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 A B S T R A C T

Channel and spatial attentions have respectively brought significant improvements in extracting feature 
dependencies and spatial structure relations for various downstream vision tasks. The combined use of both 
channel and spatial attentions is widely considered beneficial for further performance improvement; however, 
the synergistic effects between channel and spatial attentions, especially in terms of spatial guidance and 
mitigating semantic disparities, have not yet been thoroughly studied. This motivates us to propose a novel 
Spatial and Channel Synergistic Attention module (SCSA), entailing our investigation toward the synergistic 
relationship between spatial and channel attentions at multiple semantic levels. Our SCSA consists of two 
parts: the Shareable Multi-Semantic Spatial Attention (SMSA) and the Progressive Channel-wise Self-Attention 
(PCSA). SMSA integrates multi-semantic information and utilizes a progressive compression strategy to inject 
discriminative spatial priors into PCSA’s channel self-attention, effectively guiding channel recalibration. 
Additionally, the robust feature interactions based on the Channel-wise single-head self-attention mechanism 
in PCSA further mitigate the disparities in multi-semantic information among different sub-features within 
SMSA. We conduct extensive experiments on seven benchmark datasets, including classification on ImageNet-
1K, object detection on MSCOCO, segmentation on ADE20K, and four other complex scene detection datasets. 
Our results demonstrate that our proposed SCSA not only surpasses the current plug-and-play state-of-the-art 
attention but also exhibits enhanced generalization capabilities across various task scenarios. The code and 
models are available at: https://github.com/HZAI-ZJNU/SCSA.
1. Introduction

Attention mechanisms, by enhancing representations of interest, 
facilitate the learning of more discriminative features and are widely 
used in redistributing channel relationships and spatial dependencies. 
Existing plug-and-play attention methods can be primarily categorized 
into three types: channel attention [1–6], spatial attention [7–10], and 
hybrid channel-spatial attention [11–18]. Their focuses differ: channel 
attention focus on enhancing the extraction of key object features 
by adaptively weighting the importance of different channels, while 
spatial attention is tailored to augment critical spatial information. 
Spatial information represents semantic feature objects at the pixel 
level. Local spatial information captures low-semantic objects, such as 
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fine details and textures, while global spatial information perceives 
high-semantic objects, such as overall shape.

In models based on convolutional neural network (CNN) archi-
tectures, deep convolutional operators are commonly employed for 
feature extraction. The gradients generated by these operators can 
flow and propagate across different feature channels, facilitating the 
update of convolutional weights and effectively representing image 
features. However, numerous studies have shown that relying solely on 
the convolutional branch for feature extraction can lead to distorted 
gradient flows [19], resulting in the loss of critical information or 
redundancy of similar features [20–23]. To address this, several meth-
ods based on excitation and suppression mechanisms [1] have been 
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 data mining, AI training, and similar technologies. 
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Fig. 1. Visualization of several feature maps. Different box or circle colors highlight 
inherent spatial semantic disparities across specific parts in various feature maps.

proposed, which focus feature learning on the most critical features 
for different tasks, thereby enhancing the model’s representational 
capacity. In particular, CBAM [11] aggregates global spatial and chan-
nel information separately by chaining channel and spatial attention, 
but compressing all channel information leads to sharing across all 
spatial structures. This weakens the adaptability of spatial context 
to different feature maps. To overcome this, CPCA [24] introduces 
a channel-priority attention mechanism and depth-wise stripe convo-
lutions, independently extracting spatial structures of each feature, 
significantly improving medical image segmentation. Furthermore, the 
EMA [17] module, based on grouped attention and cross-spatial multi-
scale interactions, effectively integrates spatial information of both 
long and short-range dependencies but overlooks inter-group feature 
interactions.

Although these hybrid attention mechanisms enhance representa-
tion learning, they overlook the inherent multi-semantic information 
across spatial and channel dimensions, as well as the interaction and 
disparity mitigation of multi-semantic features, which are crucial for 
fine-grained tasks such as detection and segmentation, thereby limiting 
the plug-and-play capability of these methods. As shown in Fig.  1, we 
analyze several feature maps of the image and observe that distinct 
spatial regions exhibit inherent semantic disparities and similarities, 
arising from the feature selectivity of different channels.

Based on this insight, this raises the question of whether it is 
possible to leverage the inherent spatial semantic disparities across 
different feature channels to guide the learning of important features? 
Furthermore, given the presence of semantic disparities, how can we 
mitigate these multi-semantic differences and promote better fusion of 
multi-semantic information?

Differing from the aforementioned methods, we explore solutions 
to the above issues from following three aspects: dimension decou-
pling, lightweight multi-semantic guidance, and semantic disparities 
mitigation, and propose a novel, plug-and-play Spatial and Channel 
Synergistic Attention (SCSA). Our SCSA is composed of a shareable 
Multi-Semantic Spatial Attention (SMSA) and a Progressive Channel-
wise Self-Attention (PCSA) linked sequentially. Our study initially em-
ploys multi-scale, depth-shared 1D convolutions to extract spatial infor-
mation at various semantic levels from four independent sub-features. 
We utilize Group Normalization [25] across four sub-features to hasten 
model convergence while avoiding the introduction of batch noise 
and the interference of semantic information between different sub-
features. Subsequently, we input the SMSA-modulated feature maps 
into PCSA, incorporating progressive compression and channel-specific 
single-head self-attention mechanisms. Our progressive compression 
strategy is designed to minimize computational complexity while pre-
serving the spatial priors within SMSA, offering a practical trade-off. 
2 
Moreover, our PCSA leverages an input-aware single-head self-attention 
mechanism to effectively explore channel similarities, thereby miti-
gating semantic disparities among different sub-features in SMSA and 
promoting information fusion. We conducted extensive experiments 
across four visual tasks and seven benchmark datasets, illustrating the 
effectiveness of the multi-semantic synergy applied in our SCSA. In 
summary, our contributions are as follows:

• We identify two key limitations in existing plug-and-play atten-
tion mechanisms: (1) insufficient utilization of inherent multi-
semantic spatial information to guide the extraction of key fea-
tures along spatial and channel dimensions, and (2) inadequate 
handling of semantic disparities and interactions caused by multi-
semantic information across feature maps.

• We propose the Spatial and Channel Synergistic Attention (SCSA), 
comprising the SMSA and PCSA modules. SMSA utilizes multi-
scale depth-shared 1D convolutions to capture multi-semantic 
spatial information, enhancing both local and global feature rep-
resentations. PCSA employs input-aware self-attention to refine 
channel features, effectively mitigating semantic disparities and 
ensuring robust feature integration across channels.

• Our proposed method outperforms other state-of-the-art plug-
and-play attention mechanisms on multiple benchmarks, includ-
ing ImageNet-1K for classification, MSCOCO for object detection, 
and ADE20K for segmentation, and demonstrates strong gener-
alization capability across various complex scenarios, such as 
low-light and small-object benchmarks.

