
Journal of King Saud University - Computer and Information Sciences 36 (2024) 102044

A
1
(

F

A
c
N
X
a

b

c

d

e

A

K
U
C
I
I
O

1

T
i
c
a
t
o
e

(

z

h
R

Contents lists available at ScienceDirect

Journal of King Saud University - Computer and Information
Sciences

journal homepage: www.sciencedirect.com

ull Length Article

n efficient online/offline heterogeneous proxy signcryption for secure
ommunication in UAV networks✩

egalign Wake Hundera a,b, Wang Shumeng a, Dagmawit Mesfin c, Huiying Xu a,
inzhong Zhu a,d,e,∗

School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China
Zhejiang Institute of Optoelectronics, Jinhua, China
Department of Electrical Engineering, University of Notre Dame, IN, 46556, USA
AI Research Institute of Beijing Geekplus Technology Co., Ltd., Beijing, 100101, China
Research Institute of Hangzhou Artificial Intelligence, Zhejiang Normal University, Hangzhou, 311231, China

R T I C L E I N F O

eywords:
nmanned aerial vehicle
ertificateless cryptosystem

nternet of Things
dentity-based cryptosystem
nline/offline signcryption

A B S T R A C T

The rapid growth of the Internet of Things (IoT) has led to an increased deployment of unmanned aerial
vehicles (UAVs) across various sectors. However, efficiency and security issues are persistently among the
primary challenges in UAV networks. In addition, significant communication delays can occur when UAVs
perform remote tasks far from a command center (CC); in some cases, they may be unable to communicate with
the CC. To address these challenges, in this paper, an efficient online/offline heterogeneous proxy signcryption
scheme for secure communication in UAV networks (HOOPSC) is proposed. This scheme enables the CC in
a certificateless cryptosystem (CLC) environment to delegate a nearby ground control station (GCS) to act
as an agent, and directly send commands to the UAV within an identity-based cryptosystem (IBC) when the
UAV undertakes remote tasks far from the CC. The UAV then decrypts and verifies commands for authenticity
and confidentiality. In the proposed scheme, the signcryption process is split into offline and online phases,
with most of the heavy computations conducted without the availability of the messages during the offline
phase. Only light computations are performed in the online phase when a message is available. Moreover, a
formal security proof is given in a random oracle model. Finally, a performance analysis reveals that HOOPSC
outperforms existing relevant schemes, making it ideal for long-range operations in UAV networks.
. Introduction

The rapid growth of wireless communication and the Internet of
hings (IoT) has made unmanned aerial vehicle (UAV) technology

ncreasingly popular in recent years. UAVs, or drone networks, are
ollaborative systems that use drones to accomplish tasks efficiently,
nd they can achieve specific objectives. UAVs are classified into three
ypes based on their level of autonomy, those controlled by a remote
perator, those supervised by a remote supervisor and those that op-
rate without an operator or supervisor. There is no need for real-time
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control or monitoring with the third type of UAV because it is equipped
with sensors and onboard computing. This enables it to operate in-
dependently, without the need for continuous control or supervision.
The onboard computers respond to changes in the internal and en-
vironmental conditions tracked in real time by sensors. Once tasks
are issued by the command center (CC), these unsupervised UAVs can
autonomously perform them, ensuring the real-time processing of the
gathered information. This paper focuses on the third category of UAVs,
which are small, easy to operate, flexible and convenient for several
vailable online 4 May 2024
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Fig. 1. Standard UAV scenario.

sectors, including military, agricultural, logistical and environmental
monitoring (Zhou et al., 2023; Ge et al., 2020; Zhang et al., 2019;
Faiçal et al., 2014; Khan et al., 2022a). However, UAV communication
uses an open wireless network, which increases its vulnerability to
various potential threats. Active attackers can intercept, manipulate
and forge messages, whereas passive attackers can eavesdrop, making
UAV communication security a critical issue and a hot topic among
scholars (He et al., 2016; Mohsan et al., 2023; Pan et al., 2022; Khan
et al., 2023).

The typical UAV scenario shown in Fig. 1, as described in Hua
et al. (2021), consists of a UAV, CC, ground control station (GCS)
and satellite that provides GPS navigation for the UAV and relays
data transmissions. It is assumed that the UAV performs remote tasks
far from the CC, leading to long delays or complete communication
failures. If a UAV does not receive and verify commands in a timely
manner, it may fly away from the target. In such cases, the UAV will
have to approach the target again to execute the command, which will
waste its power resources (Qi et al., 2019; Javed et al., 2022).

Therefore, it is critical to ensure that UAV commands are exe-
cuted in real time. This is achieved by enabling the CC to delegate
a nearby GCS to act as an agent and send commands directly to the
UAV. The UAV then decrypts and verifies commands for authenticity
and confidentiality. Advanced cryptographic methods, such as proxy
signcryption, have been applied to enhance secure and efficient com-
munications in UAV remote missions. Moreover, this study noted that
UAVs, CCs and GCSs belong to different cryptographic infrastructures
in a specific area. The three main public key cryptography infrastruc-
tures are public key infrastructure (PKI), identity-based cryptography
(IBC) and certificateless cryptography (CLC). A PKI uses a certificate
authority (CA) to link a user’s public key with their identity, however,
it can face challenges in certificate management, such as revocations
and verifications (Spies, 2017). In IBC, where public keys are user
identities such as email addresses or phone numbers, involves a private
key generator (PKG) that generates secret keys, leading to key escrow
issues (Barbosa and Farshim, 2008). CLC uses a key generation center
(KGC) for master and partial private keys, allowing users to create
secret keys while avoiding key escrow and certificate management
problems (Li et al., 2022). Therefore, CLC is the best choice for control
stations because it avoids key escrow and public key certificate manage-
ment problems, whereas IBC, which is free from public key certificate
management issues, is ideal for UAVs.

1.1. Motivation and contribution

This study aims to ensure secure and efficient communication be-
tween UAVs, CCs and GCSs operating within different cryptographic
2

environments, addressing the issues associated with long-range opera-
tions when UAVs perform remote tasks far from a CC through proxy
delegation. Because UAVs have limited computational and storage
capacity, the scheme employs both online and offline approaches to re-
duce the computational and communication burden on UAV networks.
The HOOPSC method is used to ensure secure communication within
UAV networks.

The contributions of this study are as follows:

1. First, an efficient online/offline heterogeneous proxy signcryp-
tion method for secure communication in UAV networks
(HOOPSC) is proposed. In this scheme, the CC and GCS operate
within the CLC environment, which avoids the certificate man-
agement issues of the PKI and the key escrow problems of the
IBC, and the UAV operates within the IBC environment, thus
avoiding certificate management issues.

2. The proposed HOOPSC scheme splits signcryption into offline
and online phases. In the offline phase, most heavy computations
are performed without knowledge of the message. During the
online phase, only light computations are performed when a
message becomes available.

3. The HOOPSC scheme achieves confidentiality, integrity, authen-
tication and nonrepudiation. Its security has been proven in
terms of indistinguishability against adaptive chosen ciphertext
attacks (IND-CCA2) and existential unforgeability against adap-
tive chosen message attacks (EUF-CMA) under the DBDH and
CDH problems in the random oracle model.

4. An extensive evaluation was performed to establish that the
proposed scheme outperforms existing schemes in terms of com-
putational cost and communication overhead.

1.2. Related work

Secure communication is a crucial aspect of UAV networks because
it ensures the confidentiality, integrity and authentication of the data
shared between the UAV, CC and GCS. One approach for achieving
secure communication in UAV networks is the use of a cryptographic
technique. The conventional method of signing and then encrypting
can keep messages secure from both active and passive attackers,
however, its substantial computational burden renders it impracticable
for UAVs. Zheng (1997) combined an approach in which encryption
and digital signatures were implemented together in a single logical
step, thereby reducing the computational load. In 2007, Baek et al.
(2007) officially proved the security of signcryption using a random
oracle model, demonstrating that signcryption can accomplish both
encryption and digital signature security. Following this research, many
signcryption techniques have been proposed (Li et al., 2017b; Niu et al.,
2023; Saraswat et al., 2017; Yu et al., 2022; Zhou et al., 2019; Khan
et al., 2022b). However, all of the above schemes use PKI, which
involves certificate management, storage and time.

Considering the certificate management overhead. Shamir (1985)
proposed IBC in 1984 to avoid PKI certificate management issues. In
IBC, the user’s public key is obtained from their identity data, whereas
PKG produces a secret key; thus, a key escrow issue is unavoidable.
PKG attack compromises or destroys system security. Therefore, the
CLSC has been advanced (Barbosa and Farshim, 2008), where the
complete private key is split into two parts, the user’s partial private
key is generated by the KGC, and the user creates its secret value;
thus, the PKI and IBC issues were resolved. Since then, numerous CLSC
techniques have been implemented (Mandal et al., 2020; Khan et al.,
2021a; Xu et al., 2022; Chen et al., 2021; Khan et al., 2021b).

In cryptography, proxy signcryption combines the features of both
proxy signatures and signcryptions. Mambo et al. (1996) first proposed
proxy signatures; in this approach, the original signer delegates the
right to sign to a proxy signer. This proxy signer is then authorized to
create a legal signature on behalf of the original signer. Li et al. (2005)
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presented the first certificateless proxy signature technique, however,
its security aspects were not validated in the study. Later, Lu et al.
(2007) and Cho and Lee (2007) found that the method (Li et al., 2005)
was vulnerable to forgery attacks and proposed improved schemes.
Nonetheless, formal security proofs are not provided in either Lu et al.
(2007) or Cho and Lee (2007). Subsequently, several certificateless
proxy signature schemes were developed Yang et al. (2020), Lu and
Li (2016), Deng et al. (2016). The concept of proxy signcryption was
first proposed by Gamage et al. (1999), in which an original signcrypter
delegates its role to a proxy. This proxy securely signifies the confiden-
tiality and authenticity of messages and the ensurers. This concept has
led to the development of various proxy signcryption schemes, particu-
larly those that use bilinear pairings (Lo et al., 2014; Shin et al., 2023;
Zhou et al., 2018; Hundera et al., 2022). However, existing schemes
based on bilinear pairings often suffer from high computational and
communication costs, as well as key escrow issues. To address these
problems, Yanfeng et al. (2013) introduced a CLP-IBSC system without
bilinear pairings, but they did not provide security proofs. MING (2014)
and Lo et al. proposed IBPSC schemes in the standard model in 2014.
Yu et al. (2018) proposed a universally composable IBPSC system.
Hundera et al. (2020) presented an IBPSC approach to cloud data
sharing. Yu and Wang (2019) developed a CLPSC scheme that em-
ploys CMGs. Ming and Wang (2015) proposed a signcryption approach
that uses a proxy. Zhou (2016) also proposed a proxy signcryption
scheme. Waheed et al. (2020) examined the (Ming and Wang, 2015)
scheme and provided an improved ECC method using a standard com-
putational model. Recently, Qu and Zeng (2022) proposed CLPSC for
UAV networks. However, this scheme incurs extensive computational
and communication overhead. Moreover, all the above schemes are
homogeneous and cannot be used in heterogeneous communication.
Owing to the dynamic nature and complexity of the communication
environment of UAV systems, different communication terminals may
have different security requirements in different cryptographic envi-
ronments. This means that consideration must be given to signcryption
schemes for heterogeneous systems. In this paper, an efficient HOOPSC
scheme is proposed that protects the integrity, authentication, and
confidentiality of communication across all channels and addresses the
issues associated with long-range operations in UAV networks.

