 67.2 ± 0.0 67.2 ± 0.0 65.5 ± 0.0 69.6 ± 0.0
Pima −0.1 ± 0.0 −0.1 ± 0.0 −0.1 ± 0.2 9.8 ± 0.1 10.0 ± 0.1 7.5 ± 0.0 7.1 ± 0.0 −0.1 ± 0.0 2.1 ± 6.2 12.1 ± 1.0
Flower17 32.2 ± 1.3 27.2 ± 1.8 20.6 ± 1.1 35.2 ± 1.5 39.9 ± 1.3 31.6 ± 0.8 44.1 ± 0.4 32.2 ± 1.3 41.5 ± 1.5 41.9 ± 1.5
Caltech101 18.4 ± 0.9 17.3 ± 0.7 13.4 ± 0.8 18.3 ± 0.8 18.8 ± 0.8 16.8 ± 0.9 18.8 ± 1.0 18.4 ± 0.9 19.8 ± 0.7 20.7 ± 1.1
MFeature 64.0 ± 1.8 49.6 ± 1.3 50.6 ± 0.9 64.7 ± 1.5 64.6 ± 2.0 80.5 ± 0.0 72.1 ± 0.0 64.0 ± 1.8 88.3 ± 3.6 90.1 ± 0.0
Segment 48.1 ± 0.0 48.4 ± 0.0 26.4 ± 3.1 48.4 ± 1.2 46.1 ± 0.0 35.0 ± 0.5 47.9 ± 0.0 48.1 ± 0.0 52.7 ± 0.5 52.8 ± 0.2
Cora 6.5 ± 0.6 3.6 ± 0.3 1.7 ± 0.1 15.6 ± 0.4 11.4 ± 0.1 11.1 ± 0.1 14.5 ± 0.4 6.5 ± 0.6 11.4 ± 0.1 16.7 ± 0.1
4. Experiment

4.1. Experimental setting

In our experiments, we utilized nine benchmark datasets, including
Sonar,2 MSRA1, Wdbc1, Pima1, Flower17,3 Caltech101,4 Mfeature1, Seg-
ment,5 Cora,6 to evaluate the clustering performance of our proposed
SMKKM-KWR. The detailed information regarding these benchmarks is
summarized in Table 1.

It is assumed that the number of clusters 𝑘 is given for all datasets.
To evaluate the algorithm clustering performance, we utilized four
publicly-used clustering metrics, namely accuracy (ACC), normalized
mutual information (NMI), purity (Pur) and rand index (RI).

We compared our proposed SMKKM-KWR with ten baseline and
state-of-the-art methods, including:

• Average kernel 𝑘-means (Avg-KKM). The kernel 𝑘-means algo-
rithm is performed to obtain the clustering results after generating
the average kernel from all views.

2 http://archive.ics.uci.edu/ml/datasets/.
3 www.robots.ox.ac.uk/~vgg/data/flowers/17/.
4 http://www.vision.caltech.edu/ImageDatasets/Caltech101/.
5 https://bmi.inf.ethz.ch/supplements/protsubloc/.
6

5

http://mlg.ucd.ie/aggregation/.
• Multiple kernel 𝑘-means (MKKM) [28]. The consensus kernel
is obtained by linearly combining the base kernels and jointly
optimizing the weights and clustering assignment partition.

• Localized multiple kernel 𝑘-means (LMKKM) [13]. It utilized
the adaptive weights and local information on the sample to
produce the weighted kernel.

• Optimal neighborhood kernel clustering (ONKC) [22]. It
learns an optimal kernel among the neighbors of the linear
combination of the basic kernels.

• Multiple kernel 𝑘-means with matrix-induced regularization
(MKKM-MiR) [20]. Through the guidance of matrix-induced reg-
ularization, the learned combination weights are more excellent,
and redundancy is reduced.

• Multiple kernel clustering with local alignment maximiza-
tion (LKAM) [21]. The alignment of the similarity of a sample’s
𝑘-nearest neighbors with the ideal similarity matrix is what the
algorithm tried to learn.

• Multi-view clustering via late fusion alignment maximization
(LFMVC) [29]. The algorithm initially computes the base kernels
of all the views, which are subsequently merged into a single
consensus division.