2. Related work

2.1. Multi-semantic spatial information

Multi-semantic spatial structures incorporate rich category and con-
textual information. Effectively integrating global context and local 
spatial priors enables models to learn higher-quality representations 
from various perspectives. The InceptionNets [26–29] pioneered a 
multi-branch approach, employing parallel vanilla convolutions of dif-
ferent sizes to capture varying receptive fields, significantly enhanc-
ing feature extraction capabilities. SKNet [2] incorporates multi-scale 
convolutions into channel attention, using the squeeze-and-excitation 
mechanism proposed by SENet [1] to integrate spatial priors with 
varying receptive fields. Benefiting from the global contextual mod-
eling ability, ViT [10] employs MHSA to capture correlations at dif-
ferent spatial positions within distinct semantic sub-features, com-
plemented by position embedding to compensate for spatial priors, 
achieving remarkable success in various downstream tasks. Currently, 
many studies develop efficient models [20,22,23,30] based on multi-
semantic ideas, reducing parameters and computation for enhanced 
inference efficiency. Mamba [31] introduces a selectable state space 
model using scanning mechanisms and GPU parallelism to model global 
contextual dependencies with linear time complexity. Additionally, 
VMamba [32] proposes a cross-scanning module that extends 1D se-
quence scanning to 2D image scanning, effectively capturing multi-
semantic global context information from four directions. Additionally, 
multi-scale attention mechanisms have been explored in cross-domain 
vehicle re-identification [33] to enhance feature adaptation across 
domains, while manifold-based methods [34] leverage bi-consistency 
guidance for incomplete multi-view clustering, promoting robust fea-
ture learning across multiple perspectives. These studies highlight the 
significance of multi-semantic structures in diverse tasks and inspire 
our in-depth exploration of efficient attention mechanisms.
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Fig. 2. An illustration of our proposed SCSA, which uses multi-semantic spatial information to guide the learning of channel-wise self-attention. 𝐵 denotes the batch size, 𝐶
signifies the number of channels, and 𝐻 and 𝑊  correspond to the height and width of the feature maps, respectively. The variable 𝑛 represents the number of groups into which 
sub-features are divided, and 1𝑃 denotes a single pixel.
2.2. Attention decomposition

Integrating attention mechanisms into mainstream backbones or 
feature fusion networks enhances fine-grained feature understanding 
and improves feature representation accuracy. However, it inevitably 
leads to increased memory usage and computational time. CA [15] and 
ELA [18] perform unidirectional spatial compression along the height 
(H) and width (W) dimensions separately, preserving spatial structures 
in one direction while aggregating global spatial information in an-
other, mitigating information loss from global compression. SA [16] 
and EMA [17] reshape features into sub-features, reducing attention 
computation and parameters. However, the reshape operations they 
used in the high-dimensional B (batch size) and C (number of channels) 
constrained by GPU bandwidth can lead to expensive data transfers, 
significantly impacting inference speeds. CPCA [24] uses stripe convo-
lutions in independent channels to reduce parameters in large-kernel 
convolutions. Recent studies also apply dimension decomposition in 
MHSA, with RMT [35] applying MHSA separately across H and W 
dimensions to minimize computational costs.

In this study, we build upon the concept of attention decomposition 
and propose a lightweight guidance module that integrates multi-
semantic spatial information. Additionally, we design a multi-semantic 
discrepancy mitigation module based on a progressive channel-wise 
single-head self-attention mechanism, aiming to explore a more opti-
mized synergistic relationship between the spatial and channel dimen-
sions.

3. Method

In this section, we begin by discussing the SMSA module, which ex-
plores the benefits of lightweight multi-semantic information guidance. 
Next, we introduce the PCSA module, which utilizes a progressive com-
pression strategy and channel-wise self-attention to mitigate semantic 
disparities. The synergistic effects of multi-semantic guidance and se-
mantic disparities mitigation motivate us to propose SCSA module. The 
overall architecture is shown in Fig.  2.

3.1. Shared multi-semantic spatial attention

Spatial and channel decomposition
Decomposition techniques in neural network architectures substan-

tially reduce the parameter count and computational overhead. In-
spired by the structure of 1D sequences in Transformer [36], in our 
3 
work, we decompose the given input 𝑋 ∈ R𝐵×𝐶×𝐻×𝑊  along the height 
and width dimensions. We apply global average pooling to each dimen-
sion, thereby creating two unidirectional 1D sequence structures: 𝑋𝐻 ∈
R𝐵×𝐶×𝑊  and 𝑋𝑊 ∈ R𝐵×𝐶×𝐻 . To learn varying spatial distributions and 
contextual relationships, we partition the feature set into 𝐾 identically 
sized, independent sub-features, 𝑋𝑖

𝐻  and 𝑋𝑖
𝑊 , with each sub-feature 

having a channel count of 𝐶
𝐾 . In this paper, we set the default value 

𝐾 = 4. The process of decomposing into sub-features is presented as 
follows: 
𝑋𝑖

𝐻 = 𝑋𝐻 [∶, (𝑖 − 1) × 𝐶
𝐾

∶ 𝑖 × 𝐶
𝐾
, ∶] (1)

𝑋𝑖
𝑊 = 𝑋𝑊 [∶, (𝑖 − 1) × 𝐶

𝐾
∶ 𝑖 × 𝐶

𝐾
, ∶] (2)

𝑋𝑖 represents the 𝑖th sub-feature, where 𝑖 ∈ [1, 𝐾]. Each sub-feature is 
independent, facilitating efficient extraction of multi-semantic spatial 
information.

Lightweight convolution strategies across disjoint sub-features
After partitioning the feature maps into exclusive sub-features, we 

aim to efficiently capture distinct semantic spatial structures within 
each sub-feature. Inspired by extensive research on reducing feature 
redundancy [20,21,23], which reveal that such redundancy is likely 
due to intense interactions among features, we also observe varied 
spatial structures among features, as illustrated in Fig.  1. Based on 
these insights and aiming to enrich semantic information, enhance 
semantic coherence, and minimize semantic gaps, we apply depth-
wise 1D convolutions with kernel sizes of 3, 5, 7, and 9 to four 
sub-features. Furthermore, to address the limited receptive field caused 
by decomposing features into H and W dimensions and applying 1D 
convolutions separately, we use lightweight shared convolutions for 
alignment, implicitly modeling the dependency between the two di-
mensions by learning consistent features across both. The ablation 
details regarding them are provided in Table  1. The implementation 
process for extracting multi-semantic spatial information is defined as 
follows:

𝑋𝑖
𝐻 = 𝐷𝑊𝐶𝑜𝑛𝑣1𝑑

𝐶
𝐾 → 𝐶

𝐾
𝑘𝑖

(𝑋𝑖
𝐻 ) (3)

̃𝑋𝑖
𝑊 = 𝐷𝑊𝐶𝑜𝑛𝑣1𝑑

𝐶
𝐾 → 𝐶

𝐾
𝑘𝑖

(𝑋𝑖
𝑊 ) (4)