1.3. Organization

The remainder of this paper is organized as follows. The preliminary
work is introduced in Section 2. The formal model of the HOOPSC
is presented in Section 3. An efficient HOOPSC scheme is presented
in Section 4. A security and performance analysis are provided in
Sections 5 and 6, respectively. Finally, the conclusions are presented
in Section 7.

2. Preliminary work

In this section, notations, bilinear maps, and security requirements
are provided.

2.1. Notations

Table 1 lists the acronyms used in the study.

2.2. Bilinear maps

Let G1 and G2 be two cyclic groups with the same prime order
; with G1 as an additive group and G2 as a multiplicative group,
espectively. Let 𝑃 be the generator of G1. A bilinear pairing is a map
𝑒 ∶ G1 ×G1 → G2 that satisfies the following requirements:

∗ 𝑎𝑏
3

1. Bilinearity: For all 𝑃 ,𝑄 ∈ G1 and 𝑎, 𝑏 ∈ Z𝑞 , 𝑒(𝑎𝑃 , 𝑏𝑄) = 𝑒(𝑃 ,𝑄) .
Table 1
Acronym and description.

Acronym Description

𝑥𝑖 Secret value of users
𝑑𝑖 Partial private key of users
𝑠𝑘𝑖 Private key of users
𝑝𝑘𝑖 Public key of users
𝑆𝑝𝑐 Proxy delegation
𝑘𝑝 Proxy key
𝑑𝐼𝐷𝑖

Private key for IBC users
𝑄𝑖 Public key for IBC users
𝑚𝜔 Warrant
𝐼𝐷𝐴 Identity of the command center
𝐼𝐷𝐵 Identity of the ground control station
𝐼𝐷𝐶 Identity of the UAV
𝑚 Message
𝑃𝑝𝑢𝑏 Master public key
s Master secret key
𝑒 A bilinear map
G1 Cyclic additive group
G2 Cyclic multiplicative group
𝜆 Security parameter
𝛿 Offline Ciphertext
𝜎 Online Ciphertext
𝑈𝐾𝐺 Universal Key Generation
params System parameters

2. Nondegeneracy: There are 𝑃 ,𝑄 ∈ G1 such that 𝑒(𝑃 ,𝑄) ≠ 1, 1 is
G2 identity element.

3. Computability: 𝑒(𝑃 ,𝑄) is efficiently calculated for all 𝑃 ,𝑄 ∈ G1.

The modified Weil and Tate pairings offer acceptable maps of this
type (Boneh and Franklin, 2001). The security of a HOOPSC relies on
the hardness of the following problems.

Given G1 and G2, 𝑞, 𝑃 and 𝑒, similar to the above definition.
Definition 1: Decisional Bilinear Diffie–Hellman Problem (DBDHP).

Given a tuple (𝑃 , 𝑎𝑃 , 𝑏𝑃 , 𝑐𝑃 ) ∈ G1 for some 𝑎, 𝑏, 𝑐 ∈ Z∗
𝑞 and ℎ ∈ G2, the

BDHP is used to determine if ℎ = 𝑒(𝑃 , 𝑃 )𝑎𝑏𝑐 .
Definition 2: Computational Diffie–Hellman Problem (CDHP). Given

𝑃 , 𝑎𝑃 , 𝑏𝑃 ) ∈ G1 for some 𝑎, 𝑏 ∈ Z∗
𝑞 , the CDHP in G1 is used to calculate

𝑏𝑃 .

.3. Security requirements

The communication between the UAV, CC and GCS should adhere
o security properties such as confidentiality, integrity, authentication
nd nonrepudiation. Confidentiality ensures that the query commands
emain secret from anyone except the authorized users. Integrity guar-
ntees that the commands transmitted from the GCS are not altered by
nauthorized parties. Authentication verifies that only authorized GCSs
an access the UAV. Nonrepudiation prevents a GCS from denying pre-
iously submitted inquiries. That is, if a GCS sends inquiry commands
o a UAV, the action cannot be denied.

. Formal model of HOOPSC

In this section, the network model, framework and security consid-
rations for HOOPSC are described.

.1. Network model

An overview of the network model is shown in Fig. 2. The model
onsists of four types of entities.

1. UKG: A trusted third party responsible for registering the UAV,
CC and GCS. It also generates partial private keys for the CC
and GCS and private keys for the UAV. In this scenario, UKG
functions as a PKG in IBCs, and as a KGC in CLCs.
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Fig. 2. The HOOPSC network model.
2. UAV: An entity that gathers data through onboard sensors and
transmits them to the GCS and/or CC for further analysis, and
follows orders from the CC or GCS.

3. Command Center: An entity responsible for the direct oversight
and control of UAV operations. This entity delegates its control-
ling authority to GCS when a UAV performs a remote task far
from the CC.

4. Ground Control Station: An entity that controls the overall
operation of a UAV, including mission planning and real-time
decision-making. The GCS acts on behalf of the CC using spe-
cialized information known as proxy delegation.

3.2. Framework

The generic HOOPSC scheme consists of the following twelve algo-
rithms and involves the original delegator (CC), identified by 𝐼𝐷𝐴, the
proxy signcrypter (GCS), identified by 𝐼𝐷𝐵 and the UAV, identified by
𝐼𝐷𝐶 .

1. Setup: Executed by the UKG. A security parameter 𝜆 is taken as
the input and outputs the master secret key 𝑠 and the system
parameters params that include the master public key 𝑃𝑝𝑢𝑏. For
simplicity, params is excluded from the descriptions of the other
algorithms in the subsequent content.

2. CL-PPK: Run by the UKG, takes the master secret key 𝑠 and a
user’s identity 𝐼𝐷𝑖 ∈ {0, 1}∗ as inputs. It outputs partial private
keys 𝑑𝑖.

3. CL-SV: It generates a secret value. User’s identity 𝐼𝐷𝑖 is used as
input and outputs a secret value 𝑥𝑖.

4. CL-SK: This is a full private key generation algorithm run by a
user. It takes the partial private key 𝑑𝑖 and a secret value 𝑥𝑖 as
input and outputs the full private key 𝑆𝑘𝑖

5. CL-PK: Users perform the algorithm. It takes a secret value 𝑥𝑖 as
input and outputs the public key 𝑃𝑘𝑖 .

6. IB-KE: It is a key extraction algorithm executed by the UKG. It
takes a master secret key 𝑠 and an identity 𝐼𝐷𝑖 ∈ {0, 1}∗ as inputs
and outputs a private key 𝑑𝐼𝐷𝑖

.
7. CL-PD: Run by CC. The private key 𝑆𝑘𝐴 and the public key 𝑃𝑘𝐴

of the CC, along with the warrant 𝑚𝜔, are taken as the inputs
and outputs of the proxy delegation 𝑠 . The warrant 𝑚 includes
4

𝑝𝑐 𝜔
details about the duration of a delegation and the identities of
both the CC and GCS.

8. CL-DV: Executed by GCS. The warrant 𝑚𝜔, proxy delegation 𝑠𝑝𝑐 ,
identity 𝐼𝐷𝐵 and public key 𝑝𝑘𝐴 are considered as inputs and
verifies whether 𝑠𝑝𝑐 is from a legitimate user.

9. CL-PRK: Run by GCS. The warrant 𝑚𝜔, the proxy delegation 𝑠𝑝𝑐
and private key 𝑆𝑘𝐵 of the GCS are taken as the input and the
proxy key 𝑘𝑝 is the output.

10. Off-SC: Performed by GCS. It takes the identity 𝐼𝐷𝐶 of the UAV
as the input and outputs an offline ciphertext 𝛿.

11. On-SC: Run by GCS. The CC identity, GCS identity, UAV identity,
proxy key 𝑘𝑝, warrant 𝑚𝜔, the offline ciphertext 𝛿 and message
𝑚 are used as input. The full ciphertext 𝜎 is the output.

12. DSC: Executed by the UAV, the private key 𝑑𝐼𝐷𝐶
of the UAV and

the full ciphertext 𝜎 are taken as inputs. It outputs either 𝑚 or
⟂, indicating that 𝜎 is not a valid ciphertext.

The algorithms should meet the HOOPSC consistency constraint. If 𝛿 =
𝑂𝑓𝑓 -𝑆𝐶(𝑄𝐶 , 𝐼𝐷𝐶 ) and 𝜎 = 𝑂𝑛-𝑆𝐶(𝛿, 𝑘𝑝, 𝑚𝜔, 𝑚, 𝐼𝐷𝐴, 𝐼𝐷𝐵 , 𝐼𝐷𝐶 ), then
𝑚 = 𝐷𝑆𝐶(𝜎, 𝐼𝐷𝐶 , 𝑑𝐼𝐷𝐶

). Note that the CL-PPK, CL-SV, CL-SK, CL-PK,
CL-PD, CL-DV and CL-PRK algorithms are used for CLC users, whereas
the IB-KE algorithm is used for IBC users.

3.3. Security notions

The proposed HOOPSC scheme ensures confidentiality (IND-CCA2)
and unforgeability (EUF-CMA). The concepts in Li et al. (2017a, 2016)
were modified with minor adjustments to the HOOPSC.

3.3.1. Confidentiality
For confidentiality, the game between an adversary  and a chal-

lenger  is examined.
IND-CCA2:  interacts with .
Initial:  performs the setup with 𝜆 and sends params to .
Phase 1:  makes polynomially limited requests.

