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A B S T R A C T

When it comes to financial decision-making, stock market predictability is extremely important since it offers
valuable information that may guide investment strategies, risk management, and portfolio allocation overall.
Traditional methods often fail to accurately predict stock prices due to their complexity and inability to
handle non-linear and non-stationary patterns in market data. To address these issues, this study introduces
an innovative model that combines the External Trend and Internal Components Analysis decomposition
method (ETICA) with the Long Short-Term Memory (LSTM) model, aiming to enhance stock market predictions
for S&P 500, NASDAQ, Dow Jones, SSE and SZSE indices. Through rigorous testing across various training
data proportions and epoch settings, our findings reveal that the proposed hybrid model outperforms the
single LSTM model, delivering significantly lower Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) values. This enhanced precision reduces prediction errors, underscoring the model’s robustness and
reliability. The superior performance of the ETICA-LSTM model highlights its potential as a powerful financial
forecasting tool, promising to transform investment strategies, optimize risk management, and enhance
portfolio performance.
. Introduction

Making informed financial decisions and creating strategies that
educe risks and maximize returns require an understanding of how
redictable the stock market is. In the dynamic realm of finance, being
ble to anticipate what might happen in the market can make a huge
ifference for both individual investors and big financial institutions.
elving into the background of stock market predictability unveils

a lot of different ideas and studies about how and why the market
oves the way it does. Drawing from enduring theories such as Fama’s

fficient market hypothesis (EMH) (Fama, 1995), which argues that
tock prices already incorporate all known information, to newer ideas
n behavioral finance, there is a wide range of viewpoints on financial
arkets predictability. Due to recent advancements in computing tech-
ology, predicting the stock market is now quite possible (Hoseinzade
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et al., 2019), the scientific community has put out several approaches
to stock market forecasting in spite of Fama’s theory (Bustos and
Pomares-Quimbaya, 2020).

Stock market predictions have been a topic of interest for financial
practitioners and policymakers for a long time, hence numerous studies
have been done in this area where two primary types of analysis are
conducted. The fundamental analysis is to investigate the reasons for
price fluctuations, such as current industrial conditions, economic and
non-economic factors, internal market factors, domestic and foreign
economic conditions (Bousoño-Calzón et al., 2019). Technical analysts,
on the other hand, rely on market data, like historical prices and trading
volume, employing technical analysis to evaluate securities (Ahmadi
et al., 2018). Recent studies have demonstrated a correlation between
past and future return rates, which has prompted some to argue that
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previous data could be used to predict future returns if one believes that
he past would repeat itself (Murphy, 1999). Consequently, technical

analysis has been used in a number of studies to forecast future changes
n stock values. Traditional stock prediction methods had difficulties
apturing complicated market dynamics, having limited feature repre-
entation, having non-stationary data, requiring a lot of pre-processing,
nd having little predictive power (Ali et al., 2023). Therefore, the

ability of leveraging algorithms such as support vector machines and
neural networks for tackling these challenges by modeling nonlinear
relationships, extracting features, adapting to market changes, handling
raw data, and enhancing predictive accuracy, makes them valuable for
financial forecasting and stock prediction (Kurani et al., 2023).

Recurrent neural networks (RNNs), in contrast to a basic artificial
neural network, have seen significant success in the financial sector due
to their excellent performance (Nabipour et al., 2020). The applica-
tion of deep learning, renowned for their ability to handle nonlinear
ime series data without explicit input features, has significantly in-
reased with an increasing number of articles utilizing it in recent
tudies (Hiransha et al., 2018). One enhanced version of the RNN tech-

nique utilized in the deep learning field is long short-term memory, this
model solves the vanishing gradient problem by replacing the hidden
layer units with memory cells (Bhandari et al., 2022), making it more
effective for stock price prediction (Ali et al., 2023). Forecasting accu-
racy can be increased by using hybrid or multiple models (Hajirahimi
nd Khashei, 2019; Huang et al., 2021). Indeed, the hybrid LSTM
odel showed that in many studies by outperforming the single LSTM
odel (Deng et al., 2023). Even with the benefits these techniques have