�̃�𝑖 represents the spatial structural information of the 𝑖th sub-feature 
obtained after lightweight convolutional operations. 𝑘𝑖 denotes the 
convolution kernel applied to the 𝑖th sub-feature.
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After decomposing the independent sub-features and capturing the 
spatial information of different semantics, we need to construct the 
spatial attention map. Specifically, we concat distinct semantic sub-
features and use Group Normalization (GN) [25] with 𝐾 groups for 
normalization. We opt for GN over the common Batch Normalization 
(BN) [37] because our study finds that GN is superior in distinguish-
ing semantic differences among sub-features. GN allows for the inde-
pendent normalization of each sub-feature without introducing batch 
statistical noise, effectively mitigating semantic interference between 
sub-features and preventing attention dilution. This design is validated 
by ablation studies shown in Table  1. Finally, spatial attention is gen-
erated using a simple Sigmoid activation function, which activates and 
suppresses specific spatial regions. The computation of output features 
is as follows:

𝐴𝑡𝑡𝑛𝐻 = 𝜎(𝐺𝑁𝐾
𝐻 (𝐶𝑜𝑛𝑐𝑎𝑡(𝑋1

𝐻 , 𝑋2
𝐻 ,… , 𝑋𝐾

𝐻 ))) (5)

𝐴𝑡𝑡𝑛𝑊 = 𝜎(𝐺𝑁𝐾
𝑊 (𝐶𝑜𝑛𝑐𝑎𝑡( ̃𝑋1

𝑊 , ̃𝑋2
𝑊 ,… , ̃𝑋𝐾

𝑊 ))) (6)

𝑆𝑀𝑆𝐴(𝑋) = 𝑋𝑠 = 𝐴𝑡𝑡𝑛𝐻 × 𝐴𝑡𝑡𝑛𝑊 ×𝑋 (7)

𝜎(⋅) denotes the Sigmoid normalization, while 𝐺𝑁𝐾
𝐻 (⋅) and 𝐺𝑁𝐾

𝑊 (⋅) rep-
resent GN with K groups along the H and W dimensions, respectively.

3.2. Progressive channel-wise self-attention

A prevalent approach to compute channel attention is through con-
volutional operations that explore dependencies among channels [1,4]. 
The use of convolution to model the similarities between features is 
somewhat non-intuitive and makes it difficult to effectively measure the 
similarity across different channels. Inspired by the significant advan-
tages of the ViT [10] in utilizing MHSA for modeling similarities among 
different tokens in spatial, we propose combining the Single-Head Self-
Attention (SHSA) with modulated spatial priors from SMSA to compute 
inter-channel similarities. Moreover, to preserve and utilize the multi-
semantic spatial information extracted by SMSA, and to reduce the 
computational cost of SHSA, we employ a progressive compression 
method based on average pooling, which serves as the guidance in 
our synergistic effects. Compared with modeling channel dependencies 
using common convolutional operations, PCSA exhibits stronger input 
perception capabilities and effectively leverages the spatial priors pro-
vided by SMSA to deepen learning. The implementation details of our 
PCSA are as follows:

𝑋𝑝 = 𝑃𝑜𝑜𝑙(𝐻,𝑊 )→(𝐻 ′ ,𝑊 ′)
(7,7) (𝑋𝑠) (8)

𝐹𝑝𝑟𝑜𝑗 = 𝐷𝑊𝐶𝑜𝑛𝑣1𝑑𝐶→𝐶
(1,1) (9)

𝑄 = 𝐹𝑄
𝑝𝑟𝑜𝑗 (𝑋𝑝), 𝐾 = 𝐹𝐾

𝑝𝑟𝑜𝑗 (𝑋𝑝), 𝑉 = 𝐹 𝑉
𝑝𝑟𝑜𝑗 (𝑋𝑝) (10)

𝑋𝑎𝑡𝑡𝑛 = 𝐴𝑡𝑡𝑛(𝑄,𝐾, 𝑉 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝐶
)𝑉 (11)

𝑃𝐶𝑆𝐴(𝑋𝑠) = 𝑋𝑐 = 𝑋𝑠 × 𝜎(𝑃𝑜𝑜𝑙(𝐻
′ ,𝑊 ′)→(1,1)

(𝐻 ′ ,𝑊 ′) (𝑋𝑎𝑡𝑡𝑛)) (12)

𝑃𝑜𝑜𝑙(𝐻,𝑊 )→(𝐻 ′ ,𝑊 ′)
(𝑘,𝑘) (⋅) denotes a pooling operation with a kernel size 

of 𝑘 × 𝑘 that rescales the resolution from (𝐻,𝑊 ) to (𝐻 ′,𝑊 ′). 𝐹𝑝𝑟𝑜𝑗 (⋅)
represents the linear projection that generates the query, key, and 
value.

It is important to note that, unlike the MHSA in the ViTs where 
𝑄,𝐾, 𝑉 ∈ R𝐵×𝑁×𝐶 with 𝑁 = 𝐻𝑊 , in our PCSA’s CA-SHSA, self-
attention is computed along the channel dimension, with 𝑄,𝐾, 𝑉 ∈
R𝐵×𝐶×𝑁 . Additionally, to fully interact with the different sub-features 
decomposed in SMSA, We select to implement a simpler single-head 
self-attention mechanism instead of the combination of multi-head 
self-attention with channel shuffling [22].
4 
Table 1
Ablation studies on the design strategy of SCSA, conducted at a 224 × 224 resolution, 
using the ImageNet-1K validation set. The abbreviation ‘‘PC’’ denotes progressive 
compression. 𝐺𝑖(𝐾1 , 𝐾2 ,… , 𝐾𝑖) denotes splitting 𝑋 into 𝑖 sub-features and applying a 
1D convolution of size 𝐾𝑖 to each 𝑖th sub-feature.
 Ablations Variants Throughput Top-1 
 (imgs/s) (%)  
 Baseline SCSA-50 2019 77.49 
 Macro Design w/o SMSA 2217 77.21 
 w/o PCSA 2155 77.44 
 Ordering PCSA Prior 2005 77.20 
 GN Prior 2010 77.47 
 

Micro Design

w/o Normalization in SMSA 2010 77.15 
 GN→BN 1999 77.19 
 GN→LN 2005 77.20 
 w/o PC 1982 77.31 
 w/ Multi-head + Shuffle 2082 77.35 
 Shared → Unshared 1981 77.32 
 Scaled: √𝐶 →

√

𝐻 ∗ 𝑊 2001 77.34 
 
Branch

G1(3) 2085 77.24 
 G1(7) 2063 77.17 
 G2(3,7) 2040 77.32 

Fig. 3. Main Module Structures with SCSA.

