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A B S T R A C T

Deep graph clustering aims to reveal the underlying information of the graph and provide accurate embedding
for the node clustering task, in which contrastive learning plays an important role. However, the commonly
used contrastive loss function incorrectly classifies elements outside the diagonal of the cross view as negative
samples, which contain a large number of positive sample pairs. In order to overcome the above problems,
we propose a new deep graph contrastive clustering method, which combines hard positive sample debiasing
and sample pair weighting, and improves the recognition ability of the network by removing the potential
positive sample pairs and hard sample pair weighting in the negative sample pair of the loss function. More
specifically, we developed a symmetric graph neural network to encode node representations. Using two sets of
node representations, the correctness of negative cases is increased by clustering to generate high-confidence
pseudo-label pairs for labels and confidence. The similarity distribution differences are weighted by adapting
to different dataset samples to improve the sample recognition ability. To verify the efficacy of our DCHD, we
compare it to existing state-of-the-art methods for node clustering tasks on six real-world datasets. Overall,
the experimental results show that our proposed method outperforms current state-of-the-art graph clustering
methods.
1. Introduction

In recent years, deep learning has achieved notable success across
various domains, including object detection [1,2], recommender sys-
tems [3–5], general-purpose audio representations [6], and medical im-
age analysis [7]. This approach effectively leverages neural networks to
maximize their capacity for extracting valuable hidden information [8].
Contrastive learning has gained widespread adoption within the realm
of deep learning. Within these domains, deep graph clustering, which
is focused on partitioning nodes into distinct and non-overlapping
clusters, has garnered considerable interest in recent years. Contrastive
learning enables models to learn high-quality representations without
the need for labels or symbols.

Given the impressive performance exhibited by contrastive learn-
ing, an increasing number of deep graph clustering techniques have
embraced the contrastive learning framework. Recent research has
demonstrated the effectiveness of strategies such as mining hard sam-
ples in this context. To be more precise, MoCHi [9] aims to create
hard-negative samples through the process of sample synthesis. In the
case of Progcl [10], it initially identifies false negative samples by
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modeling the distributions of both true and false negative samples.
Subsequently, it generates an array of diverse negative samples based
on the harder negative samples selected. HomoGCL [11] employs ho-
mogeneity to estimate the likelihood that neighboring nodes represent
positive samples. On the other hand, HSAN [12] assigns weights to hard
positive and negative samples to enhance its recognition capabilities.
Although established as effective, we would like to highlight two
shortcomings in current methodologies: (1) Prior investigations have
primarily concentrated on addressing the challenges posed by hard
samples through techniques such as weight modulation. However, they
tend to overlook the inherent bias introduced by hard positive samples
themselves. (2) Furthermore, the distribution of hard positive and hard
negative samples exhibits a single pattern across different datasets,
where either positive or negative hard samples account for a higher
proportion. This centralized distribution, coupled with the constraints
imposed by the weight distribution function, may limit the recognition
ability of the model. Previous studies [13] has characterized hard sam-
ples as either false positives, positive samples exhibiting low similarity,
or negative samples demonstrating high similarity. Why should we
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Fig. 1. Density distribution study of the similarity of different nodes of the graph. In
order to examine the count of positive sample pairs within the negative example in
the infoNCE loss function, we employ a color scheme where yellow signifies the true
negative sample pair, red represents the true positive sample pair, and gray denotes
the genuine positive sample that has been eliminated as a result of our DCHD methods.
(1)It is important to note that since we are classifying all pairs of nodes to estimate
the density distribution, the combined gray and red sections represent the entirety of
the true positive sample pairs. (2)The figure also illustrates the similarity distribution
among initially paired nodes. For instance, in the CITE dataset, a majority of sample
pairs exhibit similarity values that are nearly equal to 1 during initialization. This
performance analysis emphasizes the fundamental factors contributing to the observed
bias within the infoNCE loss function and underscores the disparities in the distribution
of difficult samples across diverse datasets.

care about hard samples? Initially, the focus on hard samples was to
address the imbalance of training samples, where model parameter
updates depend on the gradient of loss. The sample pairs in the loss
function are weighted, assigning smaller weights to simple samples.
This is done to diminish their impact on the overall loss, effectively
reducing the proportion of loss attributed to simple samples. Assign a
larger weight to the hard sample, the weight tends to be 1. The primary
objective of minimizing the InfoNCE loss is to improve the lower bound
of mutual information between the anchor and positive sample, thereby
bringing their representations closer together. This is accomplished
by employing cosine similarity to assess the distance between their
generated vectors, enhancing the similarity between the anchor and
corresponding positive samples while diminishing the similarity with
negative samples. The above conform to deep learning theory [14–18].

We have generated density distribution plots illustrating the simi-
larity between sample pairs in the initial state of the CORA and CITE
datasets in Fig. 1. It is evident that in the CORA dataset, the similar-
ity among node pairs follows a roughly normal distribution centered
around a mean of 0. Additionally, a significant proportion of positive
sample pairs exhibit low similarity values. In the CITE dataset, the simi-
larity among node pairs roughly conforms to a beta distribution pattern.
Notably, the concept of hard positive samples is weakened when a large
number of samples exhibit high similarity values. Therefore, we should
introduce a larger weight to focus the network’s attention on hard
negative samples. Therefore, we enhance the discriminative ability
of the model solely by weighted hard positive samples. We achieve
this through a controlled weighting strategy, allowing us to manage
a specific category of hard samples. Additionally, the presence of a
substantial proportion of true positive sample pairs is noteworthy, and
designating them as negative sample pairs would introduce signifi-
cant bias. Our approach to debiasing hard positive samples effectively
eliminates approximately half of the positive sample pairs, thereby
substantially enhancing the model’s recognition capabilities.

To address the aforementioned issues, we introduce a novel deep
graph clustering method Deep Contrastive Clustering via Hard positive
sample Debiased(DCHD). This approach involves the formulation of a
hard positive sample debiasing criterion and the implementation of
a distinct hard sample weighting strategy. In particular, to enhance
the reliability of hard negative sample pairs, we mitigate the model’s
susceptibility to the influence of hard positive samples through the
clustering of pseudo-labels and confidence levels. Furthermore, we
introduce a contrastive sample weighting strategy aimed at enhancing
2

the network’s recognition capabilities. Initially, we employ a clustering
algorithm on the consensus node embeddings to generate clustering
pseudo-labels characterized by high confidence. Samples within the
same cluster are subsequently identified as potential positive sample
pairs. Distinct weighting strategies were employed based on the con-
sidered dataset, specifically weighting using hard positive samples or
hard negative samples for a particular dataset individually. This article
makes the following primary contributions:

• Our DCHD introduces a novel deep graph contrastive clustering
approach designed to eliminate the bias exerted by hard positive
samples on the model.