1. Partial private key inquiries:  chooses 𝐼𝐷𝑖 ∈ {0, 1}∗ and sends
𝐼𝐷𝑖 to .  runs the CL-PPK algorithm and returns 𝑑𝑖 to  as a
partial private key.

2. Private key inquiries:  chooses 𝐼𝐷𝑖 ∈ {0, 1}∗.  first computes
the CL-SV and CL-PPK ; then, it performs CL-SK and yields the
full private key 𝑠𝑘 to .
𝑖
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3. Public key inquiries:  chooses 𝐼𝐷𝑖 ∈ {0, 1}∗.  computes CL-PK
and returns the public key 𝑝𝑘𝑖 to .

4. Public replacement query:  can replace 𝑝𝑘𝑖 with a value of its
choice.

5. Key extraction inquiries:  chooses 𝐼𝐷𝑖 ∈ {0, 1}∗.  computes
IB-KE and returns private key 𝑑𝐼𝐷𝑖

to .
6. Proxy delegation queries:  selects 𝐼𝐷𝑖 ∈ {0, 1}∗.  first computes

the CL-SK and CL-PK algorithms, then performs the CL-PD and
returns the proxy delegation 𝑆𝑝𝑐 to .

7. Proxy key inquiries:  selects two identities 𝐼𝐷𝑖 and 𝐼𝐷𝑗 .  first
computes the CL-PD and CL-SK algorithms on 𝐼𝐷𝑖 and 𝐼𝐷𝑗 ,
respectively, to obtain 𝑠𝑝𝑐 and 𝑠𝑘𝑗 . Then,  runs CL-PRK and
sends a proxy key 𝐾𝑝 to .

8. Designcrypt inquiries:  provides a sender’s identity 𝐼𝐷𝑖, public
key 𝑝𝑘𝑖, receiver’s identity 𝐼𝐷𝑗 , and ciphertext 𝜎.  first per-
formed the IB-KE process to extract 𝑑𝐼𝐷𝑗

. Then,  computes
Designcrypt (𝜎, 𝐼𝐷𝑖, 𝑝𝑘𝑖, 𝐼𝐷𝑗 , 𝑑𝐼𝐷𝑗

) and returns the outcome to .
The outcome is whether m or ⟂.

Challenge:  determines when Phase 1 is concluded.  chooses two
messages of equal length, 𝑚0 and 𝑚1; sender 𝐼𝐷𝑠; and receiver 𝐼𝐷𝑟
identities that it likes to challenge.  first runs CL-PRK to generate
the proxy key 𝑘𝑝 and runs the IB-KE to retrieve the public key of the
receiver 𝑄𝑟. Then,  selects a random bit 𝜂 ∈ {0, 1} and determines
𝛿 = 𝑂𝑓𝑓 -𝑆𝐶(𝑄𝑟, 𝐼𝐷𝑟) and 𝜎 = 𝑂𝑛-𝑆𝐶(𝛿, 𝑘𝑝, 𝑚𝜂 , 𝐼𝐷𝑠, 𝐼𝐷𝑟). Finally, 
sends 𝜎 to .

Phase 2:  performs polynomially limited requests, as in Phase 1.
This time, Designcrypt inquiry cannot be performed on (𝜎, 𝐼𝐷𝑠, 𝐼𝐷𝑟) to
obtain 𝑚 unless 𝑝𝑘𝑠 have been substituted after the challenge phase and
key extract inquiries on the 𝐼𝐷𝑟.

Guess:  creates 𝜗∗ and if 𝜗∗ = 𝜗, then  wins the game.
’s advantage is defined as follows:
Adv () = |2 Pr [𝜗∗ = 𝜗] − 1|, where Pr [𝜗∗ = 𝜗] indicates the proba-

bility that 𝜗∗ = 𝜗.
Definition 3: HOOPSC scheme is (𝜀, 𝑡, 𝑞𝑝𝑝𝑘, 𝑞𝑠𝑘, 𝑞𝑝𝑘,

𝑞𝑝𝑘𝑟, 𝑞𝑘𝑒, 𝑞𝑝𝑑 , 𝑞𝑘𝑝, 𝑞𝑑𝑠𝑐 )−IND-CCA2 secure if no polynomial time adver-
saries  runs at a time of 𝑡 and has an advantage of at least 𝜀 after
at most 𝑞𝑝𝑝𝑘 partial private key inquiries, 𝑞𝑠𝑘 private key inquiries,
𝑞𝑝𝑘 public key inquiries, 𝑞𝑝𝑘𝑟 public key replacement inquiries, 𝑞𝑘𝑒
key extraction inquiries, 𝑞𝑝𝑑 proxy delegation inquiries, 𝑞𝑘𝑝 proxy key
inquiries and 𝑞𝑑𝑠𝑐 designcrypt inquiries in IND-CCA2. See Section 5
for a security proof. The definition of insider security incorporates
signcryption confidentiality, assuming that the adversary knows all the
sender secret keys (An et al., 2002).

3.3.2. Unforgeability
Here, because senders are in the CLC, consideration must be given

to two types of adversaries for unforgeability, Type I and Type II (Li
and Xiong, 2013; Li et al., 2013). A Type I adversary is an attacker who
can forge or replace public keys but lacks access to the UKG master
key. A Type II adversary is a UKG that knows the master secret key;
however, such an adversary cannot alter the user’s public keys. The
security model of HOOPSC for unforgeability is established using two
adversary games, EUF-CMA-I and EUF-CMA-II, involving Type I (1)
and type II (2) adversaries that act against challengers ().

EUF-CMA-I : Here,  is played with 1.
Initial:  run the setup as in the IND-CCA2 game.
Attack: 1 performs partial private key inquiries, private key inquiries,

public key inquiries, key extraction queries, proxy delegation inquiries, and
proxy key inquiries as in the IND-CCA2 game. In a signcrypt inquiry, 1
sends 𝐼𝐷𝑠, 𝐼𝐷𝑟 and 𝜎 to .  first runs CL-PRK to generate the proxy
key 𝑘𝑝 and runs the IB-KE to obtain the public key of the receiver 𝑄𝑟.
Then,  runs 𝛿 = 𝑂𝑓𝑓 -𝑆𝐶(𝑄𝑟, 𝐼𝐷𝑠) and 𝜎 = 𝑂𝑛-𝑆𝐶(𝛿, 𝑘𝑝, 𝑚, 𝐼𝐷𝑠, 𝐼𝐷𝑟).
Finally,  sends 𝜎 to 1.

Forgery : 1 generates a tuple (𝜎∗, 𝐼𝐷𝑠, 𝐼𝐷𝑟) and achieves success if
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the following conditions are met:
1. 1 is prohibited from extracting private key inquiries on 𝐼𝐷𝑠.
2. Designcrypt (𝜎∗, 𝐼𝐷𝑠, 𝑝𝑘𝑠, 𝐼𝐷𝑟, 𝑑𝐼𝐷𝑟

) = 𝑚∗

3. 1 cannot extract proxy key inquiries with (𝐼𝐷𝑠, 𝐼𝐷𝑟), and key
extraction inquiries cannot be obtained on 𝐼𝐷𝑟.

4. 1 cannot request partial private key inquiries or public key
replacement inquiries on 𝐼𝐷𝑠.

5. 1 cannot ask for a signcrypt inquiry on (𝑚∗, 𝐼𝐷𝑠, 𝐼𝐷𝑟).

The advantages of 1 represent success probability.
Definition 4: HOOPSC scheme is (𝜀, 𝑡, 𝑞𝑝𝑝𝑘, 𝑞𝑠𝑘, 𝑞𝑝𝑘,

𝑞𝑝𝑘𝑟, 𝑞𝑘𝑒, 𝑞𝑝𝑑 , 𝑞𝑘𝑝, 𝑞𝑠𝑐 )−EUF-CMA-I secure if no polynomial time adver-
saries 1 who runs at a time of 𝑡 and has an advantage of at least 𝜀
after at most 𝑞𝑝𝑝𝑘 partial private key inquiries, 𝑞𝑠𝑘 private key inquiries,
𝑞𝑝𝑘 public key inquiries, 𝑞𝑝𝑘𝑟 public key replacement inquiries, 𝑞𝑘𝑒
key extraction inquiries, 𝑞𝑝𝑑 proxy delegation inquiries, 𝑞𝑘𝑝 proxy key
inquiries and 𝑞𝑠𝑐 signcrypt inquiries in EUF-CMA-I. See Section 5 for a
security proof.

EUF-CMA-II : Here,  plays with 2.
Initial:  runs the setup with 𝜆 and sends params and s to 2.
Attack: 2 executes the private key, public key, and signcrypt inquiries

as in the EUF-CMA-I game. Here, we note that there are no partial
private keys or key extraction inquiries in this game because 2 knows
the master’s private key 𝑠.

Forgery : 2 generates a tuple (𝜎∗, 𝐼𝐷𝑠, 𝐼𝐷𝑟) and achieves success if
the following conditions are met:

1. 2 is prohibited from extracting a private key query on 𝐼𝐷𝑠.
2. Designcrypt (𝜎∗, 𝐼𝐷𝑠, 𝑝𝑘𝑠, 𝐼𝐷𝑟, 𝑑𝐼𝐷𝑟

) = 𝑚∗

3. 2 cannot extract the proxy key query with (𝐼𝐷𝑠, 𝐼𝐷𝑟), and it
cannot make the key extraction query on 𝐼𝐷𝑟.

4. 2 cannot ask a signcrypt query on (𝑚∗, 𝐼𝐷𝑠, 𝐼𝐷𝑟).

The advantage of 2 is the success probability.
Definition 5: The HOOPSC scheme is (𝜀, 𝑡, 𝑞𝑠𝑘, 𝑞𝑝𝑘,

𝑞𝑝𝑘𝑟, 𝑞𝑝𝑑 , 𝑞𝑘𝑝, 𝑞𝑠𝑐 )−EUF-CMA-II secures if no polynomial time adversaries
2 who run at most times 𝑡 and has the advantage of at least 𝜀 after at
most 𝑞𝑠𝑘 private key inquiries, 𝑞𝑝𝑘 public key inquiries, and 𝑞𝑠𝑐 signcrypt
inquiries in EUF-CMA-II.

See Section 5 for a security proof. In Definitions 2 and 3, the ad-
versary can obtain the secret key of the receiver. This definition en-
compasses insider security for unforgeable signcryption (An et al.,
2002).