3.3. Synergistic effects

The synergistic spatial and channel attention mechanisms aim to 
complement each other. In our work, we propose a novel concept of 
guiding channel attention learning through spatial attention. Drawing 
inspiration from the connection between CBAM [11] and CPCA [24], 
we employ a similar serial structure to integrate our SMSA and PSCA 
modules, forming the Spatial and Channel Synergistic Attention (SCSA). 
The difference is that the spatial attention SMSA is applied first, 
followed by the channel attention PSCA. The former extracts multi-
semantic spatial information from each feature, providing precise spa-
tial priors for the latter; the latter refines the semantic understanding 
of the local sub-feature 𝑋𝑖 by leveraging the overall feature map 
𝑋, thereby mitigating the semantic disparities caused by the multi-
scale convolutions in the former. Additionally, unlike previous ap-
proaches [1,11,12,15], we do not employ channel compression, ef-
fectively preventing the loss of crucial features. Ultimately, our con-
structed SCSA is as follows: 
𝑆𝐶𝑆𝐴(𝑋) = 𝑃𝐶𝑆𝐴(𝑆𝑀𝑆𝐴(𝑋)) (13)

3.4. Integration of attention mechanisms

In our work, we integrate the proposed SCSA into different back-
bone networks to validate its effectiveness in enhancing feature ex-
traction capabilities. As shown in Fig.  3, the SCSA is integrated into 
four mainstream blocks: (a) and (b) represent blocks based on the 
ResNet [38] and its variant series [39]; (c) represents the inverted 
residual structure based on the MobileNet series [40–42]; (d) rep-
resents the block structure of RepVGG [43], a representative of the 
reparameterization approach.
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Table 2
Comparison of our proposed SCSA with other state-of-the-art attention mechanisms across multiple benchmark models at a 224 × 224 resolution on the ImageNet-1K validation 
set [44].
 Backbones Type Methods Params (M) FLOPs (G) Throughput (imgs/s) Top-1 (%) Top-5 (%) 
 

ResNet-50

– ResNet 25.56 4.02 2433 76.39 93.09  
 

Channel
ECA 25.56 4.11 2109 77.05 93.43  

 SE 28.07 4.11 2077 77.23 93.56  
 FCA 28.07 4.11 1905 77.29 93.64  
 

Hybrid

CPCA 27.40 4.87 1379 75.80 92.57  
 AFGCA 26.82 4.12 2280 76.98 93.39  
 CBAM 28.07 4.12 1687 77.12 93.50  
 SA 25.56 4.12 1493 77.12 93.64  
 ELA 25.59 4.11 2233 77.25 93.52  
 CA 25.69 4.11 2244 77.37 93.52  
 EMA 25.57 4.18 1861 77.43 93.79  
 SCSA (Ours) 25.62 4.12 2019 77.49 93.60  
 

ResNet-101

– ResNet 44.55 7.83 1588 77.76 93.81  
 

Channel
ECA 44.55 7.83 1408 78.32 93.99  

 SE 49.30 7.84 1399 78.40 94.05  
 FCA 49.29 7.84 1242 78.51 94.10  
 

Hybrid

AFGCA 45.98 7.85 1301 78.02 93.99  
 CBAM 49.30 7.84 1118 78.09 94.07  
 CA 44.80 7.84 1437 78.11 93.92  
 SCSA (Ours) 44.68 7.85 1298 78.56 94.31  
 
MobileNetV2-1.0

– MobileNetV2 3.51 0.31 6693 71.54 90.11  
 Channel ECA 3.51 0.31 5746 72.02 90.35  
 Hybrid CBAM 4.07 0.32 4539 72.43 90.49  
 SCSA (Ours) 3.63 0.34 2751 72.72 90.81  
 
ACNet-r18

– ACNet 11.7 1.82 9056 71.14 89.96  
 Channel SE 11.8 1.82 8324 72.13 90.62  
 Hybrid SCSA (Ours) 11.7 1.82 5820 72.89 91.05  
 
RepVGG-A0

– RepVGG 9.11 1.52 6685 72.30 90.49  
 Channel ECA 9.11 1.52 5059 72.76 90.71  
 Hybrid CA 9.35 1.52 3095 73.12 90.99  
 SCSA (Ours) 9.18 1.53 2842 73.51 91.12  
 RepViT-1.0 Channel SE 6.81 1.11 7216 79.90 94.71  
 Hybrid SCSA (Ours) 6.56 1.11 4898 80.65 95.25  
 Swin-T – Swin 28.29 4.51 1523 80.83 95.49  
 Hybrid SCSA (Ours) 28.36 4.52 1315 81.53 95.84  
4. Experiments

4.1. Experiments settings

In this section, we first introduce the experimental details. Next, 
we conduct experiments on four visual tasks, comparing our proposed 
SCSA with other state-of-the-art attention mechanisms. Following this, 
in Section 4.5, we perform a comprehensive ablation study on our 
meticulously designed SCSA from four different perspectives.

Datasets
We validate the effectiveness of our method across four visual 

tasks. For the image classification, we select the widely used ImageNet-
1K [44] dataset. In the object detection, we employ several chal-
lenging detection datasets, including MSCOCO [45], Pascal VOC [53], 
VisDrone [54], and ExDark [55]. For semantic segmentation and in-
stance segmentation, we selected the widely used ADE20K [56] and 
MSCOCO [45] benchmarks.

We are keen to explore whether attention mechanisms can be 
more effectively applied to various complex scene tasks. While pre-
vious attention research [1,4,11,16–18] has shown good performance 
on widely used benchmarks (e.g., ImageNet-1K [44], MSCOCO [45]), 
the effectiveness in dense, low-light, and small-object scenes remains 
uncharted. Therefore, we conduct more experiments using represen-
tative benchmarks in Table  6: the small-object dataset VisDrone [54], 
low-light dataset ExDark [55], infrared automotive dataset FLIR-ADAS 
v2 [57], and general dataset Pascal VOC [53].
5 
Metrics
We use Top-1 and Top-5 metrics to measure image classification, 

Average Precision (AP) to evaluate object detection, and report Param-
eter Count (Params) and Floating Point Operations Per Second (FLOPs), 
and throughput to measure performance. For semantic segmentation, 
we employ the mean Intersection over Union (mIoU).

Implementation details
To evaluate our proposed SCSA on ImageNet-1K [44], we select 

six mainstream backbone networks based on CNN and Transformer 
architectures, including ResNet [38], MobileNetV2 [40], ACNet [58], 
RepVGG [43], RepViT [30] and Swin [59]. Specifically, we follow the 
parameter configurations in the original papers [30,38,40,43,58,59], 
except for the batch size and learning rate. Since all classification 
models are trained on a single NVIDIA RTX 4090 GPU, we adjust the 
batch size and learning rate according to the linear scaling rule [60,
61]. For ResNet [38], ACNet [58], RepVGG [43], RepViT [30], and 
Swin [59], the batch size is uniformly set to 128, with the learning rates 
scaled down to 0.05, 0.05, 0.05, 0.0005, and 0.000125, respectively. 
When training MobileNetV2 with our SCSA, we use the batch size and 
learning rate from ECA [4], set to 96 and 0.045, respectively. No-
tably, to enhance training efficiency, we employ Automatically Mixed 
Precision(AMP) training.