• To accommodate variations in the similarity density distribution
among sample pairs in different datasets, our DCHD presents a
weighting strategy model that exclusively addresses positive or
negative samples. This approach helps mitigate adverse effects
within the weighting process.

• Furthermore, we conducted thorough experiments on the node
clustering task using six benchmark datasets. The results consis-
tently demonstrated that our method outperformed other state-
of-the-art deep graph clustering approaches.

The structure of the remainder of this paper is as follows: In Sec-
tion 2, we offer an overview of related work. Section 3 delves into the
methodology, providing comprehensive details and introduce essential
notations. Subsequently, Section 4 presents the experimental results.
Finally, the last section provides a summary of the paper.

2. Related work

2.1. Contrastive learning on graph

Recently, due to the accomplishments of contrastive learning mech-
anisms in computer vision and natural language processing, contrastive
learning methods are experiencing growing utilization in the fields of
deep graph clustering and graph representation learning. In the initial
stages, CCA-SSG [19] reduces the correlation of different nodes through
affinity constraints. AFGRL [20] applied positive samples that filtered
neighbor search and clustering to knowledge distillation. Subsequently,
AutoSSL [21] enhances the pre-training effectiveness by conducting
a search to fine-tune the weight distribution of the task, leveraging
pseudo-homophily as a basis for adjustment. In contrast, NCLA [22]
autonomously learns graph enhancement parameters in an end-to-end
manner via a multi-head graph attention mechanism and introduces
a neighbor contrast loss function. Subsequently, MA-GCL [23] is in-
troduced, which augments the view from the model level through the
utilization of three enhancement strategies. Nevertheless, a significant
portion of recent research has concentrated on enhancement techniques
and train process. Recently, there has been a notable surge in interest
regarding the selection of positive and negative samples. In particular,
ProGCL [10] calculates the probabilities associated with true and false
negative samples to extract hard negative samples and generates syn-
thetic false samples. On the other hand, HSAN [12] dynamically assigns
weights to hard positive and negative samples by employing clustering
pseudo-labels and confidence levels. However, these approaches tend
to overlook the inherent bias introduced by false negative samples on
the model. To address this issue, we introduce a novel contrasting
deep graph clustering method designed to mitigate the model’s suscep-
tibility to the impact of hard true samples. In our proposed approach,
hard true samples are eliminated through the utilization of clustering

pseudo-labels and confidence levels.



Neurocomputing 570 (2024) 127147X. Zhang et al.

𝐋
l
c
𝑖

H
l
s
d

3

n
f

𝐗

w
f
𝐗

𝐙

Table 1
Acronym and description.
Acronym Description

𝐗 ∈ R𝑁×𝐷 Attribute matrix
𝐀 ∈ R𝑁×𝑁 Adjacency matrix
�̃� ∈ R𝑁×𝐷 Laplacian filter attribute matrix
𝐋𝑠 ∈ R𝑁×𝑁 Symmetric Laplacian matrix
𝐙𝑖 ∈ R𝑁×𝑑 Node embedding of 𝑖th view
 ∈ R2𝑁×2𝑁 Cross-view similarity matrix
𝐘 ∈ R𝑁 Sample pseudo-labels
𝐏 ∈ R𝑁×𝑁 Sample pair pseudo-labels
𝐇 ∈ R𝑁×𝑁 High confidence sample pair
 ∈ R2𝑁×2𝑁 De-biased matrix
|| ⋅ ||2 l-2 regularization

2.2. Hard sample mining

The critical determinants of success in contrastive learning methods
lie in the selection of positive and negative samples. Earlier research
has demonstrated that negative pairs with high similarity or positive
sample pairs with low similarity exhibit significant potential. Given
their effectiveness, an increasing number of researchers are now di-
recting their attention towards the mining of hard samples within
graph-based scenarios. In particular, GDCL [24] enhances the realism of
negative examples by employing a sampling strategy for negative sam-
ples. ANML [25] dynamically eliminates indivisible samples through
metric learning. Circle loss [26] dynamically adjusts its weight in the
backward propagation according to similarity. CuCo [27] uses a scoring
function to measure the difficulty of negative sampling and ranks
them from easy to difficult. In more recent developments, ProGCL [10]
employs a more suitable metric for assessing negative hardness and sim-
ilarity by estimating the probability that negative samples are genuine.
HSAN [12] utilizes a weight modulation function generated through
the combination of clustering pseudo-labels and confidence values to
dynamically assign weights to both challenging negative and positive
samples. Although the prior method demonstrated its efficacy, it over-
looked variations in the similarity density distributions among different
datasets, leading to suboptimal performance. In our approach, we con-
tend that prioritizing specific categories of hard samples is crucial for
different datasets. Building upon this idea, we introduce a controllable
sample weighting strategy.

3. Method

In this section, we begin by presenting symbolic notations for graphs
and graph contrastive learning methodologies. Subsequently, we intro-
duce our enhanced approach built upon these foundations as shown
in Fig. 2.