4. HOOPSC scheme

In this section, an efficient HOOPSC scheme is proposed. It is
assumed that the UAV is tasked with a remote task that requires long
flight distances from the command center (CC). In such scenarios, the
CC identified by 𝐼𝐷𝐴 delegates its authority to the GCS, as identified
by 𝐼𝐷𝐵 . The GCS then issues commands directly to the UAV on behalf
of the CC. The UAV, identified by 𝐼𝐷𝐶 , decrypts and verifies the
commands to ensure its authenticity and confidentiality. In this scheme,
the CC and GCS operate in the CLC domain, and the UAV operates in
the IBC domain. Additionally, the UKG serves as a trusted third party,
generating a partial private key for users in the CLC environment and
a private key for those in the IBC environment. The scheme consists of
the following twelve algorithms.

1. Setup (𝜆): Given a security parameter 𝜆, UKG chooses groups G1
(additive) and G2 (multiplicative) with prime order 𝑞, generator
𝑃 of G1, bilinear map 𝑒 ∶ G1×G1 → G2, and hash functions:
𝐻1 ∶ {0, 1}∗ × G1 → Z∗

𝑞 , 𝐻2 ∶ {0, 1}∗ ×G1 ×G1 ×G1 → Z∗
𝑞 , 𝐻3 ∶

G1 → {0, 1}𝑛 and 𝐻4 ∶ {0, 1}∗ → Z∗
𝑞 , where {0, 1}𝑛 is the message

space. The UKG selects a master secret key 𝑠 ∈ Z∗
𝑞 at random

and calculates the master public key 𝑃𝑝𝑢𝑏 = 𝑠𝑃 . Finally, the
UKG publishes 𝑝𝑎𝑟𝑎𝑚𝑠 = {G1,G2, 𝑒, 𝑞, 𝑃 , 𝑃𝑝𝑢𝑏, 𝑛,𝐻1,𝐻2,𝐻3,𝐻4}

and keeps the master secret key 𝑠 secret.
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2. CL-PPK : Given an identity 𝐼𝐷𝑖 ∈ {0, 1}∗, UKG selects 𝑟𝑖 ∈ Z∗
𝑞 ,

computes 𝑘𝑖 = 𝑟𝑖𝑃 and 𝑑𝑖 = 𝑟𝑖 + 𝑦𝑖𝑠, where 𝑦𝑖 = 𝐻1(𝐼𝐷𝑖, 𝑘𝑖) and
sends (𝑑𝑖, 𝑘𝑖) to the user.

3. CL-SV : A user with 𝐼𝐷𝑖 verifies whether 𝑑𝑖𝑃 = 𝑘𝑖 + 𝑦𝑖𝑃𝑝𝑢𝑏 holds
true. After successful verification, the user selects a secret value
𝑥𝑖 ∈ Z∗

𝑞 and computes 𝑝𝑖 = 𝑥𝑖𝑃 .
4. CL-SK : Given 𝑥𝑖 and 𝑑𝑖, a user in the CLC sets its full private key

𝑆𝑘𝑖 = (𝑥𝑖, 𝑑𝑖).
5. CL-PK : Given 𝑘𝑖 and 𝑝𝑖, a user in the CLC sets 𝑃𝑘𝑖 = (𝑘𝑖, 𝑝𝑖) is

their public key.
6. IB-KE : Given a user’s identity 𝐼𝐷𝐶 , the UKG randomly chooses

𝑟𝐶 ∈ Z∗
𝑞 and computes 𝑘𝐼𝐷𝐶

= 𝑟𝐶𝑃 and 𝑑𝐼𝐷𝐶
= 𝑟𝐶 + 𝑦𝐼𝐷𝐶

𝑠,
where 𝑦𝐼𝐷𝐶

= 𝐻1(𝐼𝐷𝐶 , 𝑘𝐼𝐷𝐶
). The UKG then securely transmits

(𝑑𝐼𝐷𝐶
, 𝑘𝐼𝐷𝐶

) to the UAV. The UAV verifies the validity of the
private key by checking whether 𝑑𝐼𝐷𝐶

𝑃 = 𝑘𝐼𝐷𝐶
+𝑦𝐼𝐷𝐶

𝑃𝑝𝑢𝑏 holds
true.

7. CL-PD: Given the private and public key pair (𝑆𝑘𝐴 , 𝑃𝑘𝐴 ) of the CC
and the warrant 𝑚𝜔, the CC in the CLC executes the delegation
process as follows:

(a) Randomly select 𝑎 ∈ Z∗
𝑞 .

(b) Compute 𝐷 = 𝑎𝑃 .
(c) Compute 𝑡 = 𝑎 + 𝑅1(𝑑𝐴 + 𝑥𝐴𝑧𝐴), where

𝑅1 = 𝐻2

(

𝑚𝜔||𝐼𝐷𝐵 , 𝑃𝑘𝐴 , 𝐷, 𝑃𝑝𝑢𝑏

)

and
𝑧𝐴 = 𝐻1

(

𝐼𝐷𝐴, 𝑝𝐴
)

.
(d) Finally, the proxy delegation

𝑆𝑝𝑐 = (𝐼𝐷𝐴, 𝐼𝐷𝐵 , 𝑃𝑘𝐴 , 𝑚𝜔, 𝐷, 𝑡) is sent to the GCS.

8. CL-DV : To verify a delegation, the proxy signcrypter (GCS)
checks whether

𝑡𝑝 = 𝑅1(𝑘𝐴 + 𝑦𝐴𝑃𝑝𝑢𝑏 + 𝑧𝐴𝑝𝐴) +𝐷,

where

𝑅1 = 𝐻2

(

𝑚𝜔||𝐼𝐷𝐵 , 𝑃𝑘𝐴 , 𝐷, 𝑃𝑝𝑢𝑏

)

𝑧𝐴 = 𝐻1
(

𝐼𝐷𝐴, 𝑝𝐴
)

,

𝑦𝐴 = 𝐻1(𝐼𝐷𝐴, 𝑘𝐴).

Otherwise, the GCS rejects the delegation request.
9. CL-PRK : Upon successful verification, the GCS computes the

proxy key

𝑘𝑝 = 𝑡 + 𝑅2(𝑑𝐵 + 𝑥𝐵𝑧𝐵),

where:

𝑅2 = 𝐻2

(

𝑚𝜔||𝐼𝐷𝐴, 𝑃𝑘𝐵 , 𝐷, 𝑃𝑝𝑢𝑏

)

,

𝑧𝐵 = 𝐻1
(

𝐼𝐷𝐵 , 𝑝𝐵
)

.

10. Off-SC : Given the identity 𝐼𝐷𝐶 of the UAV. The GCS then
performs the Off-SC process as follows:

(a) Chooses 𝑥 ∈ Z∗
𝑞 .

(b) Compute 𝑈 = 𝑥𝑃 .
(c) Compute 𝑄𝐶 = 𝑘𝐼𝐷𝐶

+ 𝑦𝐼𝐷𝐶
𝑃𝑝𝑢𝑏, where

𝑦𝐼𝐷𝐶
= 𝐻1(𝐼𝐷𝐶 , 𝑘𝐼𝐷𝐶

).
(d) Compute 𝑣 = 𝑥𝑄𝐶 .
(e) Compute ℎ1 = 𝐻3(𝑣).
(f) Output 𝛿 = (𝑈, ℎ1).

11. On-SC: Given a message 𝑚, proxy key 𝑘𝑝, warrant 𝑚𝜔, Off-SC 𝛿,
and the identities 𝐼𝐷𝐴, 𝐼𝐷𝐵 , and 𝐼𝐷𝐶 , corresponding to the CC,
GCS, and UAV, respectively. The algorithm is as follows:

(a) Compute ℎ2 = 𝐻4
(

𝑚‖𝐼𝐷𝐴‖𝐼𝐷𝐵||𝐼𝐷𝐶
)

.
(b) Compute 𝐶 = 𝑚⊕ ℎ1.
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(c) Compute 𝑆 = (𝑥 + ℎ2𝑘𝑝).
(d) Output 𝜎 = (𝑚𝜔, 𝑆, 𝐶, 𝑈 ).

Then, the GCS sends 𝜎 to the UAV.
12. DSC: Upon receiving the signcrypted ciphertext 𝜎 = (𝑚𝜔, 𝑆, 𝐶, 𝑈 ),

the UAV accepts the message only if the following holds:

(a) Compute 𝑣 = 𝑑𝐼𝐷𝐶
𝑈 .

(b) Compute ℎ1 = 𝐻3(𝑣).
(c) Compute 𝑚 = 𝐶 ⊕ ℎ1.
(d) Accept the message if

𝑆𝑃 = ℎ2
(

𝐷 + 𝑅1(𝑘𝐴 + 𝑧𝐴𝑝𝐴 + 𝑦𝐴𝑃𝑝𝑢𝑏)

+𝑅2(𝑘𝐵 + 𝑧𝐵𝑝𝐵 + 𝑦𝐵𝑃𝑝𝑢𝑏)
)

+ 𝑈

return ⟂ otherwise.
The following describes how the message decryption pro-
cess works:

𝑚 =𝐶 ⊕ ℎ1
=𝐶 ⊕𝐻3(𝑑𝐼𝐷𝐶

𝑈 )

=𝑚⊕𝐻3(𝑥𝑄𝐶 )⊕𝐻3(𝑑𝐼𝐷𝐶
𝑈 )

=𝑚⊕𝐻3(𝑥𝑄𝐶 )⊕𝐻3((𝑟𝐶 + 𝑦𝐼𝐷𝐶
𝑠)𝑥𝑃 )

=𝑚⊕𝐻3(𝑥𝑄𝐶 )⊕𝐻3((𝑘𝐼𝐷𝐶
+ 𝑦𝐼𝐷𝐶

𝑃𝑝𝑢𝑏)𝑥)

=𝑚⊕𝐻3(𝑥𝑄𝐶 )⊕𝐻3(𝑥𝑄𝐶 )

𝑚 =𝑚

4.1. Correctness analysis

The HOOPSC scheme consists of four authentication steps:

1. Partial private key verification, where the users in the CLC
environment check if

𝑑𝐴𝑃 = 𝑘𝐴 + 𝑦𝐴𝑃pub

= 𝑟𝐴𝑃 + 𝑦𝐴𝑠𝑃

= (𝑟𝐴 + 𝑦𝐴𝑠)𝑃

𝑑𝐴𝑃 = 𝑘𝐴 + 𝑦𝐴𝑃pub

2. Verification of delegation: The proxy signcrypter (GCS) in the
CLC environment

𝑡𝑝 = 𝑅1(𝑘𝐴 + 𝑦𝐴𝑃𝑝𝑢𝑏 + 𝑧𝐴𝑝𝐴) +𝐷

𝑡𝑝 = (𝑎 + 𝑅1(𝑑𝐴 + 𝑥𝐴𝑧𝐴))𝑃

= (𝑎𝑃 + 𝑅1(𝑑𝐴𝑃 + 𝑥𝐴𝑧𝐴𝑃 ))