brought to data analysis, certain time series are still quite unstable
nd chaotic. This problem can be solved by isolating highly fluctuating
ata into lower frequency components using frequency decomposition
echniques like EMD and CEEMD, which streamline the analysis (Rezaei

et al., 2021).
In contrast to conventional research focusing on frequency decom-

position methods, this study delves into stock market prediction by
examining the impact of the ETICA decomposition method combined
with Long Short-Term Memory (LSTM) networks. While traditional
LSTM models have proven effective in capturing temporal dependen-
cies in stock market data, the non-linear and non-stationary nature
of stock prices poses challenges. To address this, ETICA is used to
decompose stock prices into external trends and internal components,
enabling LSTM to focus on cleaner, more distinct patterns for more
accurate predictions. This approach provides a nuanced understanding
of market dynamics, allowing LSTM to capture complex temporal pat-
terns more effectively. ETICA’s ability to disentangle factors influencing
stock prices facilitates precise modeling, which significantly reduces
prediction errors. Empirical validation using historical data from the
S&P 500, NASDAQ, Dow Jones, SSE and SZSE indices demonstrates that
the proposed ETICA-LSTM hybrid model outperforms a single LSTM,
EMD-LSTM and CEEMDAN-LSTM models, showcasing its potential for
financial forecasting.

This paper is structured as follows: Section 2 presents related work.
Section 3 details the data used as inputs and outlines our proposed

ethodology. Section 4 discussing the experimental results and perfor-
ance measures. Finally, Section 5 explores potential future directions

or this research.

2. Related work

By combining statistical methods with machine learning algorithms
nd integrating diverse data sources, hybrid models capture non-linear
atterns and improve prediction reliability in the dynamic stock market
nvironment. Many strategies exist for predicting financial time series,
anging from traditional methods to deep learning models. Of these,
eep learning has drawn the most interest because of its superior
erformance, especially the LSTM models.
2 
Several studies have aimed to achieve more accurate predictions
by proposing various hybrid LSTM models. The LSTM-ARIMA hybrid

odels were developed to combine the statistical modeling capabilities
of Autoregressive Integrated Moving Average (ARIMA) models with
he strengths of LSTM networks in capturing intricate patterns. Temur

et al. (2019) utilized ARIMA and LSTM, proposing a hybrid LSTM-
ARIMA model which has shown to perform better when error rates
are compared. In 2020, Kulshreshtha et al. (2020) introduced a hy-
brid ARIMA-LSTM model for capturing both the non-linear and linear
aspects of the time series, showing that the proposed hybrid model
utperforms both Prophet and the single LSTM significantly. The hybrid
STM-ARIMA models’ outperformance has been demonstrated in many
ases, suggesting that combining LSTM with ARIMA improves esti-
ation accuracy (Abdulrahman et al., 2021; Zolfaghari and Gholami,

2021; Rehman et al., 2024; Kumar et al., 2016). Nevertheless, the best
decomposition technique for time series data remains to be determined.
In contrast to the complex current decomposition approaches, Dave
et al. (2021) proposed a simpler model for time series decomposition.
Their comparative study demonstrated the superiority of the hybrid
model, providing important information for policymakers. According
to Albeladi et al. (2023), while ARIMA and LSTM models have proven
useful in certain contexts, their effectiveness for prediction tasks can
be limited by factors such as the unique characteristics of the target
domain, the emergence of more advanced predictive techniques, and
practical considerations related to data and resources.