3.1. Preliminaries and notations

Let  = ( , ) be a graph,  = {𝑣1, 𝑣2,… , 𝑣𝑁} is the node set with
𝐶 classes and  ⊆  ×  is the edge set respectively. Additionally, the
attribute matrix and the adjacency matrix are denoted as 𝐗 ∈ R𝑁× and
𝐀 ∈ {0, 1}𝑁×𝑁 , where 𝐀𝑖𝑗 = 1 if (𝑣𝑖, 𝑣𝑗 ) ∈  , and 𝐷 is the dimension
of the raw node 𝑣. The notations used are summarized in Table 1.
Our primary goal is to train a graph encoder capable of generating
low-dimensional representations for nodes, which can then be directly
utilized for node clustering. GCN [28] is a commonly employed encoder
in the field of graphs. However, recent research [10] has demonstrated
that the message passing mechanism within this architecture plays a
crucial role in shaping the distribution of negative sample different
with image contrastive learning. HomoGCL [11] has established that
message passing is the focal aspect of contrastive learning. Conse-
quently, researchers have substituted the step involving the aggregation
3

of neighboring nodes in the GCN encoding process with the Laplacian
filter. The original message passing mechanism is outlined as follows:

𝐗(𝑡+1) = �̂�− 1
2 �̂��̂�− 1

2 𝐗(𝑡)

where 𝑡 represents the times of message passing, �̂� = 𝐀 + 𝐈 and �̂�𝑖 =
∑

𝑖 �̂�𝑖𝑗 . As a result, a new message passing approach that designed to
exhibit the property of a symmetric Laplacian matrix for non-bipartite
and connected graphs, was introduced:

𝐗(𝑡+1) = (𝐈 − 𝐋𝑠)𝐗(𝑡)

where symmetric Laplacian matrix 𝐋𝑠 = �̂�− 1
2 �̂��̂�− 1

2 , Laplacian matrix
̂ = �̂� − �̂�. Here, we illustrate our point using the InfoNCE [29]
oss function, one of the most widely adopted loss functions in graph
ontrastive methods [30], as an example. The embedding 𝑣 of any node
in one view is considered the anchor. The embedding 𝑢 of any node

𝑖 in the alternative view is utilized as the positive sample, while the
embeddings of all remaining nodes in both views are designated as
negatives.

𝑖𝑛𝑓𝑜𝑁𝐶𝐸 (𝑢𝑖, 𝑣𝑗 ) =

− 𝑙𝑜𝑔 𝑒𝜃(𝑣𝑖 ,𝑢𝑖)

𝑒𝜃(𝑣𝑖 ,𝑢𝑖) +
∑

𝑗≠𝑖(𝑒
𝜃(𝑣𝑖 ,𝑣𝑗 ) + 𝑒𝜃(𝑣𝑖 ,𝑢𝑗 ))

.

ere, 𝜃(⋅) represents the cosine similarity between paired samples in the
atent space. By minimizing the InfoNCE loss, the objective is to bring
imilar samples from different views closer together while pushing
issimilar samples apart.

.2. Laplacian filter encoding

From the above, to mitigate the impact of message passing in graph
eural networks, we employ the Laplacian filter to filter out high-
requency noise [12], which is represented by the following equation:

̃ = (
𝑡

∏

𝑖=1
(𝐈 − �̃�))𝐗 = (𝐈 − �̃�)𝑡𝐗, (1)

here �̃� is the Laplacian filter, 𝐈 is denoted Identity matrix and 𝑡 is the
iltering times. Then we denote node embeddings in the feature matrix
̃ with Auto-encoder  (⋅) as follow:

1 = 1(�̃�);𝐙
𝑣𝑖
1 =

𝐙𝑣𝑖
1

‖𝐙𝑣𝑖
1 ‖2

, 𝑖 = 1, 2,… , 𝑁 ;

𝐙2 = 2(�̃�);𝐙
𝑣𝑗
2 =

𝐙𝑣𝑗
2

‖𝐙𝑣𝑗
2 ‖2

, 𝑗 = 1, 2,… , 𝑁,

(2)

where 𝐙1 and 𝐙2 represent the feature embedding of the sample. In
this context, both 1(⋅) and 2(⋅) refer to simple multi-layer perceptrons
(MLPs) that possess identical architectures but do not share parameters.
Consequently, 𝐙1 and 𝐙2 encapsulate distinct semantic information. In
contrast to GCN, we do not integrate neighboring node information
into the encoding process. However, we obtain node embeddings that
encompass both attribute and topological information for each sample.
Subsequently, the node similarity function  is introduced to compute
the similarity between the 𝑖th sample and the 𝑗th sample using the
following formula:

(𝑣𝑎𝑖 , 𝑣
𝑏
𝑗 ) = (𝐙𝑣𝑖

𝑎 )T𝐙
𝑣𝑗
𝑏 , (3)

In this formula, 𝑎, 𝑏 ∈ {1, 2} and indicate the view in which node 𝑣
is situated, while T denotes matrix transpose. The equation comprises
two cross-view similarity matrices and two self-correlation similarity

matrices.
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Fig. 2. The pipeline of the DCHD. Firstly generates a Laplace attribute matrix through the Laplacian filter of the original attribute matrix 𝐗 and the adjacency matrix 𝐀, then it
is fed into MLPs encoders that do not share parameters to learn the representations. The representations of  is utilized to generate sample pseudo-labels 𝐘 via clustering, and
high-confidence samples 𝐇 are screened according to the distance between the sample and the centroids of each cluster. High-confidence positive sample pairs are selected on this
basis. In the face of different data sets, we adopt different sample pair weighting strategies: (1) give sample pairs other than  to the power 𝛽 of the absolute value of similarity,
and (2) calculate the absolute value of their similarity and  difference to the absolute power of 𝛽 for diagonal elements of the cross view.
3.3. Hard positive sample de-biased

In this section, we present the hard positive sample debiasing mod-
ule, which is built upon the enhancement of the InfoNCE loss. Merely
designating all nodes except those on the diagonal as negative nodes is
not optimal. This approach includes a substantial number of positive
sample pairs, and if we treat a pair of nodes that are close to the
same cluster as a negative sample pair, it can introduce bias during
the backpropagation process. In order to counteract this effect, we
eliminate positive sample pairs with a high likelihood of being genuine
by utilizing clustering pseudo-labels and confidence measures.

Initially, we derive the pseudo-label 𝐘 ∈ R𝑁 for each node by
clustering the embeddings 𝐙. Reliable positive sample pairs are sub-
sequently generated based on these pseudo-labels. We then choose the
top 𝜏 samples to form the high-confidence sample set 𝐇 ∈ R𝑀 .

𝐏𝑖𝑗 =
{

1 𝐘𝑖 = 𝐘𝑗 ,
0 𝐘𝑖 ≠ 𝐘𝑗 .

(4)

Here, 𝐏𝑖𝑗 indicates a pseudo-relationship between the 𝑖th sample and
the 𝑗th sample. Specifically, 𝐏𝑖𝑗 = 1 implies that the 𝑖th and 𝑗th samples
are more likely to be positive sample pairs, while 𝐏𝑖𝑗 = 0 signifies that
they are more likely to be negative sample pairs.