We evaluate our SCSA on MSCOCO [45] using Faster R-CNN [46], 
Mask R-CNN [62], Cascade R-CNN [47], and RetinaNet [48]. These 
detectors are implemented using the MMDetection [63] toolboxes with 
default settings. All models are trained using an SGD optimizer with 



Y. Si et al. Neurocomputing 634 (2025) 129866 
Table 3
Comparison of the performance of different attention mechanisms for object detection on the MSCOCO validation set [45], utilizing models such 
as Faster R-CNN [46], Cascade R-CNN [47], and RetinaNet [48]. All models were fine-tuned using the ‘‘1×’’ schedule with optimal results in 
bold and suboptimal results underlined in blue.
Detectors Methods Params (M) FLOPs (G) AP (%) AP50 (%) AP75 (%) AP𝑆 (%) AP𝑀 (%) AP𝐿 (%)

Faster R-CNN

ResNet-50 41.8 187.2 37.6 58.7 40.9 21.5 41.2 48.1
+ FCA 44.3 187.3 38.4 59.8 41.5 22.8 42.4 48.9
+ ECA 41.8 187.2 38.5 60.0 41.4 22.6 42.6 49.4
+ SE 44.3 187.2 38.7 60.2 41.6 23.2 42.4 49.3
+ CA 41.9 187.2 39.0 60.6 42.3 23.2 42.8 49.5

+ SCSA(Ours) 41.8 187.4 39.3 60.6 42.8 23.2 43.1 50.2

ResNet-101 60.8 255.4 40.2 61.3 43.8 23.9 44.2 51.8
+ FCA 65.5 255.6 40.6 62.2 44.1 23.8 44.9 52.5
+ SE 65.5 255.4 40.8 62.2 44.4 24.9 44.7 53.0
+ ECA 60.8 255.4 40.9 62.4 44.3 24.2 45.0 53.0
+ CA 61.0 255.5 41.1 62.2 44.8 24.1 45.0 53.5

+ SCSA(Ours) 60.9 255.7 41.5 62.9 45.4 24.6 45.3 53.7

Cascade R-CNN

ResNet-50 69.4 214.8 40.3 58.9 43.8 22.5 43.8 52.8
+ FCA 71.9 214.9 41.3 60.2 44.6 24.1 44.9 53.7
+ SE 71.9 214.8 41.4 60.2 44.9 24.5 44.7 54.0

+ CBAM 71.9 214.9 41.4 60.2 45.0 24.5 44.6 54.3
+ ECA 69.4 214.8 41.7 60.7 45.2 24.7 45.4 54.3

+ SCSA(Ours) 69.5 215.0 42.1 61.4 45.7 24.6 45.5 54.3

ResNet-101 88.4 283.1 42.6 61.1 46.6 24.9 46.7 55.7
+ SE 93.1 283.1 43.2 62.3 47.2 25.8 47.1 56.2
+ FCA 93.1 283.2 43.4 62.5 47.6 25.5 47.3 56.8
+ ECA 88.4 283.1 43.7 62.7 47.5 25.5 47.7 56.8
+ CA 88.6 283.1 43.8 62.8 48.0 26.0 47.6 57.4

+ SCSA(Ours) 88.5 283.4 44.2 63.1 48.2 26.0 48.2 57.5

RetinaNet

ResNet-50 38.0 214.7 36.5 55.5 39.1 20.2 40.1 48.1
+ FCA 40.5 214.8 37.3 57.2 39.3 21.6 40.9 49.0
+ SE 40.5 214.7 37.4 57.0 40.0 21.5 41.3 49.0
+ ECA 38.0 214.7 37.5 57.2 39.8 21.5 41.1 49.5
+ CBAM 40.5 214.7 37.6 57.0 40.2 22.0 41.6 48.7

+ SCSA(Ours) 38.0 214.8 37.9 57.6 40.2 22.5 41.3 49.7

ResNet-101 57.0 282.9 39.3 58.7 41.9 22.8 43.5 51.8
+ SE 61.7 282.9 39.8 59.9 42.2 22.9 43.8 52.1
+ FCA 61.7 283.1 39.9 60.0 42.4 22.9 44.6 52.4
+ CA 57.2 282.9 40.2 60.0 43.0 23.2 44.3 52.8
+ ECA 57.0 282.9 40.3 60.4 42.9 23.4 44.2 52.7

+ SCSA(Ours) 57.1 283.2 40.5 60.8 43.6 23.7 44.3 53.1
Table 4
Comparison of our method, based on the Faster R-CNN, with 
other attention mechanisms for object detection performance on 
the MSCOCO validation set [45] with the ‘‘2×’’ schedule.
Methods Faster R-CNN

AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿
ResNet50 38.4 59.2 42.0 21.7 42.1 50.3
+ FCA 39.1 60.1 42.5 23.0 43.2 50.9
+ SE 39.3 60.4 42.6 23.4 43.3 51.1
+ CBAM 39.4 60.2 42.5 23.4 43.4 50.9
+ AFGCA 39.4 60.0 42.4 23.2 43.1 50.8
+ ECA 39.4 60.4 42.6 23.6 43.3 51.2
+ SA 39.6 60.6 42.8 23.7 43.5 51.4
+ ELA 39.6 60.3 42.5 23.7 43.8 51.8
+ CA 39.9 61.0 43.2 23.6 43.8 51.6
+ SCSA 40.2 61.2 43.8 23.7 44.2 52.2

a momentum of 0.9 and a weight decay of 1e−4, with a batch size 
of 2 per GPU. Faster R-CNN, Mask R-CNN and Cascade R-CNN started 
with a learning rate of 0.0025, while RetinaNet starts at 0.00125. We 
separately fine-tuned the model on MSCOCO [45] for 12 epochs and 
24 epochs using a single NVIDIA H800 GPU and reported comparative 
results on validation set. Building on the above configurations, we 
further evaluate the proposed SCSA method’s detection performance 
and generalization capability on Pascal VOC [53], as well as in complex 
scenarios such as VisDrone [54], ExDark [55], and FLIR-ADAS V2 [57]. 
Additionally, for the YOLO series [19,49–51] and RT-DETR [52] real-
time detectors, we integrate SCSA into their Bottleneck blocks while 
adhering to their original experimental configurations.
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Table 5
Integration of SCSA into state-of-the-art real-time detectors [19,49–52] and performance 
evaluation on the MSCOCO dataset.
 Detectors Methods Params (M) FLOPs (G) AP (%) 
 YOLOv8-N – 3.2 8.7 37.3  
 + SCSA 3.2 8.7 38.0  
 YOLOv9-T – 2.0 7.7 38.3  
 + SCSA 2.0 7.7 38.8  
 YOLOv10-N – 2.3 6.7 38.5  
 + SCSA 2.3 6.7 39.1  
 YOLO11-N – 2.6 6.6 39.5  
 + SCSA 2.6 6.6 40.1  
 RT-DETR-r18 – 20.2 60.1 46.4  
 + SCSA 20.2 60.1 47.8  

We further validate our method on ADE20K [56] with the Uper-
Net [64] for semantic segmentation. Following common practices [65,
66], we utilize the MMSegmentation [67] toolboxes, set the batch size 
to 16, and conduct 80k training iterations. All models are trained using 
an SGD optimizer with an initial learning rate of 0.01, a momentum of 
0.9, and a weight decay of 5e-4. We also conduct training and inference 
using a single NVIDIA H800 GPU.