Convolutional Neural Networks (CNNs), as shown by Hu (2018),
ave been effective in predicting time series. While CNNs are mainly
sed for image recognition, they have also been applied to time series
orecasting. However, their performance may not always match models

specifically designed for sequential data. Recent research has shown
that combining CNN and LSTM models can achieve better results than
using either one alone (Kumbure et al., 2022). By combining these
two models and applying the CNN model’s feature extraction capa-
bilities with the LSTM time series analysis, Eapen et al. (2019) were
ble to predict the S&P 500 trading price. The hybrid model yielded
uperior results compared to SVR regression analysis. Moreover, it
emonstrated better prediction accuracy than both CNN and LSTM

models. Lee and Kim’s proposed model architecture employed CNN and
ConvLSTM to effectively train patterns across tens of thousands of time-
series, serving as the market feature extractor (Lee and Kim, 2020).

he outcomes show that all baseline models are outperformed by the
uggested model. CNN-LSTM model was proposed by Lu et al. (2020)

to predict the closing price of stocks for the next day. The features
of the input data are extracted using CNN. Utilizing the retrieved
feature data, LSTM is trained to forecast the stock’s closing price
for the following day. Among many techniques, the suggested CNN-
LSTM model showed the highest predicting accuracy. Jing et al. (2021)
classified investors’ hidden feelings using a hybrid CNN-LSTM model.
The experiment’s results indicated that the proposed model surpassed
the baseline classifiers in recognizing investor attitudes. Moreover, the
hybrid approach demonstrated superior performance compared to both
individual models and models lacking sentiment analysis, particularly
in stock price prediction.

Even though these techniques have been highly beneficial for data
nalysis, it can still be difficult to analyze and predict some time series
ince they are so stochastic and variable (Rezaei et al., 2021). CEEMD
nd EMD algorithms have lately been used in the stock market predic-
ion space, thanks to the advantages of sequential data decomposition

into separate frequency spectra. These techniques may be helpful when
used in conjunction with deep learning models like LSTM for financial
time series analysis (Chen et al., 2019; Niu et al., 2020; Brandi et al.,
2020; Lahmiri, 2016) because of their ability to reduce the impact of
stock series’ nonlinear properties (Xuan et al., 2020). Jothimani and
Yadav (2019) and Jin et al. (2020) confirmed the predictive ability of
hybrid models using the frequency decomposition algorithm. They also
found that CEEMD might produce more precise outcomes compared
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to EMD when paired with other machine learning and deep learning
odels. The CEEMDAN-LSTM hybrid model was proposed by Cao

t al. (2019), and it was compared with current hybrid models for
he S&P 500 and HIS indices. The outcomes confirmed CEEMD-LSTM’s
uperiority over CEEMD-MLP, CEEMD-SVR, and even individual LSTM
nd SVR models. Yan et al. (2020) proposed the CEEMD-PCA-LSTM
eep learning hybrid model. The results showed that the suggested
odel outperformed benchmark models in terms of forecast accuracy

nd profitability performance.
The method proposed by Barthélemy et al. (2010), which focuses on

isentangling collective trends from local dynamics, has been widely
applied in fields requiring the separation of global and local factors
within time series. The ability to isolate external trends from internal
behaviors aligns with the approach of decomposition techniques in
financial time series analysis. While existing studies have explored
arious hybrid models to enhance stock market predictions, the ETICA-
STM approach proposed in this paper offers a unique method for
ecomposing stock prices. By isolating external trends from inter-

nal components, ETICA enables the LSTM model to focus on more
structured, less noisy data, thus improving prediction accuracy. To
our knowledge, this is the first study to integrate ETICA and ma-
chine learning in the financial forecasting domain, contributing a novel
perspective to hybrid forecasting models. By integrating ETICA with
LSTM, this study aims to build upon the success of decomposition-
based approaches in stock market prediction, offering a new method
or disentangling external trends from internal stock-specific factors.

3. Methodology

This article’s primary methodology uses the ETICA decomposition
algorithms alongside with deep learning techniques. Meanwhile, it
is essential to comprehend what constituting models are and how
they work in order to comprehend the suggested strategy. Next, a
presentation and investigation of the hybrid algorithm’s design will
take place.