𝐇𝑖𝑗 =
{

1 𝑣𝑖, 𝑣𝑗 ∈ 𝐇,
0 else. (5)

where 𝐇𝑖𝑗 reveals the credibility relationship between the 𝑖th sample
and the 𝑗th sample. To elaborate, 𝐇𝑖𝑗 = 1 implies that the relationship
between the 𝑖th and 𝑗th samples is more likely to be true, while 𝐇𝑖𝑗 = 0
indicates that the relationship between them is more likely to be false.

Based on 𝐇 and 𝐏, we calculate the high confidence positive sample
labels pair  as follows:

 = 𝐏⊙𝐇, (6)

Leveraging the labels from the high-confidence positive sample pairs
𝑖𝑗 , we can then identify challenging positive sample pairs between
the 𝑖th and 𝑗th samples.

3.4. Controllable weighting strategy

Currently, the predominant approach for handling challenging sam-
ples primarily relies on using the infoNCE [29] function to adjust the
weights of sample pairs. Current methodologies for determining hard
sample weights primarily concentrate on hard positive and negative
4

samples. However, based on empirical investigations, we have discov-
ered that adjusting the weights of both positive and negative samples
may mitigate the clustering effect. Further, we observed variations
in the density distribution of sample pairs across different datasets
in Fig. 1. The application of a uniform weighting strategy, whether
it concentrates on both hard positive and hard negative samples or
exclusively on positive or negative samples, had detrimental effects.

To address this issue, we propose a controllable weight modulation
function  that dynamically fine-tunes the weights of sample pairs
throughout the training process. The confidence 𝜏 here can be different
from the debiased portion of the sample. We use controllable factor
𝑥 to choose a way to weigh our decisions. We simply select a hard
sample to weight in the code. In particular, for datasets where the
initial sample pairs exhibit low similarity, we compute their weights
using the power 𝛽 of the similarity among hard sample pairs. In
the case of hard positive samples, we determine the weight as the
difference between the pseudo-label and the similarity of the sample
pair (diagonal element).
Scheme 1:Hard Positive weighting

𝑝(𝑣𝑎𝑖 , 𝑣
𝑏
𝑗 ) =

{

1, ¬(𝑖, 𝑗 ∈ ),
𝑓 | −𝑁𝑜𝑟𝑚((𝑣𝑎𝑖 , 𝑣

𝑏
𝑗 ))|

𝑥𝛽 , 𝑜𝑡ℎ𝑒𝑟𝑠.
(7)

Here, 𝛽 represents the zoom factor, which dictates the weighting rate
for sample pairs. When the samples exhibit high confidence, their
weights are adjusted based on the pseudo-information and the similar-
ity of the sample pair. Conversely, for samples without high confidence,
i.e., ¬(𝑖, 𝑗 ∈ ), we retain the original settings in the loss function. For
example, one hard negative sample pair and simple negative sample
pair have a similarity of 0.9, 𝛽=2, then the weights are 0.81 and 1,
respectively. The weight of the hard sample is smaller than that of the
simple sample, forcing the network to focus on the simple sample.
Scheme 2:Hard negative weighting

Given that we have eliminated positive sample pairs in the loss
function, the remaining samples can be regarded as genuine negative
sample pairs. In a similar vein, when conducting negative sample
weight adjustment independently, it can be configured as the modu-
lation function of its own similarity. For example, since the clustering
cannot accurately identify sample pairs, there will be cases where the
similarity of hard positive sample pairs and easy positive sample pairs
is 0.1, and 𝛽=1, the weights are 0.9 and 1, respectively. So we keep the
positive sample pair weights as originally set.

𝑛(𝑣𝑎𝑖 , 𝑣
𝑏
𝑗 ) =

{

1, (𝑖, 𝑗 ∈ ),
𝑎 𝑏 (1−𝑥)𝛽 (8)
|𝑁𝑜𝑟𝑚((𝑣𝑖 , 𝑣𝑗 ))| , 𝑜𝑡ℎ𝑒𝑟𝑠.
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Algorithm 1 The DCHD training algorithm
Input: Attribute matrix 𝐗; Adjacency matrix 𝐀; epoch number 𝐍;
filtering times 𝑡; confidence 𝜏 ; zoom factor 𝛽; controllable factor 𝑥.
Output: The clustering results R.
1: Obtain the Laplacian filtered attribute matrix �̃� in Eq. (1) .
2: Utilize the encoder to obtain Z1 and Z2 by Eq. (2) .
3: Calculate similarity matrix  by Eq. (3) .
4: for 𝑛 = 1 to 𝐍 do
5: Clustering on node embeddings 𝐙 to obtain sample pair pseudo-

labels 𝐏 and high confidence sample pair 𝐇 in Eq. (4) and Eq. (5)
, respectively.

6: Conduct the hard positive sample de-biased matrix based on 𝐏
and 𝐇 in Eq. (6) .

7: Conduct the controllable weighting matrix  based on  and 
in Eq. (7) and Eq. (8) .

8: Update the parameters of network by minimizing  in Eq. (10) ;
9: end for

10: Obtain result R by performing K-means over Z.
11: return R

The weight modulation function  serves to amplify the importance
of hard samples while diminishing the significance of easy ones. To
elaborate, when the 𝑖th and 𝑗th samples are recognized as positive
ample pairs, the level of difficulty in pairing them diminishes as their
imilarity increases. Consequently,  assigns higher weights to positive

pairs with low similarity (representing hard samples) and lower weights
to pairs with high similarity (representing straightforward samples).

Based on  and  , we represent the hard sample contrastive loss
of the 𝑖th sample in the 𝑎th view as follows:

(𝑣𝑎𝑖 ) = −𝑙𝑜𝑔(
∑

𝑏≠𝑎 𝑒
𝑝(𝑣𝑎𝑖 ,𝑣

𝑏
𝑖 )⋅(𝑣

𝑎
𝑖 ,𝑣

𝑏
𝑖 )

∑

𝑏≠𝑎 𝑒
𝑛(𝑣𝑎𝑖 ,𝑣

𝑏
𝑖 )⋅(𝑣

𝑎
𝑖 ,𝑣

𝑏
𝑖 ) +

∑

𝑗≠𝑖,𝑏∈{1,2} 𝑖𝑗𝑒
𝑛(𝑣𝑎𝑖 ,𝑣

𝑏
𝑗 )⋅(𝑣

𝑎
𝑖 ,𝑣

𝑏
𝑗 )
).