All models are trained with the default random seed 0.

4.2. Image classification

We compare our SCSA against other state-of-the-art attention mech-
anisms, including SE [1], CBAM [11], ECA [4], FCA (FCA) [6], CA [15], 
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SA [16], EMA [17], CPCA [24], AFGCA [68] and ELA [18]. As shown 
in Table  2, our SCSA achieved the highest Top-1 accuracy across net-
works of different scales, with negligible parameter count and computa-
tional complexity. Within hybrid architectures, our method’s through-
put based on ResNet is second only to CA and ELA, but it offer a better 
balance of accuracy, speed, and model complexity with a moderate 
model width. Integrating the SCSA method into the MobileNetV2 archi-
tecture significantly improves model accuracy. Although SCSA is more 
lightweight in terms of parameter count (3.63M vs. 4.07M, −0.44M), 
its multi-branch structure encounters a sharp increase in channel di-
mensions within the inverted residual blocks, which leads to a reduc-
tion in throughput. Notably, integrating the proposed SCSA method 
into reparameterized networks (such as ACNet [58], RepVGG [43], 
RepViT [30]) and the spatial self-attention-based Swin [59] achieves 
significant accuracy improvements of 1.75%, 1.21%, and 0.75%, and 
0.70%, respectively, effectively demonstrating the adaptability of our 
attention mechanism across different model architectures.

4.3. Object detection

Results on MSCOCO
We evaluate various attention mechanisms on MSCOCO to verify 

the effectiveness of our approach in dense detection scenario. We use 
ResNet-50 and ResNet-101 as the backbone and FPN [69] as the feature 
fusion network. As shown in Table  3, our method outperforms other 
state-of-the-art attention methods across various detectors, model sizes, 
and object scales. For Faster R-CNN [46], our SCSA improves by 1.7% 
and 1.3% in terms of AP compared to the original ResNet-50 and 
ResNet-101, respectively. Compared to other plug-and-play attention 
modules, including CBAM [11], FCA [6], ECA [4], and CA [15], SCSA 
demonstrates superior performance, achieving gains of 0.4% to 1.0% 
on the Cascade R-CNN [47] detector. Moreover, it consistently excels in 
detecting targets across various scales, demonstrating its strong adapt-
ability to multi-scale features. Furthermore, when the training schedule 
is extended to 2× (24 epochs), the results in Table  4 further validate 
that our proposed SCSA maintains superior performance compared to 
other counterparts. When integrating SCSA into state-of-the-art real-
time detectors [19,49–52], as shown in Table  5, our method achieves 
an improvement of 0.5% to 0.8% in AP, with negligible changes in both 
parameter count and computational cost.

Results on infrared, low-light, and small target detection
As shown in Table  6, it is gratifying to see that proposed SCSA 

performs better across these benchmarks [53–55,57] compared to other 
counterparts, further demonstrating the robustness of our strategy in 
maintaining channel dimensions and the synergistic concept of multi-
semantic information. Notably, our results indicate that there are still 
some limitations in the application of attention mechanisms on long-tail 
datasets, such as FLIR-ADASv2 [57], has led to minimal performance 
gains and even declines. This may be due to the attention mechanism’s 
squeeze-and-excitation strategy being illsuited for handling imbalanced 
distributed data, resulting in a focus on high-frequency categories while 
neglecting the learning of low-frequency ones.

4.4. Segmentation

We also test its performance in semantic segmentation on ADE20K
[56] and instance segmentation on MSCOCO [45]. We conduct exten-
sive comparative experiments based on the UperNet [64] network. As 
shown in Tables  7 and 8, our SCSA significantly outperforms other 
attention methods. Specifically, SCSA improves performance by 0.94% 
and 1.02% in terms of mIoU on ResNet-50 and ResNet-101, respec-
tively, while other methods only achieve improvements of 0.1% to 
0.2%, and some even fall below the baseline model. Meanwhile, SCSA 
achieves a 0.3% to 0.7% increase in terms of AP in instance segmen-
tation tasks, surpassing other counterparts. These results demonstrate 
that our method, based on multi-semantic spatial information, performs 
well in pixel-level tasks.
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Table 6
Comparison of our SCSA, based on ResNet-50 and ResNet-101, with other attention 
mechanisms for object detection performance across four different datasets.
Datasets Methods ResNet-50 ResNet-101

AP AP50 AP75 AP AP50 AP75

Pascal VOC

– 50.7 81.9 55.7 54.3 83.8 61.0
+ SE 50.2 81.9 54.1 53.7 83.6 60.1
+ ECA 50.7 82.2 55.0 54.4 84.4 60.5
+ FCA 50.8 82.0 55.2 53.7 83.7 59.6
+ CA 51.8 82.5 56.5 55.4 84.2 61.5
+ SCSA 53.0 83.0 58.0 55.5 84.6 61.8

VisDrone2019

– 22.1 37.3 23.1 23.1 38.5 24.5
+ SE 21.6 36.7 22.4 22.1 37.6 23.1
+ FCA 21.9 37.1 22.7 22.4 38.0 22.8
+ ECA 21.9 37.3 22.7 22.6 38.3 22.9
+ CA 22.8 38.3 23.9 23.5 39.2 24.4
+ SCSA 22.9 38.7 24.0 23.3 39.2 24.2

ExDark

– 39.2 71.4 38.6 42.4 74.9 43.4
+ ECA 37.9 70.7 37.2 42.4 75.1 42.8
+ SE 38.3 71.1 37.1 41.8 74.8 42.0
+ FCA 38.3 71.4 37.6 41.9 75.0 42.4
+ CA 39.5 72.2 39.8 43.2 75.6 45.4
+ SCSA 40.2 73.2 40.0 43.0 75.6 44.9

FLIR-ADAS v2

– 24.7 42.2 25.5 26.3 44.6 28.0
+ CA 24.2 42.2 25.0 25.5 43.7 26.8
+ FCA 24.4 41.5 25.8 24.7 42.0 25.9
+ SE 24.5 42.5 25.5 25.2 42.9 26.0
+ ECA 24.6 41.9 25.6 25.3 42.8 25.9
+ SCSA 24.8 42.3 26.1 25.4 43.2 26.2

Table 7
Comparison of our method, based on the UperNet model, with other attention 
mechanisms for semantic segmentation performance on the ADE20K benchmark.
 Methods UperNet