• Robust multiple kernel 𝑘-means with min–max optimization
(MKKM-MM) [30]. To enhance the robustness, it proposes to
reduce perturbation with min–max framework.

http://archive.ics.uci.edu/ml/datasets/
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
http://www.vision.caltech.edu/ImageDatasets/Caltech101/
https://bmi.inf.ethz.ch/supplements/protsubloc/
http://mlg.ucd.ie/aggregation/
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Fig. 2. The clustering performance evolution learned by proposed algorithm across iterations on nine datasets.
• Simple multiple kernel 𝑘-means (SMKKM) [25]. This work in-
troduces the min–max optimization framework, and adopts the re-
duced gradient descent algorithm to address the MKKM problem
with new formulation.

To ensure consistency, we downloaded publicly available code from
the source website and set parameters based on the corresponding
literature recommendations for each of the listed algorithms. In our
proposed method, we tuned the hyper-parameter 𝜆 within the range
f
[

2−10, 2−9,… , 210
]

to optimize the results. To mitigate the potential
mpact of random initialization of 𝑘-means, we conducted each ex-

periment 50 times and reported the average result. Our experiments
are all conducted the environment of MATLAB R2020b on a PC with
6

i9-10900X CPU and 64 GB RAM.
4.2. Experimental result

4.2.1. Overall performance
The results of the compared methods on the 9 datasets are presented

in Table 2, including ACC, NMI, Pur, and RI values. The best results
are highlighted in bold, while the second-best results are underlined.
According to these results, we can have the following observations.

• The recent introduction of SMKKM [25] has demonstrated sub-
stantial improvements in performance metrics such as ACC, NMI,
Pur, and RI compared to many previous methods. However, the
results of SMKKM were unsatisfactory in the Pima and Segment
datasets due to its inability to integrate prior knowledge. In

certain extreme scenarios, the learning outcome may deviate
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Fig. 3. Comparison of the weight coefficients obtained by the algorithm on nine datasets.

Fig. 4. The sensitivity analysis of 𝜆 on Sonar, MSRA and Caltech101 datasets.
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Fig. 5. Time cost of the tested algorithms on nine datasets.
Fig. 6. The objective value with iterations learned by proposed algorithm on four large-scale datasets.
Fig. 7. The clustering performance with iterations learned by proposed algorithm on four large-scale datasets.
significantly from the average kernel weight, thereby negatively
affecting the clustering task. Notably, our proposed SMKKM-KWR
algorithm outperforms it by significant margins, namely 0.9%,
4.7%, 1.2%, 13.1%, 0.4%, 0.6%, 1.1%, 8.6% and 5.5% in terms
of ACC. The improvements of the other performance criteria
are similar, which demonstrates the importance of using prior
information while SMKKM has already got the good performance.

• Our proposed SMKKM-KWR algorithm exceeds almost all the
compared methods across various performance metrics. Specifi-
cally, in the MSRA, Pima, and Segment datasets, its ACC exceeds
that of suboptimal algorithms by 2.1%, 1.5%, and 2.9%, respec-
tively. This improvement can be attributed to the framework
of min–max optimization and the effective integration of prior
information concerning the average kernel coefficients.

• Except for SMKKM, LFMVC achieved good clustering performance
in most cases, thanks to its idea of post-merging the partition
matrix. However, our proposed SMKKM-KWR algorithm outper-
formed it in the ACC metric on eight datasets by 8.7%, 3.4%,
8

0.7%, 4.0%, 2.2%, 12.8%, 2.9% and 0.2%, respectively.
In summary, our proposed algorithm exhibits superior performance
when compared to the contrast algorithm. This is attributed to the
validity of the min–max alignment criterion and the effective guidance
provided by the average kernel coefficients for clustering. Furthermore,
the exceptional experimental results provide compelling evidence sup-
porting the use of the average partition as prior information.

4.2.2. Learning procedure
The learning progress of our proposed SMKKM-KWR is illustrated

in Figs. 1 and 2, which display the loss and clustering performance, re-
spectively, across iterations. It is evident that the optimization formula
loss monotonically decreases, while the clustering performance exhibits
a consistent upward trend with the increase in the number of iterations.