(9)

n contrast to the traditional infoNCE loss, our approach initially em-
loys confidence measures and clustering pseudo-labels to rectify the
ias stemming from an abundance of positive sample pairs within
he negatives. Building upon HSAN [12], we introduce a controllable
ample pair weighting strategy  to accommodate variations in the
imilarity density distribution among diverse datasets. In summary,
he comprehensive loss function for our approach can be expressed as
ollows:

= 1
2𝑁

2
∑

𝑎=1

𝑁
∑

𝑖=1
(𝑣𝑎𝑖 ). (10)

his contrastive loss with differentiated hard sample weighting helps
lleviate the influence of hard samples on the network, thus further
nhancing the discriminative capability of both positive and negative
amples. We can attribute these two key reasons to our approach:
1) The introduced hard positive sample debiasing strategy effectively
itigates the presence of misleading hard samples in the loss function,

esulting in a more precise representation of negative samples. (2) The
roposed controllable weighting strategy is adept at accommodating
ariations in the similarity distribution among distinct datasets. In
atasets with a high proportion of low similarity sample pairs, it can
educe the weight of negative sample pairs; In datasets with a high
roportion of similarity, it can reduce the weight of positive sample
airs.

. Experiments

In this section, we evaluate the efficacy of our approach using
eal-world datasets for node clustering. We adhere to consistent exper-
mental procedures across all experiments, including Random seeds in
0-9] and evaluation protocols.
5

.1. Experimental setups

ataset: We conduct experiments on six widely used benchmark
atasets, including two citation networks CORA, Citeseer (CITE), three
ir-Traffic networks Europe Air-Traffic (EAT), Brazil Air-Traffic (BAT),
nd USA Air-Traffic (UAT) and one co-purchase networks Amazon-
hoto (AMAP).
aselines: To verify the superiority of our approach. Concretely, we
rimarily compare our approach to thirteen state of-the-art deep graph
lustering methods including based on feature extraction DAEGC [31],
RGVA [32], SDCN [33] and DFCN [34], based on graph contrastive

earning AutoSSL [21], SUBLIME [35], AFGRL [20], NCLA [22] and
A-GCL [23], based on hard sample mining GDCL [24], ProGCL [10],
omogcl [11] and HSAN [12].
mplement details and Evaluation protocol:We performed part of
he baseline experiment and the rest of the results are from [12]. The
xperimental results were acquired from a server equipped with an
ntel Xeon Platinum 8172M CPU, NVIDIA GeForce RTX 3090 GPU,
28 GB RAM, and the PyTorch deep learning platform. The train-
ng is configured for 400 epochs, and we conduct ten runs for all
ethods. Following the procedures outlined in prior research, each
odel initially undergoes unsupervised training on the entire graph.

ubsequently, results are updated every 10 rounds, and we employ
he Adam optimizer to train the parameters. In our model, attribute
ncoders consist of two parameters unshared one-layer MLPs, with 500
idden units for UAT/AMAP and 1500 hidden units for other datasets.
he BAT/CITE are adapt positive weighting and negative weighting for
thers. For baseline methods, we utilize their original source code with
efault settings and replicate the results. The clustering performance is
valuated using four widely employed metrics: ACC (Accuracy), NMI
Normalized Mutual Information), ARI (Adjusted Rand Index), and F1.
hese metrics are commonly used in deep clustering assessments.

.2. Complexity analysis

It is worth noting that the estimation of hard samples introduces
ighter computational overhead and space overhead on the underlying
odel. Based on the hard pseudo-label obtained by k-means of t degree,
(𝑡𝑘𝑁𝑑) is required to obtain the 𝑘-clustered centroid. For Eq. (5),
e need to calculate the distance between each node and each cluster

entroid, which is another (𝑘𝑁𝑑) overhead to get the hard-positive
ample matrix. Overall, the additional computational overhead for the
ase model is (𝑘𝑁𝑑), which is lightweight compared to the base
odel because k is usually set to a smaller number. Algorithm 1

ummarizes the training algorithm used by the algorithm for the graph
lustering task.

We have analyzed the memory usage of six methods during training
n the AMAP dataset in Table 3. To ensure fairness, ProGCL accounts
or training usage by calculating the probabilities of negative sample
rue and false occurrences. Regarding time efficiency, we measure the
uration from the beginning of an epoch to the completion of the
radient loopback when the training epoch stabilizes. In this context,
CHD and HSAN are categorized into update round time (⋅) and
ormal training time. As indicated in the table, our approach exhibits
lower memory footprint compared to HSAN but is higher than other

ontrastive learning methods. This is attributed to the introduction of
weight matrix, incurring additional overhead. Additionally, the K-
eans process in DCHD is performed on the GPU, while other methods

xecute it on the CPU. In terms of time overhead, our method demon-
trates a low impact during normal training rounds, with the weight
pdate round consuming a longer duration. However, the update every
0 rounds has a minimal effect on the overall training time.
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Table 2
The average clustering performance across ten runs on six benchmark datasets. The performance assessment is carried out using four metrics, with reported mean values and
standard deviations. The values highlighted in red and blue indicate the best and second-best results, respectively.

Based on feature extraction Based on contrastive learning Based on hard sample mining
DAEGC ARGVA SDCN DFCN AutoSSL SUBLIME NCLA MA-GCL AFGRL HomoGCL GDCL ProGCL HSAN DCHDDataset Metric

IJCAI 19 IJCAI 19 WWW 20 AAAI 21 ICLR 22 WWW 22 AAAI 23 AAAI 23 AAAI 22 KDD 23 IJCAI 21 ICML 22 AAAI 23 Ours
ACC 70.43±0.36 65.97±1.15 35.60±2.83 36.33±0.49 63.81±0.57 71.14±0.74 69.68±4.92 51.91±12.1 26.25±1.24 50.28±9.73 70.83±0.47 57.13±1.23 77.74±1.15 78.67±0.87
NMI 52.89±0.69 49.30±0.54 14.28±1.91 19.36±0.87 47.62±0.45 53.88±1.02 57.56±1.71 41.05±9.59 12.36±1.54 40.64±8.73 56.60±0.36 41.02±1.34 60.02±1.02 60.13±0.99
ARI 49.63±0.43 41.28±1.93 07.78±3.24 04.67±2.10 38.92±0.77 50.15±0.14 51.19±4.02 28.60±14.8 14.32±1.87 25.72±11.5 48.05±0.72 30.71±2.70 58.61±1.50 59.60±1.62