= 𝐷 + 𝑅1(𝑑𝐴𝑃 + 𝑝𝐴𝑧𝐴)

= 𝐷 + 𝑅1((𝑟𝐴 + 𝑦𝐴𝑠)𝑃 + 𝑝𝐴𝑧𝐴)

𝑡𝑝 = 𝐷 + 𝑅1(𝑘𝐴 + 𝑦𝐴𝑃𝑝𝑢𝑏 + 𝑝𝐴𝑧𝐴)

3. The private key verification, where the UAV in the IBC environ-
ment checks if

𝑑𝐼𝐷𝐶
𝑃 = 𝑘𝐼𝐷𝐶

+ 𝑦𝐼𝐷𝐶
𝑃𝑝𝑢𝑏

= 𝑟𝐶𝑃 + 𝑦𝐼𝐷𝐶
𝑠𝑃

= (𝑟𝐶 + 𝑦𝐼𝐷𝐶
𝑠)𝑃
𝑑𝐼𝐷𝐶
𝑃 = 𝑘𝐼𝐷𝐶

+ 𝑦𝐼𝐷𝐶
𝑃𝑝𝑢𝑏
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Fig. 3. Efficient HOOPSC communication.
4. In the DSC process, the message receiver checks if

𝑆𝑃 = ℎ2
(

𝐷 + 𝑅1(𝑘𝐴 + 𝑧𝐴𝑝𝐴 + 𝑦𝐴𝑃𝑝𝑢𝑏)

+𝑅2(𝑘𝐵 + 𝑧𝐵𝑝𝐵 + 𝑦𝐵𝑃𝑝𝑢𝑏)
)

+ 𝑈

𝑆𝑃 = (𝑥 + ℎ2𝑘𝑝)𝑃

𝑆𝑃 = 𝑥𝑃 + ℎ2(𝑡 + 𝑅2(𝑑𝐵 + 𝑥𝐵𝑧𝐵))𝑃

= 𝑈 + ℎ2(𝑡𝑃 + 𝑅2(𝑑𝐵𝑃 + 𝑥𝐵𝑧𝐵𝑃 ))

= 𝑈 + ℎ2(𝑡𝑃 + 𝑅2((𝑟𝐵 + 𝑦𝐵𝑠)𝑃 + 𝑝𝐵𝑧𝐵))

= 𝑈 + ℎ2(𝑡𝑃 + 𝑅2(𝑘𝐵 + 𝑦𝐵𝑃𝑝𝑢𝑏 + 𝑝𝐵𝑧𝐵))

= 𝑈 + ℎ2((𝑎 + 𝑅1(𝑑𝐴 + 𝑥𝐴𝑧𝐴))𝑃

+ 𝑅2(𝑘𝐵 + 𝑦𝐵𝑃𝑝𝑢𝑏 + 𝑝𝐵𝑧𝐵))

= 𝑈 + ℎ2(𝑎𝑃 + 𝑅1(𝑑𝐴 + 𝑥𝐴𝑧𝐴)𝑃

+ 𝑅2(𝑘𝐵 + 𝑦𝐵𝑃𝑝𝑢𝑏 + 𝑝𝐵𝑧𝐵))

= ℎ2(𝐷 + 𝑅1(𝑑𝐴𝑃 + 𝑝𝐴𝑧𝐴)

+ 𝑅2(𝑘𝐵 + 𝑦𝐵𝑃𝑝𝑢𝑏 + 𝑝𝐵𝑧𝐵)) + 𝑈

= ℎ2(𝐷 + 𝑅1((𝑟𝐴 + 𝑦𝐴𝑠)𝑃 + 𝑝𝐴𝑧𝐴)

+ 𝑅2(𝑘𝐵 + 𝑦𝐵𝑃𝑝𝑢𝑏 + 𝑝𝐵𝑧𝐵)) + 𝑈

𝑆𝑃 = ℎ2(𝐷 + 𝑅1(𝑘𝐴 + 𝑦𝐴𝑃𝑝𝑢𝑏 + 𝑝𝐴𝑧𝐴)

+ 𝑅2(𝑘𝐵 + 𝑦𝐵𝑃𝑝𝑢𝑏 + 𝑝𝐵𝑧𝐵)) + 𝑈

Here, Fig. 3 shows the efficient HOOPSC communication.

5. Security analysis

It is demonstrated that the HOOPSC meets the confidentiality and
unforgeability requirements in Theorems 1 and 2.

5.1. Confidentiality

Theorem 1. In the random oracle model, if the adversary  holds a
nonnegligible advantage 𝜀 in compromising the IND-CCA2 security of the
7

HOOPSC scheme within time frame 𝑡 and performing 𝑞𝑝𝑝𝑘 inquiries, 𝑞𝑠𝑘 in-
quiries, 𝑞𝑝𝑘 inquiries, 𝑞𝑝𝑘𝑟 inquiries, 𝑞𝑘𝑒 inquiries, 𝑞𝑝𝑑 inquiries, 𝑞𝑘𝑝 inquiries,
𝑞𝑑𝑠𝑐 inquiries, and 𝑞𝐻𝑖

inquiries to oracles 𝐻𝑖 (𝑖 = 1, 2, 3, 4), then there is a
 that can solve the DBDHP with an advantage

𝜀𝑑𝑏𝑑ℎ ≥

(

𝜀
𝑞𝐻1

)⎛

⎜

⎜

⎜

⎝

1 −
𝑞𝑠𝑐

(

𝑞𝐻2
+ 𝑞𝐻3

+ 𝑞𝐻4

)

2𝜆

⎞

⎟

⎟

⎟

⎠

(

1 −
𝑞𝑑𝑠𝑐
2𝜆

)

at time

𝑡′ ≤ 𝑡 + 𝑂
(

𝑞𝑘𝑝 + 𝑞𝑠𝑐 + 𝑞𝑑𝑠𝑐𝑞𝐻2

)

𝑡𝑝,

where 𝑡𝑝 represents the time for a single pairing operation.

Proof. It is illustrated how  utilizes  as a function to resolve a given
scenario (𝑃 , 𝑎𝑃 , 𝑏𝑃 , 𝑐𝑃 , ℎ) of the DBDHP.

Initial:  randomly chooses 𝑠 ∈ Z∗
𝑞 and sets 𝑃𝑝𝑢𝑏 = 𝑠𝑃 .  also

establishes the receiver public key 𝑄𝐶 = 𝑎𝑃 . params, and 𝑄𝐶 are then
sent to . Note that  is unaware of the values of 𝑎 ∈ Z∗

𝑞 .
Phase 1:  maintains a list 𝐿𝑖 (where 𝑖 ranges from 1 to 4) to

simulate hash oracles 𝐻1,𝐻2,𝐻3 and 𝐻4, respectively. It also stores
a list 𝐿𝑘 to store the private and public key information, 𝐿𝑝𝑘 for the
proxy key. The assumptions made are that the queries in 𝐻1 are distinct
and that  requests the queries in 𝐻1(𝐼𝐷𝑖) prior to the identity 𝐼𝐷𝑖
being utilized in the remaining queries. Furthermore, by employing the
irreflexivity assumption (Boyen, 2003), it is assumed that the identities
of the sender and receiver are distinct. Initially, all the lists are empty.
When  queries,  picks a random 𝓁 from (1,… , 𝑞𝐻1

) and answers ’s
queries as follows.

𝐻1 inquiries: For 𝐻1(𝐼𝐷𝑖, 𝑘𝑖) on the chosen identity 𝐼𝐷𝑖. Initially,
 verified whether 𝐻1 was defined for the input

(

𝐼𝐷𝑖, 𝑘𝑖
)

. If a query
matches, then the previous value is returned. Otherwise,  chooses
𝑦𝑖 ∈ Z∗

𝑞 and adds (𝐼𝐷𝑖, 𝑘𝑖, 𝑦𝑖) to 𝐿1.
𝐻2 inquiries: For 𝐻2(𝑚𝜔||𝐼𝐷𝑖, 𝑃𝑘𝑗 , 𝐷, 𝑃𝑝𝑢𝑏) query,  first verifies

whether the entry is in 𝐿 . Return the previously set value if so.
2
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|

a

Otherwise,  picks a random ℎ2𝑖 ∈ Z∗
𝑞 and appends the tuple (𝑚𝜔

|𝐼𝐷𝑖, 𝑃𝑘𝑗 , 𝑄, 𝑃𝑝𝑢𝑏, ℎ2𝑖) into list 𝐿2.
𝐻3 inquiries: For 𝐻3(𝑣𝑖) inquiries, initially,  verified whether 𝐻3

was defined for input 𝑣𝑖. Returns the previously defined value if so.
Otherwise,  randomly selects ℎ3𝑖 from {0, 1}𝑛, returns it as a response,
and adds tuple (𝑣𝑖, ℎ3𝑖) to list 𝐿3.

𝐻4 inquiries: For 𝐻4(𝑚𝑖‖𝐼𝐷𝑖‖𝐼𝐷𝑗 ||𝐼𝐷𝑐 ) query,  first verifies whet-
her the entry is in 𝐿4. If true,  gives the current response; otherwise, it
yields a random ℎ4𝑖 ∈ Z∗

𝑞 to . Furthermore,  performs simulations on
the 𝐻3 oracle to obtain ℎ3𝑖 = 𝐻3(𝑣𝑖) ∈ {0, 1}𝑛, computes 𝐶𝑖 = 𝑚𝑖 ⊕ ℎ3𝑖
and sets 𝜉 = 𝑑𝐼𝐷𝑖

.ℎ4𝑖 to manage future designcryption queries. Finally,
 inserts the tuple (𝑚𝑖‖𝐼𝐷𝑖‖𝐼𝐷𝑗 ||𝐼𝐷𝑐 ), 𝐶𝑖, 𝜉 into list the 𝐿4.