3.1. Data

The dataset used in this study includes stock prices for the S&P 500,
NASDAQ, and Dow Jones indices, covering the period from January 6,
2015, to July 11, 2022, as well as the SSE and SZSE stock indices, which
span from January 6, 2015, to October 23, 2024. The data was sourced
from Yahoo Finance, and from the available seven columns, only the
Date and Closing Price columns were selected for further analysis. In
this study, the decomposition method necessitates the following data
transformation:

𝑝𝑖(𝑡) =
𝑃𝑖(𝑡) − 𝑃𝑖(𝑡 − 1)

𝑃𝑖(𝑡 − 1) × 100, (1)

here, 𝑃𝑖(𝑡) and 𝑃𝑖(𝑡− 1) represent the prices at time instants 𝑡 and 𝑡− 1,
espectively.

3.2. The ETICA method

In general, a set of time series {𝑝𝑖(𝑡)}𝑖=1,…,𝑆 (𝑡) is considered, where
= 1,… , 𝑇 represents the time period, and 𝑖 refers to a specific stock
ithin the market. The objective is to decompose the stock returns

nto components that account for broader market influences and stock-
pecific factors. This can be achieved by expressing the stock return
𝑖(𝑡) as:

𝑝𝑖(𝑡) = 𝑝𝑒𝑥𝑡𝑖 (𝑡) + 𝑝𝑖𝑛𝑡𝑖 (𝑡), (2)

The 𝑝𝑡𝑒𝑥𝑡𝑖 (𝑡), captures the influence of overall market trends on stock
, including macroeconomic factors and broader indices. In contrast,
he 𝑝𝑖𝑛𝑡𝑖 (𝑡), reflects stock-specific factors, such as company performance

or industry events. This separation helps differentiate the impact of
arket-wide trends from individual stock drivers.
3 
Typically, in these techniques, it is presumed that the average of
the local components equals zero. On the basis of this assumption,
A technique to separate the internal dynamics has been proposed by
Argollo de Menezes and Barabási (2004), from which the external
components can be computed by the following equation:

𝑝𝑒𝑥𝑡𝑖 (𝑡) = 𝑎𝑖
𝑆
∑

𝑖=1
𝑝𝑖(𝑡), (3)

where

𝑎𝑖 =
∑𝑇

𝑡=1 𝑝𝑖(𝑡)
∑𝑇

𝑡
∑𝑆

𝑖=1 𝑝𝑖(𝑡)
, (4)

𝑝𝑖𝑛𝑡𝑖 (𝑡) = 𝑝𝑖(𝑡) −
∑𝑇

𝑡=1 𝑝𝑖(𝑡)
∑𝑇

𝑡
∑𝑆

𝑖=1 𝑝𝑖(𝑡)

𝑆
∑

𝑖=1
𝑝𝑖(𝑡). (5)

In specific scenarios, this method is capable of accurately forecasting
outcomes. Thus, using an independent component analysis technique,
the external trend and internal components analysis decomposition
method was presented in Barthélemy et al. (2010).

In essence, the setting is the Arbitrage Pricing Theory (APT), where
excessive 𝛼 or 𝑝𝑖𝑛𝑡𝑖 (𝑡) is the term used. The estimate of 𝑎𝑖 is conceptually
identical to the more widely used Fama–Macbeth regression techniques,
which are commonly used for factor extraction. On the other hand, the
ETICA methodology is a different strategy from Fama–Macbeth that
offers benefits in terms of money in the APT setting. The separation
approach, as outlined in Argollo de Menezes and Barabási (2004),
osits that the internal component 𝑝𝑖𝑛𝑡𝑖 (𝑡) inherently possesses a zero
verage. The requirement that all components of the parameter vector
must be zero stems from its implications for prices. Nevertheless, it

s common for the internal contribution average to be non-zero, which
eads to inaccurate findings.