CORA

F1 68.27±0.57 63.71±2.09 24.37±1.04 26.16±0.50 56.42±0.21 63.11±0.58 66.45±6.02 47.37±13.2 30.20±1.15 45.11±10.9 52.88±0.97 45.68±1.29 75.76±1.37 76.84±0.79
ACC 64.54±1.39 59.30±1.38 65.96±0.31 69.50±0.20 66.76±0.67 68.25±1.21 68.18±0.81 63.88±5.62 31.45±0.54 45.61±8.04 66.39±0.65 65.92±0.80 71.30±0.87 71.13±1.04
NMI 36.41±0.86 31.80±0.81 38.71±0.32 43.90±0.20 40.67±0.84 43.15±0.14 44.23±0.32 39.33±4.09 15.17±0.47 27.35±6.58 39.52±0.38 39.59±0.39 44.86±1.01 44.97±1.20
ARI 37.78±1.24 31.28±1.22 40.17±0.43 45.50±0.30 38.73±0.55 44.21±0.54 45.28±0.34 39.12±5.81 14.32±0.78 19.51±9.24 41.07±0.96 36.16±1.11 46.67±1.12 46.17±1.90

CITE

F1 62.20±1.32 56.05±1.13 63.62±0.24 64.30±0.20 58.22±0.68 63.12±0.42 64.18±0.70 59.45±6.88 30.20±0.71 41.87±8.52 61.12±0.70 57.89±1.98 63.13±1.73 62.71±2.08
ACC 75.96±0.23 61.46±2.71 53.44±0.81 76.82±0.23 54.55±0.97 27.22±1.56 74.30±5.00 46.84±8.16 75.51±0.77 61.01±2.16 43.75±0.78 51.53±0.38 77.37±0.35 77.81±0.68
NMI 65.25±0.45 53.25±1.91 44.85±0.83 66.23±1.21 48.56±0.71 06.37±1.89 68.57±3.30 41.54±10.0 64.05±0.15 55.84±1.17 37.32±0.28 39.56±0.39 67.35±0.26 67.08±0.88
ARI 58.12±0.24 38.44±4.69 31.21±1.23 58.28±0.74 26.87±0.34 05.36±2.14 57.81±3.92 18.53±12.7 54.45±0.48 37.77±2.40 21.57±0.51 34.18±0.89 58.12±0.48 58.71±1.47

AMAP

F1 69.87±0.54 58.50±1.70 50.66±1.49 71.25±0.31 54.47±0.83 15.97±1.53 70.25±5.98 40.09±7.87 69.99±0.34 60.24±3.55 38.37±0.29 31.97±0.44 72.06±0.45 72.37±1.41
ACC 52.67±0.00 63.66±0.78 53.05±4.63 55.73±0.06 42.43±0.47 45.04±0.19 42.37±1.61 45.65±2.60 50.92±0.44 44.35±4.02 45.42±0.54 55.73±0.79 78.32±1.04 78.85±1.08
NMI 21.43±0.35 40.79±0.95 25.74±5.71 48.77±0.51 17.84±0.98 22.03±0.48 15.80±1.55 18.36±3.58 27.55±0.62 16.39±4.81 31.70±0.42 28.69±0.92 54.18±1.13 54.30±1.54
ARI 18.18±0.29 29.89±1.14 21.04±4.97 37.76±0.23 13.11±0.81 14.45±0.87 08.75±2.23 14.46±4.37 21.89±0.74 10.66±5.45 19.33±0.57 21.84±1.34 52.33±1.64 52.75±2.02

BAT

F1 52.23±0.03 63.90±0.66 46.45±5.90 50.90±0.12 34.84±0.15 44.00±0.62 41.93±1.62 43.12±2.59 46.53±0.57 43.41±3.83 39.94±0.57 56.08±0.89 78.19±1.05 78.80±1.03
ACC 36.89±0.15 50.35±0.41 39.07±1.51 49.37±0.19 31.33±0.52 38.80±0.35 36.62±1.22 36.67±2.50 37.42±1.24 37.79±4.35 33.46±0.18 43.36±0.87 57.84±0.40 57.84±0.49
NMI 05.57±0.06 33.68±1.71 08.83±2.54 32.90±0.41 07.63±0.85 14.96±0.75 07.49±1.39 06.68±1.75 11.44±1.41 10.26±5.55 13.22±0.33 23.93±0.45 34.55±0.41 34.87±0.54
ARI 05.03±0.08 23.28±1.55 06.31±1.95 23.25±0.18 02.13±0.67 10.29±0.88 05.39±0.49 05.44±2.13 06.57±1.73 07.97±5.79 04.31±0.29 15.03±0.98 27.76±0.52 28.03±0.49

EAT

F1 34.72±0.16 48.64±0.52 33.42±3.10 42.95±0.04 21.82±0.98 32.31±0.97 33.26±1.03 33.63±3.34 30.53±1.47 35.25±3.71 25.02±0.21 42.54±0.45 58.15±0.34 58.16±0.46
ACC 52.29±0.49 51.82±0.83 52.25±1.91 33.61±0.09 42.52±0.64 48.74±0.54 47.46±2.98 48.70±5.91 41.50±0.25 54.06±1.56 48.70±0.06 45.38±0.58 55.29±1.21 56.78±1.17
NMI 21.33±0.44 26.30±1.18 21.61±1.26 26.49±0.41 17.86±0.22 21.85±0.62 16.55±1.16 22.63±5.63 17.33±0.54 27.20±0.72 25.10±0.01 22.04±2.23 26.15±1.08 27.33±1.66
ARI 20.50±0.51 18.66±1.68 21.63±1.49 11.87±0.23 13.13±0.71 19.51±0.45 14.98±1.61 15.64±4.31 13.62±0.57 18.13±0.93 21.76±0.01 14.74±1.99 23.72±2.40 24.85±1.91

UAT

F1 50.33±0.64 51.32±1.16 45.59±3.54 25.79±0.29 34.94±0.87 46.19±0.87 44.95±1.40 46.42±6.80 36.52±0.89 53.36±2.48 45.69±0.08 39.30±1.82 54.40±1.90 55.93±1.84
Fig. 3. We present 2D 𝑡-SNE visualizations of seven methods applied to two benchmark datasets. The first row corresponds to the CORA dataset, and the second row corresponds
to the AMAP dataset.
Table 3
Time and memory (GPU) efficiency analysis.