4.2.3. Kernel weights
We investigate the weight coefficients of the kernel learned by

various algorithms on benchmark datasets, and plot the distribution
in Fig. 3. It is observed that some datasets, such as Mfeature and
Pima, exhibit extremely sparse kernel weights learned by MKKM due to

alternating optimization, which prevents the full utilization of multiple
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Fig. 8. Comparison of the weight coefficients obtained by the algorithm on four large-scale datasets.
Fig. 9. The sensitivity analysis of 𝜆 on four large-scale datasets.
Fig. 10. Time cost of tested algorithms on four large-scale datasets.
Table 3
Specification of used four large-scale datasets.

Dataset Number of

Samples Kernels Clusters

Flower102 8189 4 102
SUNRGBD 10 335 2 45
Reuters 18 758 5 6
NUS-WIDE 23 593 5 31

kernel matrices and leads to poor performance. For instance, MKKM
achieves ACC of only 50.7% and 77.8% on Pima and Mfeature, re-
spectively. In contrast, the weight coefficients of the kernel obtained
by our proposed SMKKM-KWR algorithm are all non-sparse, which
greatly benefits the clustering performance. For example, our algorithm
achieves clustering accuracies of 67.4% and 95.4% on Mfeature and
Pima, respectively. This improvement can be attributed to the 𝑙2 norm
constraint on 𝜸 and the use of a reduced gradient descent algorithm to
ensure reasonable weight coefficients.

4.2.4. Hyper-parameter sensitivity
We carry out the experiments to examine the sensitivity of the

proposed algorithm to hyper-parameter settings by comparing various
9

values of 𝜆. The results, as illustrated in Fig. 4, demonstrate that the
algorithm remains stable for values of 𝜆 smaller than 20 and 26 on
Sonar and MSRA datasets, respectively. This preliminary investigation
suggests that the proposed algorithm is relatively insensitive to changes
in hyper-parameter values.

4.2.5. Running time
To provide a more comprehensive illustration of the computational

efficiency of our proposed SMKKM-KWR, we have presented the ex-
ecution time of all tested algorithms on each dataset in Fig. 5. The
results indicate that our algorithm maintains the average computational
efficiency without significantly increasing the time complexity while
simultaneously enhancing the clustering performance.

4.3. Experiment on large-scale datasets

Furthermore, we conduct the experiment on four extra large-scale
datasets, including Flower102,7 SUNRGBD,8 Reuters,9 NUS-WIDE [31].
The detailed information regarding these benchmarks is summarized in
Table 3.

7 www.robots.ox.ac.uk/~vgg/data/flowers/102/.
8 http://rgbd.cs.princeton.edu/.
9
 https://kdd.ics.uci.edu/databases/reuters21578/.

http://www.robots.ox.ac.uk/~vgg/data/flowers/102/
http://rgbd.cs.princeton.edu/
https://kdd.ics.uci.edu/databases/reuters21578/
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Table 4
Clustering performance comparison on the four large-scale datasets.

Dataset Avg-KKM MKKM LMKKM ONKC MKKM-MiR LKAM LF-MVC MKKM-MM SMKKM Proposed

ACC

Flower102 27.1 ± 0.8 22.4 ± 0.5 OOM 39.5 ± 0.7 40.2 ± 0.9 41.4 ± 0.8 38.4 ± 1.2 27.1 ± 0.8 42.5 ± 0.8 42.8 ± 0.8
SUNRGBD 18.5 ± 0.5 17.2 ± 0.6 OOM 19.8 ± 0.5 19.5 ± 0.5 19.6 ± 0.5 18.6 ± 0.6 18.5 ± 0.5 19.2 ± 0.5 19.5 ± 0.6
Reuters 45.5 ± 1.5 45.4 ± 1.5 OOM 41.8 ± 1.2 46.2 ± 1.4 45.5 ± 0.0 45.7 ± 1.6 45.5 ± 1.5 45.5 ± 0.7 45.8 ± 1.0
NUS-WIDE 12.5 ± 0.4 12.7 ± 0.2 OOM 13.1 ± 0.3 12.9 ± 0.2 13.7 ± 0.2 13.2 ± 0.4 12.5 ± 0.4 13.0 ± 0.3 13.2 ± 0.2