Partial private key inquiries: Partial private key inquiries on identity
ID𝑖 are made by 1. If 𝐼𝐷𝑖 = 𝐼𝐷𝓁 , the process terminates. Otherwise,
 checks 𝐿𝑘 and returns an existing value. Otherwise, :

1. Selects 𝑟𝑖, 𝑥𝑖, 𝑦𝑖 ∈ Z∗
𝑞 randomly.

2. Computes 𝑝𝑖 = 𝑥𝑖𝑃 , 𝑘𝑖 = 𝑟𝑖𝑃 , and 𝑑𝑖 = 𝑟𝑖 + 𝑦𝑖𝑠.
3. Adds (𝐼𝐷𝑖, 𝑘𝑖, 𝑑𝑖) to 𝐿𝑘 and ((𝐼𝐷𝑖, 𝑘𝑖), 𝑦𝑖) to 𝐿1.

 then sends (𝑑𝑖, 𝑘𝑖) to 𝐴1.
Private key inquiries:  issues private key inquiry on identity 𝐼𝐷𝑖.

If ID𝑖 = ID𝓁 , the process fails. Otherwise,  randomly selects 𝑥𝑖 ∈ Z∗
𝑞 ,

returns 𝑠𝑘𝑖 = (𝑥𝑖, 𝑑𝑖) and adds (𝐼𝐷𝑖, 𝑘𝑖, 𝑥𝑖, 𝑑𝑖) to 𝐿𝑘. Here, 𝑑𝑖 is obtained
from a previous partial private key inquiry using 𝐼𝐷𝑖.

Public key inquiries:  chooses 𝐼𝐷𝑖 and forwards it to . If list 𝐿𝑘
has a set (𝐼𝐷𝑖, 𝑘𝑖, 𝑝𝑖, 𝑃𝑘𝑖 ), then  returns 𝑃𝑘𝑖 to . Otherwise,  selects a
random 𝑒𝑖, 𝛼𝑖 ∈ Z∗

𝑞 , calculates 𝑝𝑖 = 𝑒𝑖𝑃 and 𝑘𝑖 = 𝛼𝑖𝑃 , returns 𝑃𝑘𝑖 = (𝑘𝑖, 𝑝𝑖)
to  and adds (𝐼𝐷𝑖, 𝑘𝑖, 𝑝𝑖, 𝑃𝑘𝑖 ) to 𝐿𝑘.

Public key replacement inquiries: For 𝑞𝑝𝑘𝑟 inquiry on
(𝐼𝐷𝑖, 𝑘𝑖, 𝑝𝑖, 𝑃𝑘𝑖 ),  updates the list 𝐿𝑘 with tuple (𝐼𝐷𝑖,⟂,⟂, 𝑃𝑘𝑖 ),

where ⟂ indicates an unknown number.
Key extraction inquiries: 1 query identity ID𝑖 for key extraction

inquiries. If 𝐼𝐷𝑖 = 𝐼𝐷𝓁 , the process terminates. Otherwise,  checks
𝐿𝑘 and returns an existing value. Otherwise, :

1. Selects 𝑟𝑖 and 𝑦𝑖 ∈ Z∗
𝑞 randomly.

2. Computes 𝑘𝐼𝐷𝑖
= 𝑟𝑖𝑃 , 𝑑𝐼𝐷𝑖

= 𝑟𝑖 + 𝑦𝑖𝑠
3. Adds (𝐼𝐷𝑖, 𝑘𝐼𝐷𝑖

, 𝑑𝐼𝐷𝑖
) to 𝐿𝑘 and ((𝐼𝐷𝑖, 𝑘𝐼𝐷𝑖

), 𝑑𝐼𝐷𝑖
) to 𝐿1.

 then sends the private key (𝑑𝐼𝐷𝑖
, 𝑘𝐼𝐷𝑖

) to 1.
Proxy delegation queries: Upon receiving a proxy delegation query

from 1 on
(

𝐼𝐷𝑖, 𝐼𝐷𝑗 , 𝑚𝜔
)

,  execute the proxy delegation query. It
then sends the result 𝑆𝑝𝑐 = (𝐼𝐷𝑖, 𝐼𝐷𝑗 , 𝑃𝑘𝑖 , 𝑚𝜔, 𝐷, 𝑡) to 1 and adds
(𝐼𝐷𝑖, 𝐼𝐷𝑗 , 𝑃𝑘𝑖 , 𝑚𝜔, 𝐷, 𝑡) to 𝐿𝑝𝑘.

Proxy key inquiries: When 1 asks a proxy key query,  checks for
tuple (𝐼𝐷𝑖, 𝐼𝐷𝑗 , 𝑃𝑘𝑖 , 𝑚𝜔, 𝐷, 𝑡) in 𝐿𝑝𝑘. If this is found, then the proxy key
𝐾𝑃 is returned. Otherwise,  ∶

1. A proxy delegation query is used to obtain 𝑆𝑝𝑐 .
2. Search 𝐿𝑘 for 𝐼𝐷𝑗 to obtain the secret key 𝑠𝑘𝑗 .
3. Compute 𝑘𝑝 = 𝑡 + 𝑅2(𝑑𝑗 + 𝑥𝑗𝑧𝑗 ), add the tuple to 𝐿𝑝𝑘, and send

𝑘𝑝 to 1.

Designcrypt queries:  chooses a ciphertext 𝜎 = (𝑚𝜔, 𝑆, 𝐶, 𝑈 ), and 
operates as follows.

1. If 𝐼𝐷𝑠 ≠ 𝐼𝐷𝑟, then  first runs the inquiry public key inquiry for
𝐼𝐷𝑠 and key extraction inquiry for 𝐼𝐷𝑟 to obtain 𝑃𝑘𝑠 and 𝑑𝐼𝐷𝑟

;
then,  computes 𝑣 = 𝑑𝐼𝐷𝑟

𝑈 and runs 𝐻3 queries on (𝑣) to obtain
ℎ1 and returns 𝑚 = 𝐶 ⊕ ℎ1.

2. If 𝐼𝐷𝑠 = 𝐼𝐷𝑟,  cannot obtain 𝑑𝐼𝐷𝑟
via the key extraction query.

Here, 𝑣 cannot be calculated. To ensure consistency,  searches
for a tuple (𝑣, ℎ1) in 𝐿3 for various 𝑣 values, such that DBDH
(𝑎𝑃 , 𝑏𝑃 , 𝑣) = 𝑣. If this item is present, then the correct 𝑣 and ℎ1
values are determined.  then obtains ℎ1 by calling an 𝐻4 query
on 𝐻4

(

𝑚‖𝐼𝐷𝐴‖𝐼𝐷𝐵||𝐼𝐷𝐶
)

and checks if
(

8

𝑆𝑃 = ℎ2 𝐷 + 𝑅1(𝑘A + 𝑧A𝑝A + 𝑦A𝑃pub)
+𝑅2(𝑘s + 𝑧s𝑝s + 𝑦s𝑃pub)
)

+ 𝑈,

If this is true,  returns 𝑚 = 𝐶 ⊕ℎ1. Otherwise, the ciphertext is
rejected, and ⟂ returns.

3. When  reaches this point in its process, it puts a random ℎ1 ∈ Z∗
𝑞

in 𝐿3, that is, (𝑈, ∗, ℎ1) for an unknown value of 𝑣 and a random
ℎ2 ∈ Z∗

𝑞 in list 𝐿4
(

𝑚‖𝐼𝐷𝐴‖𝐼𝐷𝐵||𝐼𝐷𝐶
)

. Finally,  determines
whether or not.

𝑆𝑃 = ℎ2
(

𝐷 + 𝑅1(𝑘A + 𝑧A𝑝A + 𝑦A𝑃pub)

+𝑅2(𝑘s + 𝑧s𝑝s + 𝑦s𝑃pub)
)

+ 𝑈,

If this is true,  returns 𝑚 = 𝐶 ⊕ℎ1 to . Otherwise, the symbol
⟂ is returned and the ciphertext is rejected. The symbol ∗ is
linked to the identity 𝐼𝐷𝑟. In scenarios (1) and (2), a failure
occurs for the challenger if either the hash value ℎ1 or ℎ2 has
been previously established in the list

Challenge:  generates two plaintexts of identical lengths, 𝑚0 and 𝑚1.
To challenge a sender, 𝐼𝐷𝑠 and a receiver’s identity 𝐼𝐷𝑟 must be used.
If 𝐼𝐷𝑠 ≠ 𝐼𝐷𝑟,  fails. Otherwise,  uses a random bit 𝑏 ∈ {0, 1}𝑛

to signcrypt 𝑚𝑏. A random hash value 𝑆∗, ℎ1, ℎ2 ∈ Z∗
𝑞 is chosen, and

𝑈∗ = 𝑎𝑃 and 𝑆∗ = (𝑥 + ℎ2𝑘𝑝) = (𝑡𝑎𝑃 + ℎ2(𝑠𝑘𝑠, 𝑝𝑘𝑠)) are set. Finally, 
computes 𝐶∗ = 𝑚𝑏 ⊕ ℎ1 and returns 𝜎∗𝑝 = (𝑆∗, 𝐶∗, 𝑈∗) to .

Guess: 1 produces a guess bit 𝛿∗ and wins if 𝛿∗ = 𝛿. If ℎ =
𝑒(𝑃 , 𝑃 )𝑎𝑏𝑐 ,  returns 1; otherwise, it returns 0, illustrating ℎ ≠ 𝑒(𝑃 , 𝑃 )𝑎𝑏𝑐 .

1’s advantage is defined as

AdvIND−CCA2HOOPSC () = |2 Pr[𝛿∗ = 𝛿] − 1|

𝑃1 = |Pr[𝛿∗ = 𝛿] − 1
2
|

𝑃1 = Pr[𝛿∗ = 𝛿|

𝜎𝑝 = (𝑚𝑏, 𝐼𝐷𝑠, 𝑝𝑘𝑠, 𝐼𝐷𝑟, 𝑃 𝑘𝑟𝑆
∗, 𝐶∗, 𝑈∗)]

= 𝜀 + 1
2

−
𝑞𝑠𝑐 (𝑞𝑠𝑐 + 𝑞𝐻2

)

2𝜆

nd 𝑃0 = Pr[𝛿∗ = 𝑖|ℎ ∈ G2] =
1
2 for 𝑖 = 0, 1.