Method Time (S) Memory (GB)

MA-GCL 0.026 2.96
NCLA 0.052 4.14
HomoGCL 0.213 5.37
ProGCL 0.379 8.77
HSAN 0.121 (1.149) 21.95
DCHD 0.054 (2.095) 15.51

4.3. Comparison analysis

We present the node clustering results for various methods across
the six datasets in the table. Our implementation of DCHD is based on
HSAN. From the outcomes outlined in Table 2, we can draw the follow-
ing three conclusions: Compared with the traditional deep clustering
methods, DCHD demonstrates a significant improvement in accuracy
(ACC) of 8.24% and 15.19% on the CORA and BAT datasets, respec-
tively. This suggests that the inclusion of the comparison mechanism
enhances the network’s ability to capture more valuable information.
When compared to contrastive learning methods, DCHD exhibits ACC
improvements of 7.53%, 2.3%, and 27.93% on the CORA, AMAP, and
UAT datasets, respectively. This indicates that the hard positive sam-
ple debiasing module effectively addresses bias within the contrastive
learning paradigm, correcting it and leading to improved performance.
In contrast to existing hard-sample mining methods, our controllable
6

weighting strategy module contributes to performance enhancement.
This underscores the impact of the similarity differences among samples
in different datasets on the weighting strategy. In contrast with HSAN,
our emphasis on hard positive sample debiasing contributes to refining
the contrastive learning paradigm and results in superior performance.
To summarize, the experimental results validate the effectiveness of
the proposed two modules in improving the performance of the DCHD
method.

4.4. Ablation studies

In this section, we conduct an ablation study to confirm the efficacy
of the proposed hard positive sample debiasing method denoted as ‘‘D’’
and the Controllable weighting strategy represented by ‘‘W’’. Specifi-
cally, in Fig. 4, we use ‘‘B’’ to denote the baseline. Furthermore, ‘‘B+D’’,
‘‘B+W’’, and ‘‘Ours’’ signify the baselines incorporating D, W, and both,
respectively. The ‘‘B+D’’ and ‘‘B+W’’ configurations for CORA, AMAP,
and BAT datasets have shown improvements in all four metrics. The
‘‘Ours’’ configuration has reached the optimal state. When CITE is
used individually, there is a slight performance decrease, but when
combined, it is at its best. EAT and UAT perform best when using ‘‘D’’,
but performance degrades when using ‘‘W’’, suggesting possible issues
with hyperparameter selection. In CORA, the confidence of ‘‘D’’ is set
to 0, and the zoom 𝛽 of UAT is set to 0. The results from Fig. 4 lead
to the following three observations. (1) Our proposed method shows
significant performance improvement compared to the baseline. This
improvement stems from the hard positive sample debiasing technique
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Fig. 4. Ablation studies of the proposed hard positive sample debiased  and weighting
strategy function  on six datasets.

Fig. 5. Analysis of the confidence hyper-parameter 𝜏 on six datasets.

D, which effectively reduces the error message in the loss function by
eliminating false negative samples (i.e., true positive samples) from
the loss function, thereby guiding the network to build the correct
model. (2) ‘‘B+W’’ improves the performance of ‘‘B’’. The results show
that our proposed controllable weighting strategy, W improves the
adaptability of the model to different datasets by guiding our network
to weight different hard samples. (3) The combination of S and M
yielded favorable clustering performance in all test configurations.

4.5. Sensitivity analysis

We examined the sensitivity of the confidence parameter 𝜏 and the
number of Laplacian transformations on six datasets.
7

Fig. 6. Analysis of the Laplacian filter times hyper-parameter 𝑡.

Confidence parameter 𝜏: Fig. 5 shows the node clustering ACC, NMI,
ARI, and F1 of DCHD on different datasets with 𝜏 values of [0.1,
0.3, 0.5, 0.7, 0.9]. We observed that DCHD did not have significant
fluctuations in probability on the AMAP and BAT|EAT|UAT datasets,
with BAT achieving the worst performance at 0.5 and generally show-
ing a trend of first decreasing and then increasing. CORA generally
showed an increasing trend with increasing values, while CITE de-
creased with increasing values of the parameter 𝜏. The results indicate
that we suspect that when the confidence parameter 𝜏 is low, the
number of hard samples identified is relatively small, leads to incorrect
weighting of false negative samples during the dynamic weighting
process, affecting the model’s recognition ability. Fig. 1 shows that
the CITE dataset contains a substantial number of challenging negative
samples. Due to the ongoing bias in distinguishing between positive
and negative samples, the debiased of hard positive samples ends up
removing valuable information from true negative samples, making it
impossible to learn this useful information. DCHD reduces the bias in
the loss function by clustering pseudo labels and confidence screening
hard positive samples, and adapts to the differences in the initial
state similarity distribution of different datasets through controlled
weighting strategies.
Laplacian filter times 𝑡: We compared the accuracy (ACC) of our
method on six datasets, observing the changes in the Laplacian filter
𝑡 parameter in [2,6]. As shown in Fig. 6, DCHD is less affected by
changes in 𝑡 except for the BAT dataset. CORA and CITE decrease as 𝑡
increases, while BAT is the opposite, and the other three datasets have
relatively flat changes. Overall, maintaining a low filter times yields
better results. In consequence, our model exhibits strong robustness,
avoids excessive hyperparameter tuning with augmentation and does
not necessitate parameter size adjustments based on the dataset.

4.6. 𝑡-SNE visualization of embeddings

To understand the node embeddings learned by DCHD more in-
tuitively, we visualize the embedding distribution of the CORA and
AMAP datasets generated by DCHD in Fig. 3. It is generated by t-
SNE [36] and uses different colors to represent different categories.
As a comparison, we mapped the node embedding data generated by
these seven methods into a low-dimensional space and then grouped
them according to their labels. The main difference between these
four methods of hard sample mining is that DCHD maps to a lower-
dimensional space and the distribution of the same group is more
compact. Compared with HSAN [12], DCHD captures more granular
class information. In the CORA dataset, other methods usually have a
small amount of noise data in each label group. We compared the set
of nodes included in each tag and their embeddings. We can see that
the nodes in DCHD are more tightly grouped than those in HSAN. This
means that our method can capture more detailed class information.