NMI

Flower102 46.0 ± 0.5 42.7 ± 0.2 OOM 56.1 ± 0.4 56.7 ± 0.5 56.9 ± 0.3 54.9 ± 0.4 46.0 ± 0.5 58.6 ± 0.5 58.7 ± 0.4
SUNRGBD 22.6 ± 0.3 21.2 ± 0.4 OOM 23.6 ± 0.2 23.5 ± 0.3 23.9 ± 0.3 22.6 ± 0.4 22.6 ± 0.3 23.1 ± 0.4 23.1 ± 0.3
Reuters 27.4 ± 0.4 27.3 ± 0.4 OOM 22.3 ± 0.4 25.3 ± 0.7 29.9 ± 0.0 27.4 ± 0.4 27.4 ± 0.4 27.7 ± 0.2 27.8 ± 0.2
NUS-WIDE 11.1 ± 0.1 11.3 ± 0.2 OOM 11.2 ± 0.2 11.0 ± 0.2 13.4 ± 0.2 11.3 ± 0.2 11.1 ± 0.1 11.4 ± 0.2 11.7 ± 0.2

Purity

Flower102 32.3 ± 0.6 27.8 ± 0.4 OOM 45.6 ± 0.7 46.3 ± 0.8 48.0 ± 0.6 44.6 ± 0.8 32.3 ± 0.6 48.6 ± 0.7 48.8 ± 0.8
SUNRGBD 38.2 ± 0.7 36.2 ± 0.7 OOM 39.6 ± 0.6 39.4 ± 0.6 39.6 ± 0.4 38.1 ± 0.6 38.2 ± 0.7 39.0 ± 0.6 39.0 ± 0.6
Reuters 53.0 ± 0.4 52.9 ± 0.5 OOM 52.6 ± 0.3 52.2 ± 0.6 55.4 ± 0.0 53.2 ± 0.4 53.0 ± 0.4 53.3 ± 0.0 53.3 ± 0.0
NUS-WIDE 23.3 ± 0.3 24.2 ± 0.4 OOM 22.6 ± 0.4 22.2 ± 0.4 25.0 ± 0.4 23.5 ± 0.4 23.3 ± 0.3 22.9 ± 0.3 23.1 ± 0.4

Rand index

Flower102 15.5 ± 0.5 12.1 ± 0.4 OOM 24.9 ± 0.5 25.5 ± 0.6 27.2 ± 0.6 25.5 ± 1.0 15.5 ± 0.5 28.5 ± 0.8 28.4 ± 0.6
SUNRGBD 8.9 ± 0.3 8.1 ± 0.3 OOM 9.7 ± 0.2 9.6 ± 0.3 9.9 ± 0.3 9.0 ± 0.2 8.9 ± 0.3 9.4 ± 0.3 9.4 ± 0.2
Reuters 21.8 ± 1.4 21.8 ± 1.4 OOM 20.3 ± 0.3 23.1 ± 0.6 24.1 ± 0.0 22.1 ± 1.6 21.8 ± 1.4 22.1 ± 0.8 22.2 ± 0.8
NUS-WIDE 3.9 ± 0.2 4.0 ± 0.1 OOM 4.3 ± 0.2 4.2 ± 0.1 5.3 ± 0.2 4.5 ± 0.2 3.9 ± 0.2 4.3 ± 0.2 4.3 ± 0.1
The aggregative clustering performance are shown in Table 4, and
isible results are plotted in Figs. 6, 7, 8, 9, 10, respectively. Note that
‘OOM’’ denotes ‘‘OUT OF MEMORY’’.

From the experimental results, we can observe that the clustering
erformance of our proposed algorithm is still stable, always achieving
ncouraging improvement. Furthermore, the running time consumed
y our proposed algorithm is acceptable.

. Conclusion

In this paper, we develop a new multiple kernel K-means algorithm
ermed as SMKKM-KWR. To prevent the learned unified partition being
ar from the average partition,we add the average alignment as a
egularization term on the basis of SMKKM. Moreover, we propose
n efficient optimization algorithm to solve the new resultant prob-
em. Comprehensive experimental results on nine datasets show the
ffectiveness of our proposed SMKKM-KWR algorithm.
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