 Params (M) FLOPs (G) mIoU (%) 
 ResNet-50 64.1 1895 40.20  
 + CBAM 66.6 1895 39.62  
 + CPCA 65.9 1927 39.68  
 + SE 66.6 1895 39.94  
 + SA 64.1 1895 40.01  
 + ECA 64.1 1895 40.46  
 + FCA 66.6 1895 41.09  
 + SCSA(Ours) 64.2 1895 41.14  
 ResNet-101 83.1 2051 42.74  
 + CBAM 87.8 2051 41.65  
 + ECA 83.1 2051 42.63  
 + SE 87.8 2051 42.66  
 + FCA 87.8 2051 43.22  
 + SCSA(Ours) 83.2 2051 43.76  

Table 8
Comparison of our method, based on the Mask R-CNN, with other 
attention mechanisms for instance segmentation performance on 
the MSCOCO validation set [45].
Methods Mask R-CNN

AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿
ResNet50 34.8 55.9 36.9 16.4 37.4 50.2
+ CBAM 35.4 56.9 37.6 17.4 38.3 50.6
+ ECA 35.5 57.6 37.6 16.6 38.4 52.0
+ FCA 35.5 57.2 37.6 17.1 38.6 51.3
+ SE 35.7 57.3 38.1 17.7 38.6 50.9
+ SA 35.7 57.7 38.0 17.2 38.7 51.5
+ CA 35.8 57.5 38.2 16.9 38.5 51.7
+ SCSA 36.1 58.4 38.3 17.2 39.1 51.9

4.5. Ablation study

As shown in Table  1, we apply SCSA to ResNet-50, constructing 
SCSA-50 as the baseline on ImageNet-1K [44] for ablation studies 
across four aspects.
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Fig. 4. Comparative attention visualizations for ‘layer 4.2’ across multiple models, 
generated using samples randomly selected from different categories of the ImageNet-
1K validation set, through Grad-CAM [72].

Macro design
We validate the SMSA and PCSA modules separately, and both 

show significant improvements in accuracy compared to ResNet-50. 
With SMSA, guided by multi-semantic information, the Top-1 accuracy 
improved significantly by 1.05%, while PCSA, which mitigates multi-
semantic disparities and promotes channel interaction, increased the 
accuracy by 0.82%. Without progressive compression in PCSA, accu-
racy drops by 0.18%, and this is primarily because, after direct global 
spatial compression, PCSA cannot leverage the discriminative spatial 
priors provided by SMSA for its computations.

Ordering
Our study primarily aims to explore whether the inherent multi-

semantic spatial information across the spatial and channel dimen-
sions can effectively guide the learning of channel features. To further 
demonstrate the benefits of this ‘‘guidance’’, we swapped the order 
of PCSA and SMSA. Interestingly, the Top-1 accuracy dropped by 
0.29%, which further validates our previous hypothesis that spatial 
attention can guide channel feature learning, thereby confirming the 
effectiveness of guiding with multi-semantic information.

Although normalization helps reduce the impact of data noise and 
accelerates model convergence [70], the placement of normalization 
within SMSA may yield varying effects. Backbone networks based on 
MHSA [10,36] typically use Layer Normalization (LN) [71] before 
attention computation, whereas some plug-and-play attention modules 
either omit normalization layers [4,24] or apply them beforehand [16,
17]. To explore the necessity and optimal placement of normalization 
in SMSA, we conduct experiments by placing normalization before 
attention and by removing it. Results shown in Table  1 indicate that 
normalization is essential for the attention mechanism, though its 
specific position has a minor impact. Pre-normalization aids in handling 
variations among input features and improves training stability, but 
may cause loss of feature details, reducing attention sensitivity to fine-
grained information. In contrast, applying normalization after attention 
calculation can mitigate noise but may also diminish the model’s focus 
on important features. Ultimately, based on accuracy results, we opted 
to place normalization after attention calculation in SMSA.

Micro design
Following the experimental analysis above, which confirms the im-

portance of normalization layers in attention calculation, we consider 
whether group normalization is more suitable for extracting multi-
semantic information from multiple sub-features in the proposed SCSA. 
To investigate this, we perform ablation studies comparing popular nor-
malization methods in deep neural networks (DNNs), such as BN [37] 
and LN [71]. The results show that when GN is sequentially replaced 
with BN and LN, both accuracy and inference speed decrease, with 
Top-1 accuracy dropping to 77.19% and 77.20%, respectively. These 
declines are attributed to GN’s superior ability to preserve the inde-
pendence of semantic patterns among sub-features, thereby minimizing 
semantic interference. Conversely, BN’s sensitivity to batch size can 
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introduce statistical noise [73] when processing multi-semantic infor-
mation. LN, by normalizing along the channel dimension and capturing 
information across all features, may disrupt the distinct semantic pat-
terns that SMSA’s multi-scale convolutions extract from individual 
sub-features. These ablation suggest that GN may be a more suitable 
choice in convolution layers that involve multiple semantics. Further-
more, the decline in accuracy and increase in parameters with unshared 
convolutions further validate the effectiveness of using shared convolu-
tions to consistently learn and model features dependencies across the 
H and W dimensions.

Additionally, when replacing the single attention head in PCSA with 
multi-head and channel shuffle operation [22], performance decrease 
from 77.49% to 77.35%. This phenomenon is primarily attributed to 
the strong inter-channel interactions facilitated by the single head, 
which effectively alleviate semantic disparities produced in SMSA. 
To validate the shared convolutional learning on 1D sequences de-
composed along the Height and Width dimensions, we compare it 
to non-shared convolutional learning. Results show a 0.17% accuracy 
drop, reduced throughput, and increased parameters and FLOPs due 
to more convolutional operators. This confirms that shared learning 
across dimensions captures complementary features, enhancing model 
expressiveness.

Branch
The richness of semantic feature capture in SMSA is determined 

by the number of branches and the convolution kernel sizes used in 
each branch. Each branch is designed to learn a distinct sub-features. 
Reducing the number of branches weakens the module’s ability to 
extract inherent multi-semantic features. To assess the impact of cap-
turing different semantic features on model performance, we conducted 
experiments with varying branch numbers and convolution kernel sizes. 
As shown in the ‘‘Branch’’ section of Table  1, the accuracy of the 
dual-branch structure surpasses that of the single-branch, while the 
four-branch structure further outperforms the dual-branch. This results 
supports the effectiveness of our multi-branch, multi-scale structure 
in capturing diverse semantic patterns across sub-features, thereby 
enhancing the model’s representational capacity. As the number of 
branches increases, the model’s memory access overhead also rises, 
resulting in a decrease in inference speed.

5. Visualization and analysis

5.1. Visualization of attention

We evaluate the effectiveness of our method in mitigating semantic 
disparities and enhancing consistency by ensuring appropriate atten-
tion to key regions. As shown in Fig.  4, compared to other state-of-the-
art attention mechanisms, our SCSA distinctly focuses on multiple key 
regions, significantly reducing critical information loss while providing 
rich feature information. We also visualize the components of SCSA, 
including the SMSA and PCSA modules. In the absence of the PCSA 
module to address semantic disparities, the distribution of activation 
intensity remains inadequately balanced. Without the SMSA module for 
guiding multi-semantic spaces, the focus on important regions may be 
limited.