Thus, we have
Adv() =∣ 𝑃𝑎,𝑏,𝑐,∈Z∗

𝑝 ,𝜃∈G2
[1 ← (𝑃 , 𝑎𝑃 , 𝑏𝑃 , 𝑐𝑃 , 𝜃)]

−𝑃𝑎,𝑏,𝑐,∈Z∗
𝑝
[1 ← (𝑃 , 𝑎𝑃 , 𝑏𝑃 , 𝑐𝑃 , 𝑒(𝑃 , 𝑃 )𝑎𝑏𝑐 )] ∣

= ∣𝑃1−𝑃0 ∣
(2𝑞𝐻1 )2 ,

𝜖𝑔𝑏𝑑ℎ ≥ ( 𝜖
𝑞𝐻1

)(1 −
𝑞𝑠(𝑞𝐻2+𝑞𝐻3+𝑞𝐻4 )

2𝜆 )(1 − 𝑞𝑢
2𝜆 ).

5.2. Unforgeability

Theorem 2. The HOOPSC scheme fulfills EUF-CMA security under the
CDHP against the 1 and 2 adversaries.

Proof. The EUF-CMA-I and EUF-CMA-II games described below demon-
strate the security of Theorem 2.

EUF-CMA-I: In the random oracle model, if an adversary 1 has a
nonnegligible advantage 𝜀 in compromising the EUF-CMA-I security of the
HOOPSC scheme within a time frame 𝑡 and performing 𝑞𝑝𝑝𝑘 inquiries,
𝑞𝑠𝑘 inquiries, 𝑞𝑝𝑘 inquiries, 𝑞𝑝𝑘𝑟 inquiries, 𝑞𝑘𝑒 inquiries, 𝑞𝑝𝑑 inquiries, 𝑞𝑘𝑝
inquiries, 𝑞𝑠𝑐 inquiries, and 𝑞𝐻𝑖

inquiries to oracles 𝐻𝑖 (𝑖 = 1, 2, 3, 4), then
there is a  that can resolve the CDHP with an advantage

𝜀𝑐𝑑ℎ ≥
10(𝑞𝑠𝑐 + 1)(𝑞𝑠𝑐 + 𝑞𝐻3

)𝑞𝐻1

(2𝜆 − 1)

In a time

𝑡′ ≤ 120686𝑞𝐻1
𝑞𝐻3

𝑡 + 𝑂((𝑞𝑝𝑟𝑘 + 𝑞𝑠𝑐 + 𝑞𝑟𝑒𝑞𝐻2
+ 𝑞𝑑𝑠𝑐𝑞𝐻2

)𝑡𝑝)

𝜀(1 − 1
2𝜆 )
where 𝑡𝑝 represents time for a single pairing operation.
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Proof. It is illustrated how  uses 1 as a subroutine to resolve a given
cenario (𝑃 , 𝑎𝑃 , 𝑏𝑃 ) of the CDHP.

Initial:  performs the setup with 𝜆 and sends params with 𝑃𝑝𝑢𝑏 = 𝑠𝑃
o 1. Note that  is unaware of 𝑠. In this game, the UKG secret key is
𝑠.

Attack: According to the IND-CCA2 proof,  responds to 1 inquiries,
except for 𝐻3 inquiries. When 1 queries 𝐻3 on

(

𝑣𝑖
)

. First,  verifies
whether 𝐿3 has a tuple

(

𝑣𝑖, ℎ𝑖
)

. If a tuple is found,  yields ℎ𝑖 to 1.
therwise,  selects a random ℎ𝑖 ∈ {0, 1}𝑛, adds it to 𝐿3, and returns it

o 1.
Forgery: 1 outputs a triple (𝐼𝐷𝐴, 𝐼𝐷𝑠, 𝐼𝐷𝑟, 𝜎∗) where 𝜎∗ =

𝑚𝜔, 𝑆∗, 𝐶∗, 𝑈∗). For an identityless chosen message attack, generic
orged message (𝐼𝐷𝑠, 𝑚) are utilized.  ′

1 generates ((𝐼𝐷𝑠, 𝑚), 𝑟, 𝑆) and
((𝐼𝐷𝑠, 𝑚), 𝑟∗, 𝑆∗) utilizing the forking lemma, maintaining the same
commitment but with distinct random values 𝑟 and 𝑟∗. Machine 
addresses the CDH problem by employing  ′

1.

1. Through the execution of  ′
1,  generates (𝐼𝐷𝑠, 𝑚), 𝑟, 𝑆 and

(𝐼𝐷𝑠, 𝑚).
2. It computes 𝑎𝑏𝑃 = (𝑟 − 𝑟∗)−1(𝑆 − 𝑆∗).
3. It then returns 𝑎𝑏𝑃 as the solution to the CDH problem.

If 1 succeeds within time 𝑡 with a certain probability, based on the
forking lemma (Choon and Hee Cheon, 2002), the following is true:

𝜀𝑐𝑑ℎ ≥
10

(

𝑞𝑠𝑐 + 1
)

(

𝑞𝑠𝑐 + 𝑞𝐻3

)

𝑞𝐻1

(2𝜆 − 1)
resolves the CDH problem within a specific timeframe.

𝑡′ ≤ 120686𝑞𝐻1
𝑞𝐻3

𝑡 + 𝑂(
(

𝑞𝑝𝑟𝑘 + 𝑞𝑠𝑐 + 𝑞𝑟𝑒𝑞𝐻2
+ 𝑞𝑑𝑠𝑐𝑞𝐻2

)

𝑡𝑝)

𝜀(1 − 1
2𝜆 )

EUF-CMA-II: In the random oracle model, if adversary 2 holds a
nonnegligible advantage 𝜀 in breaching the EUF-CMA-II security of the

OOPSC scheme within a time frame 𝑡 and conducting 𝑞𝑠𝑘 inquiries, 𝑞𝑝𝑘
nquiries, 𝑞𝑘𝑒 inquiries, 𝑞𝑝𝑑 inquiries, 𝑞𝑘𝑝 inquiries, 𝑞𝑠𝑐 inquiries, and 𝑞𝐻𝑖
nquiries to oracles 𝐻𝑖 (𝑖 = 1, 2, 3, 4), then there is a  that can solve the
DHP with an advantage.

𝑐𝑑ℎ ≥
10(𝑞𝑠𝑐 + 1)(𝑞𝑠𝑐 + 𝑞𝐻3

)𝑞𝐻1

(2𝜆 − 1)
n a time

′ ≤ 120686𝑞𝐻1
𝑞𝐻3

𝑡 + 𝑂((𝑞𝑝𝑟𝑘 + 𝑞𝑠𝑐 + 𝑞𝑟𝑒𝑞𝐻2
+ 𝑞𝑑𝑠𝑐𝑞𝐻2

)𝑡𝑝)

𝜀(1 − 1
2𝜆 )

where 𝑡𝑝 represents one pairing operation time.

roof. It is illustrated how  uses 2 as a subroutine to resolve a given
cenario (𝑃 , 𝑎𝑃 , 𝑏𝑃 ) of the CDHP.

Initial:  performs the setup using 𝜆 and sends params with 𝑃𝑝𝑢𝑏 = 𝑠𝑃
o 2. Here,  randomly selects 𝑠.

Attack:  mimics 2 in the EUF-CMA-II game.  maintains four lists
𝑖 (where 𝑖 ranges from 1 to 4) to simulate the hash oracles 𝐻1,𝐻2,𝐻3
nd 𝐻4, respectively. It keeps private and public keys in 𝐿𝑘, 𝐿𝑝𝑘 for the
roxy key, and 𝐿𝑠𝑐 for the signcrypt. It is assumed that the inquiries in
1 are distinct and that 2 requests the queries in 𝐻1(𝐼𝐷𝑖) prior to

he identity 𝐼𝐷𝑖 being utilized in the remaining queries. Furthermore,
y employing the irreflexivity assumption (Boyen, 2003), it assumed
hat the identities of the sender and recipient are distinct.  picks a
andom 𝜆 ∈ {1, 2,… , 𝑞𝑠 + 𝑞𝑝 + 𝑞𝑝𝑑 + 𝑞𝑘𝑝 + 𝑞𝑠𝑐}.  answers 𝐻2,𝐻3,𝐻4,
roxy delegation, proxy key, and signcrypt inquiries by applying the same
rocedure as Theorem 1 queries. The details of the other inquiries are
s follows.
𝐻1 query: When 2 queries 𝐻1 for 𝐼𝐷𝑖,  first checks whether 𝐿1

ontains a pair of (𝐼𝐷𝑖, 𝑘𝑖, 𝑦𝑖). If a pair is identified,  returns 𝑦𝑖𝑃 to
2. Otherwise,  selects a random 𝑒 ∈ Z∗

𝑞 , inserts (𝐼𝐷𝑖, 𝑒) into 𝐿1, and
eturns 𝑦 𝑒 to  .
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𝑖 2
Private key inquiries: When 2 asks for a private key inquiry on an
identity 𝐼𝐷𝑖, if 𝐼𝐷𝑖 = 𝐼𝐷𝑟,  fails. Otherwise,  runs the 𝐻1 oracle to
obtain (𝐼𝐷𝑖, 𝑘𝑖, 𝑦𝑖). Then,  checks 𝐿𝑘 for entry (𝐼𝐷𝑟, 𝑝𝑘𝑖, 𝑥𝑖).

Forgery: 2 outputs a triple (𝐼𝐷𝐴, 𝐼𝐷𝑠, 𝐼𝐷𝑟, 𝜎∗) where 𝜎∗ =
𝑚𝜔, 𝑆∗, 𝑐∗, 𝑈∗). For an identityless chosen message attack, generic
orged message (𝐼𝐷𝑠, 𝑚) are utilized.  ′

2 generates ((𝐼𝐷𝑠, 𝑚), 𝑟, 𝑆) and
(𝐼𝐷𝑠, 𝑚), 𝑟∗, 𝑆∗) by using the forking lemma, maintaining the same
ommitment but with distinct random values 𝑟 and 𝑟∗. Machine 
ackles the CDH problem by employing  ′

2.

1. By executing  ′
2,  generates (𝐼𝐷𝑠, 𝑚), 𝑟, 𝑆 and (𝐼𝐷𝑠, 𝑚).

2. It computes 𝑎𝑏𝑃 = (𝑟 − 𝑟∗)−1(𝑆 − 𝑆∗).
3. It then returns 𝑎𝑏𝑃 as the solution to the CDH problem.

f 2 succeeds within time 𝑡 with a certain probability, based on the
orking lemma (Choon and Hee Cheon, 2002), the following is true:

𝑐𝑑ℎ ≥
10

(

𝑞𝑠𝑐 + 1
)

(

𝑞𝑠𝑐 + 𝑞𝐻3

)

𝑞𝐻1

(2𝜆 − 1)
 resolves the CDH problem within a specific timeframe.