Fig. 7 shows the distribution of high-confidence samples. The t-
SNE visualization of high-confidence samples on the right and the
visualization of all samples on the left. It is not difficult to find that
almost all high-confidence samples are included in the class cluster to
which they belong, which provides strong support for positive sample
debiased.
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Fig. 7. Visualizations of the high confidence sample.

5. Conclusion

In this paper, we investigate why dynamic weighting of both hard
positive and hard negative samples is not effective, and consider that
the similarity of initialized samples of different data sets is extreme.
In addition, we find that there are a large number of positive pairs
in negative sample pairs. Therefore, we designed Deep Contrastive
Clustering via Hard positive sample Debiased(DCHD) to screen out po-
tential positive sample pairs by clustering pseudo-labels and confidence
criteria. Then, positive sample pairs in the denominator in infoNCE are
removed, thus ensuring the purity of negative samples of contrastive
learning. In addition, we propose a controllable weighting strategy to
accommodate the difference in density distribution of sample pairs
of different datasets. In this way, the network pays more accurate
attention to positive and negative sample pairs, which further improves
the sample identification ability. A large number of experiments show
that DCHD has good performance in node clustering tasks on six bench-
mark datasets. In this work, the accuracy of high-confidence positive
sample pairs is not high, and the need to manually adjust the weighting
method will be a focal point for future investigations. Moreover, the
consideration of constraining the key dimensions of the eigenvector to
enhance expressive capability will be a direction for future exploration.
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Appendix. Proof of method DCHD

In this section, we introduce the proof of our method with Triplet
Loss [37].

Proof. Based on the assumptions, we can rearrange the pairwise objec-
tive Eq. (9) as:
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)

The bias caused by the positive sample pairs with similarity tending to
0 is removed by the hard positive sample debiasing module. By Taylor
expansion of first order.

= 𝑙𝑜𝑔(1 + 𝑒(𝑛(𝑣𝑎𝑖 ,𝑣
𝑏
𝑖 )−𝑝(𝑣𝑎𝑖 ,𝑣

𝑏
𝑖 ))(𝑣

𝑎
𝑖 ,𝑣

𝑏
𝑖 ) − 1

+
∑

𝑗≠𝑖,𝑏∈{1,2}
1[𝑖𝑗=0] ⋅ 𝑒

(𝑛(𝑣𝑎𝑖 ,𝑣
𝑏
𝑗 )⋅(𝑣

𝑎
𝑖 ,𝑣

𝑏
𝑗 )−𝑝(𝑣𝑎𝑖 ,𝑣

𝑏
𝑖 )⋅(𝑣

𝑎
𝑖 ,𝑣

𝑏
𝑖 ))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇 𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑖𝑟

)

≈ 𝑒(𝑛(𝑣𝑎𝑖 ,𝑣
𝑏
𝑖 )−𝑝(𝑣𝑎𝑖 ,𝑣

𝑏
𝑖 ))(𝑣

𝑎
𝑖 ,𝑣

𝑏
𝑖 ) − 1

+
∑

𝑗≠𝑖,𝑏∈{1,2}
1[𝑖𝑗=0] ⋅ 𝑒

(𝑛(𝑣𝑎𝑖 ,𝑣
𝑏
𝑗 )⋅(𝑣

𝑎
𝑖 ,𝑣

𝑏
𝑗 )−𝑝(𝑣𝑎𝑖 ,𝑣

𝑏
𝑖 )⋅(𝑣

𝑎
𝑖 ,𝑣

𝑏
𝑖 ))

The above equation can be divided into hard positive sample weighting
and hard negative sample weighting.
Scheme 1:Hard positive weighting. According to the Eq. (7), it can be
divided into two cases.𝑛(𝑣𝑎𝑖 , 𝑣

𝑏
𝑖 ) = 1.

(1)𝑣𝑎𝑖 ∈ 𝐇 ∶ (𝑣𝑎𝑖 ) ≈ 1 + (1 −𝑝(𝑣𝑎𝑖 , 𝑣
𝑏
𝑖 ))(𝑣

𝑎
𝑖 , 𝑣

𝑏
𝑖 )

+
∑

𝑗≠𝑖,𝑏∈{1,2}
1[𝑖𝑗=0] ⋅ ((𝑣

𝑎
𝑖 , 𝑣

𝑏
𝑗 ) −𝑝(𝑣𝑎𝑖 , 𝑣

𝑏
𝑖 ) ⋅ (𝑣

𝑎
𝑖 , 𝑣

𝑏
𝑖 ))

(2)𝑒𝑙𝑠𝑒 ∶ (𝑣𝑎𝑖 ) ≈ 1 + (1 − 1)(𝑣𝑎𝑖 , 𝑣
𝑏
𝑖 )

+
∑

𝑗≠𝑖,𝑏∈{1,2}
1[𝑖𝑗=0] ⋅ ((𝑣

𝑎
𝑖 , 𝑣

𝑏
𝑗 ) − (𝑣𝑎𝑖 , 𝑣

𝑏
𝑖 ))

= 1 +
∑

𝑗≠𝑖,𝑏∈{1,2}
1[𝑖𝑗=0] ⋅ ((𝑣

𝑎
𝑖 , 𝑣

𝑏
𝑗 ) − (𝑣𝑎𝑖 , 𝑣

𝑏
𝑖 ))

Scheme 2:Hard negative weighting. According to the Eq. (8), it can be
rearranged as:

≈ 1 + (1 − 1)(𝑣𝑎𝑖 , 𝑣
𝑏
𝑖 ) +

∑

𝑗≠𝑖,𝑏∈{1,2}
1[𝑖𝑗=0] ⋅ ((𝑣

𝑎
𝑖 , 𝑣

𝑏
𝑗 ) − (𝑣𝑎𝑖 , 𝑣

𝑏
𝑖 ))

= 1 +
∑

𝑗≠𝑖,𝑏∈{1,2}
1[𝑖𝑗=0] ⋅ (𝑛(𝑣𝑎𝑖 , 𝑣

𝑏
𝑖 ) ⋅ (𝑣

𝑎
𝑖 , 𝑣

𝑏
𝑗 ) − (𝑣𝑎𝑖 , 𝑣

𝑏
𝑖 ))
which concludes the proof.
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