5.2. Visualization of effective receptive field

As depicted in Fig.  5, leveraging the spatial structure of multi-
semantic modeling, our SCSA has achieved a broader perceptual area. 
A larger effective receptive field (ERF) is beneficial for the network 
to utilize rich contextual information for collective decision-making, 
which is one of the important factors for performance improvement. 
To verify that the performance of our method benefits from a larger 
ERF, we randomly sample 300 images of different categories from the 
ImageNet-1K validation set [44], measure the contribution of each pixel 
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Fig. 5. Comparison of effective receptive fields (ERFs). Our SCSA provides a larger effective receptive field compared to the baseline, and the effect becomes more pronounced 
as the layers deepen.
Fig. 6. Detection results are visualized on Faster R-CNN [46], Cascade R-CNN [47], and RetinaNet [48] by respectively selecting two random samples from MSCOCO validation 
set [45] and comparing our SCSA with the ResNet-50 [38] baseline to demonstrate the effectiveness of our method.
on the original image to the center point of the output feature maps 
of the third and fourth stages of the model, and quantify the range 
of the ERF with the gradient values weighted and normalized. The 
visualization results demonstrate that as the network layers deepen, 
the ERF of our SCSA becomes increasingly evident, confirming our 
hypothesis and the effectiveness of our method.

5.3. Computational complexity

Given an input 𝑋 ∈ R𝐵×𝐶×𝐻×𝑊 , a pooling size of 𝑃 ×𝑃 , and a depth-
wise convolutional kernel size of 𝐾 × 𝐾, we sequentially consider the 
impact of dimension decoupling, depth-shared 1D convolutions, nor-
malization, progressive compression, and channel-wise self-attention, 
which collectively constitute the SCSA module. For simplicity of obser-
vation, we ignore the coefficients. The computational complexities of 
SCSA are:
𝛺(𝑆𝐶𝑆𝐴) = (𝐻𝐶 +𝑊𝐶) + (𝐾𝐻𝐶 +𝐾𝑊𝐶)

+ (𝐻𝑊𝐶) + (𝑃 2𝐻 ′𝑊 ′𝐶 +𝐻 ′𝑊 ′𝐶)

+ (𝐻 ′𝑊 ′𝐶 +𝐻 ′𝑊 ′𝐶2) (14)

𝐻 ′ and 𝑊 ′ denote the height and width, respectively, of the interme-
diate feature map produced by the progressive compression operation.

We observe that when the model width (i.e., the number of chan-
nels, 𝐶) is moderate, 𝛺(𝑆𝐶𝑆𝐴) scales linearly with the length of the 
input sequence. This indicates that our SCSA can perform inference 
with linear complexity when the model width is moderate.
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5.4. Inference throughput evaluation

As demonstrated in Tables  1 and 2, we evaluate the throughput of 
SCSA’s individual components in ablation experiments and compare the 
throughput across various benchmark models using different attention 
mechanisms. We conduct our experiments using a GeForce RTX 4090 
GPU at a resolution of 224 × 224, with a batch size of 32 to simulate 
real-world applications and maximize GPU utilization. To minimize 
variability, we repeat 100 times for each attention mechanism and 
report the average inference time. Specifically, As illustrated in Table 
2, although SCSA is slightly slower than pure channel attention, it 
outperforms most hybrid attention mechanisms, including CBAM, SA, 
EMA, and CPCA, and achieves the highest accuracy.

5.5. Qualitative results of object detection

As shown in Fig.  6, our method demonstrates superior performance 
in challenging scenarios, including obstruction, dense environments, 
clusters of small objects, and low-light conditions.

5.6. Qualitative results of instance segmentation

As shown in Fig.  7, our method segments obscured and overlapping 
objects more comprehensively and accurately, achieving higher con-
fidence scores. These results underscore the benefits of our method in 
leveraging multi-semantic information to better perceive the contextual 
space of relevant objects.
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Fig. 7. Visualization of instance segmentation results using the Mask R-CNN [62]. Each 
instance depicted in a distinct color.

Fig. 8. Visualization of semantic segmentation results using the UperNet [64] on 
ADE20K [56].

5.7. Qualitative results of semantic segmentation

It can be observed from Fig.  8 that our method significantly im-
proves the segmentation of objects that overlap and are semantically 
adjacent, effectively distinguishing between scenarios such as specta-
tors seated on chairs and toilets near bathtubs.

5.8. Categorization and analysis of attention

Based on the model types, we categorize the attention mechanisms 
compared in Table  2 into four types: channel attention [1,4,6], mixed 
attention [6,11,15–18,24,68], lightweight attention [4,6,18], and self-
attention [59]. Experimental results effectively validate the advantages 
of our synergistic approach, SCSA, across these different attention 
types, demonstrating its significant improvements in both performance 
and robustness, while maintaining high throughput.

6. Limitations

We demonstrated that our SCSA, a plug-and-play synergistic at-
tention method, excels in image classification, object detection, and 
instance and semantic segmentation. Although we are committed to 
exploring the synergistic effects across various dimensions and have 
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empirically validated the effectiveness of leveraging multi-semantic 
spatial information to guide channel recalibration and enhance feature 
interactions for mitigating semantic disparities, inference latency re-
mains a significant challenge in real-world deployment. Our approach 
achieves an optimal balance of model parameters, accuracy, and infer-
ence speed at an appropriate model width. However, at larger widths, 
the primary bottleneck in inference speed is the use of depth-wise 
convolutions and branching within the construction of a multi-semantic 
spatial structure, which have low FLOPS, frequently access memory, 
and exhibit low computational density [20,74,75]. We believe that 
the positioning and quantity of these plug-and-play attention mod-
ules should be optimized based on specific tasks and scenarios to 
ensure peak performance. In the future, we will investigate more 
lightweight and faster plug-and-play attention mechanisms, exploring 
the synergistic relationships across different dimensions.

7. Conclusion

In this study, we analyze the limitations of most plug-and-play 
attention methods in leveraging the inherent multi-semantic informa-
tion of features across spatial and channel dimensions, as well as the 
challenges posed by semantic disparities. To address these issues, we 
propose a novel plug-and-play Spatial and Channel Synergistic At-
tention (SCSA) mechanism, which incorporates dimension decoupling, 
lightweight multi-semantic guidance, and semantic disparity mitiga-
tion. SCSA leverages multi-semantic spatial attention to guide the 
learning of diverse channel features, followed by single-head self-
attention in the channel dimension to alleviate semantic disparities and 
promote semantic interaction. Extensive experiments demonstrate that 
SCSA consistently outperforms state-of-the-art attention mechanisms on 
widely used benchmarks, showing enhanced performance and robust 
generalization capabilities. We hope our work encourages further ex-
ploration of synergistic properties across multiple dimensions in various 
domains.
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