𝑡′ ≤ 120686𝑞𝐻1
𝑞𝐻3

𝑡 + 𝑂(
(

𝑞𝑝𝑟𝑘 + 𝑞𝑠𝑐 + 𝑞𝑟𝑒𝑞𝐻2
+ 𝑞𝑑𝑠𝑐𝑞𝐻2

)

𝑡𝑝)

𝜀(1 − 1
2𝜆 )

6. Performance

In this section, the major computational cost, communication over-
head, security and environment of the proposed scheme are evaluated
in comparison with those of existing schemes (Lo et al., 2014, Yu et al.,
2018, Hundera et al., 2020, and Qu and Zeng, 2022), as presented in
Tables 2 and 3. Table 2 outlines the operation 𝑃 as the pairing in
G2, 𝑀 represents scalar multiplication in G1, and 𝐸 signifies expo-
nentiation in G2. Table 2 does not include other operations because
these three operations consume the longest running time for the entire
algorithm (Cui et al., 2007). In the security column, ✓denotes the
fulfillment of a security property, and × indicates its absence. For the
key size column, the combined sizes of the public, secret and proxy keys
were considered. Here, |𝑥| indicates the number of bits in 𝑥.

Table 2 shows that HOOPSC has the lowest computational cost and
divides signcryption (SC) into offline and online stages. Two-point mul-
tiplication was precalculated offline. The online phase is highly efficient
and requires only one multiplication. That is, HOOPSC can perform
the entire signcryption process more quickly than the existing schemes
when a message is available. Moreover, Fig. 4 further demonstrates the
efficiency of HOOPSC compared to the others. It provides a clear visual
representation of HOOPSC has performance advantages, highlighting
its effectiveness in a comparative analysis. This comparison clearly
shows HOOPSC capabilities in terms of efficiency and effectiveness.

Regarding security, Lo et al. (2014), Yu et al. (2018), and Hun-
dera et al. (2020) satisfied both the IND-CCA2 and EUF-CMA security
properties for IBC environments, and Hundera et al. (2020) is publicly
verifiable. The schemes of Qu and Zeng (2022) and HOOPSC satisfy
both the IND-CCA2 and EUF-CMA security properties for CLC environ-
ments against Type 1 and II attacks, and established public verifiability;
however, Qu and Zeng (2022) incurs higher computational costs and
communication overhead than HOOPSC. Therefore, HOOPSC is highly
suitable for providing security solutions to UAV networks.

The three schemes proposed by Lo et al. (2014), Yu et al. (2018),
and Hundera et al. (2020) belong to the IBC environment, whereas the
scheme Qu and Zeng (2022) belongs to the CLC environment. However,
in a heterogeneous UAV environment, the sender and receiver must be
in different cryptosystems. Therefore, a scheme functioning within the
same cryptosystem is impractical for use in such environments.

In Table 3, the communication cost of HOOPSC is compared with
the schemes of Lo et al. (2014), Yu et al. (2018), Hundera et al.
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Table 2
Comparison of computational cost and security.

Scheme Computational cost Security Environment

SC DSC IND-CCA2 EUF-CMA Public verifiability

Lo et al. (2014) 4M + P 5M + 3P ✓ ✓ × IBC
Yu et al. (2018) 4M + P + E 2M + 4P + E ✓ ✓ × IBC
Hundera et al. (2020) 2M + 2P + 2E 2M + 6P + 2E ✓ ✓ ✓ IBC
Qu and Zeng (2022) 7M 6M + 3P ✓ ✓ ✓ CLC
HOOPSC 2M(Off) + 1M(On) 7M ✓ ✓ ✓ CLC-IBC
Table 3
Comparison of communication cost.

Schemes Key size Delegation size Ciphertext size Offline storage

Lo et al. (2014) |Z∗
𝑞 | + |G1| |Z∗

𝑞 | + |G1| + |𝑚𝜔| 4|G1| + |𝑚| + |𝑚𝜔| 0
Yu et al. (2018) 2|G1| 2|G1| + |𝑚𝜔| 4|G1| + |𝑚| + |𝑚𝜔| 0
Hundera et al. (2020) 2|G1| 3|G1| + |𝑚𝜔| |Z∗

𝑞 | + 2|G1| + |𝑚| + |𝑚𝜔| 0
Qu and Zeng (2022) |Z∗

𝑞 | + 6|G1| 4|G1| + |𝑚𝜔| 6|G1| + |𝑚| + |𝑚𝜔| 0
HOOPSC |Z∗

𝑞 | + 3|G1| 3|G1| + |𝑚𝜔| 2|G1| + |𝑚| + |𝑚𝜔| 2|G1|
Table 4
The comparative overview of security levels
(bits).

Security level Size of 𝑃 Size of 𝑞

80-bit 512 160
112-bit 1024 224
128-bit 1536 256

Fig. 4. Comparison of computational cost.

(2020) and Qu and Zeng (2022) according to the size of the keys,
delegation, ciphertext size and offline storage. The experiment was
conducted using Type A pairing with the PBC library (Lynn, 2007),
running on a desktop ONDA B760-VH4 Gen 13 instrument equipped
with an Intel® Core™ i5-13600KF 3.50 GHz processor, 24-GB GPU
(NVIDIA GeForce RTX 3090) and 64-GB RAM. Type A pairings are
built on the curve 𝑦2 = (𝑥3 + 𝑥) mod 𝑝 for some prime 𝑝 = 3 mod 4,
where the order of G1 is 𝑞 and the embedding degree is 2. Here, three
types of parameters corresponding to the security levels defined by 80-
bit, 112-bit and 128-bit AES key sizes, as described previously (Islam
and Biswas, 2017), were considered. A comparative overview of the
security levels is presented in Table 4. According to Cao et al. (2010),
the average execution time for a scalar multiplication operation in
G1 is approximately 6.38 ms, the exponentiation computation in G2 is
approximately 11.20 ms, and a pairing operation requires approximately
20.01 ms. For comparisons of computational costs, it is assumed that the
size of a message and the size of |𝑚 | are 160 bits each. When an 80-bit
10

𝜔

Fig. 5. The key size of the schemes.

Fig. 6. The delegation size of the schemes.

security level is used, 𝑝 is 512 bits in size. As a result, by utilizing an
elliptic curve with 160 bits 𝑞 size, the size of an element in group G1 is
1024 bits. However, this can be reduced to 65 bytes by using standard
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Fig. 7. The ciphertext size of the schemes.

compression techniques (Shim, 2012). The elements in G2 were 1024
bits.

Therefore, the key sizes of Lo et al. (2014), Yu et al. (2018),
Hundera et al. (2020), Qu and Zeng (2022) and the proposed scheme
are |Z∗

𝑞 | + |G1| = 20 + 65 = 85 bytes, 2|G1| = 2 × 65 = 130 bytes,
2|G1| = 2 × 65 = 130 bytes, |Z∗

𝑞 | + 6|G1| = 20 + 6 × 65 = 410 bytes,
and |Z∗

𝑞 |+ 3|G1| = 20 + 3 × 65 = 215 bytes, respectively. The delegation
sizes of Lo et al. (2014), Yu et al. (2018), Hundera et al. (2020), Qu and
Zeng (2022) and the proposed scheme are |Z∗

𝑞 |+|G1|+|𝑚𝜔| = 105 bytes,
2|G1|+|𝑚𝜔| = 2×65+20 = 150 bytes, 3|G1|+|𝑚𝜔| = 3×65+20 = 215 bytes,
4|G1|+ |𝑚𝜔| = 4×65+20 = 280 bytes and 3|G1|+ |𝑚𝜔| = 3×65+20 = 215
bytes, respectively. The ciphertext sizes used by Lo et al. (2014), Yu
et al. (2018), Hundera et al. (2020), Qu and Zeng (2022) and the
proposed scheme are 4|G1| + |𝑚| + |𝑚𝜔| = 4 × 65 + 20 + 20 = 300 bytes,
4|G1|+|𝑚|+|𝑚𝜔| = 4×65+20+20 = 300 bytes, |Z∗

𝑞 |+2|G1|+|𝑚|+|𝑚𝜔| =
20 + 2 × 65 + 20 + 20 = 190 bytes, 6|G1|+ |𝑚|+ |𝑚𝜔| = 6 × 65 + 20 + 20 =
430 bytes and 2|G1| + |𝑚| + |𝑚𝜔| = 2 × 54 + 20 + 20 = 170 bytes,
respectively. Offline storage of 2|G1| = 2 × 65 = 130 bytes is required
for our scheme. The computational costs for the 112−bit and 128−bit
security levels can be determined using the same technique. Figs. 5,
6, and 7 show the key, delegation and ciphertext sizes, respectively, at
different security levels. As depicted in Figs. 7, the proposed scheme has
a smaller ciphertext size than the existing schemes. According to Figs. 5
and 6, HOOPSC has a larger key size than the schemes (Lo et al., 2014;
Yu et al., 2018; Hundera et al., 2020) and a lower key size than the
scheme (Qu and Zeng, 2022). Additionally, the proposed scheme shares
a similar delegation size to Hundera et al. (2020) and has a greater
delegation size than Lo et al. (2014) and Yu et al. (2018), whereas Qu
and Zeng (2022) exhibits the largest delegation size of all. However, all
schemes Lo et al. (2014), Yu et al. (2018), Hundera et al. (2020) and Qu
and Zeng (2022) operate in homogeneous cryptosystems and cannot be
effectively used in a practical heterogeneous UAV environment.

7. Conclusion

This paper presents a novel and efficient HOOPSC scheme for secure
communication in UAV networks. Using online and offline signcryption
techniques, the computational burden on both the GCS and the UAV
is significantly reduced. Moreover, the proposed scheme established
a secure channel between the CC, GCS and UAV, enabling end-to-
end confidentiality, integrity, authentication and nonrepudiation. The
security of the scheme is proven in terms of indistinguishability against
adaptive chosen ciphertext attacks (IND-CCA2) and existential unforge-
ability against adaptive chosen message attacks (EUF-CMA) under the
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decisional bilinear Diffie–Hellman (DBDH) and computational Diffie–
Hellman (CDH) problems in the random oracle model. An experimental
analysis demonstrates that HOOPSC surpasses the existing schemes in
terms of computational cost and communication overhead. Therefore,
the HOOPSC scheme is highly suitable for long-range operations in UAV
networks. Future work will focus on integrating HOOPSC with 5G and
AI to enhance its performance and energy efficiency.
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