To show that internal contributions are independent of the global
trend and that correlations between regions mainly come from their
shared dependence on this trend, the absence of the following con-
nected correlation is imposing:

𝑐 𝑜𝑟𝑟(𝜔, 𝑝𝑖𝑛𝑡𝑖 ) = 0, (6)

and

𝑐 𝑜𝑟𝑟(𝑝𝑖𝑛𝑡𝑖 , 𝑝𝑖𝑛𝑡𝑗 ) = 0. (7)

Following Argollo de Menezes and Barabási (2004), the possibility of
having both multiplicative and additive contributions was considered
with the assumption that:

𝑝𝑒𝑥𝑡𝑖 (𝑡) = 𝑎𝑖𝜔(𝑡), (8)

thus, the decomposition approach was stated as follows:

𝑝𝑖(𝑡) = 𝑎𝑖𝜔(𝑡) + 𝑝𝑖𝑛𝑡𝑖 (𝑡), (9)

with each stock responding to the overall trend using the prefactor
𝑖, the collective trend is represented by 𝜔(𝑡). The average of 𝜔(𝑡) is
enoted by 𝜇𝜔, and its dispersion is denoted by 𝜎𝜔, so that:

𝜔(𝑡) = 𝜇𝜔 + 𝜎𝜔𝑊 (𝑡). (10)

By denoting: 𝑃𝑖(𝑡) = 𝑝𝑖(𝑡) − ⟨𝑝𝑖⟩ and 𝐺𝑖 = 𝑝𝑖𝑛𝑡𝑖 − ⟨𝑝𝑖𝑛𝑡𝑖 ⟩:

𝑃𝑖(𝑡) = 𝐴𝑖𝑊 (𝑡) + 𝐺𝑖(𝑡), (11)

with

𝐴𝑖 = 𝑎𝑖𝜎𝜔. (12)

According to Barthélemy et al. (2010), 𝐺𝑖 = 𝑃𝑖(𝑡) − 𝐴𝑖𝑊 (𝑡) was
omputed and the following was obtained:

⟨𝑝𝑖⟩ = 𝐴𝑖
𝜇𝜔
𝜎𝜔

+ ⟨𝑝𝑖𝑛𝑡𝑖 ⟩. (13)
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In two scenarios, 𝜇𝜔
𝜎𝜔

is estimated, with the first scenario assuming

the absence of internal contributions, it was imposed that:
𝜇𝜔
𝜎𝜔

= 1
𝑆

∑

𝑖

⟨𝑝𝑖⟩
𝐴𝑖

, (14)

where

⟨𝑝𝑖⟩ =
1
𝑇

𝑇
∑

𝑡
𝑝𝑖(𝑡), (15)

Or by an alternative assumption:
𝜇𝜔
𝜎𝜔

=
⟨𝑝𝑎𝑣⟩𝐴

𝐴
2

, (16)

where

⟨𝑝𝑎𝑣⟩ = 1
𝑆

∑

𝑖
𝑝𝑖 (17)

and

𝐴 = 1
𝑆
(𝐴𝑖). (18)

In this case 𝜇𝜔, and 𝜎𝜔 can be fixed to:

𝜇𝜔 = ⟨𝑝𝑎𝑣⟩, (19)

and

𝜎𝜔 = ⟨𝑊 𝑝𝑎𝑣⟩, (20)

where 𝑊 (𝑡) is the global normalized pattern.
The second scenario assumes that there exists no correlation be-

tween 𝐴𝑖’s and the temporal average of 𝑝𝑖𝑛𝑡𝑖 (𝑡)’s. This parameter may
be determined by calculating the slope of a linear correlation that
can be found from Eq. (13). In order to address scenarios with strong
correlations, both positive and negative, the following novel approach
is suggested by:

𝑐 𝑜𝑟𝑟(𝐴𝑖, ⟨𝑝
𝑖𝑛𝑡
𝑖 ⟩) = ±1. (21)

This definition necessitates the presence of parameters a and b:

⟨𝑝𝑖𝑛𝑡𝑖 ⟩ = 𝑎𝐴𝑖 + 𝑏, (22)

By replacing ⟨𝑝𝑖𝑛𝑡𝑖 ⟩ in Eq. (13), we get:

⟨𝑝𝑖⟩ =
(

𝜇𝜔
𝜎𝜔

+ 𝑎
)

𝐴𝑖 + 𝑏, (23)

Without any constraint on a and 𝜇𝜔
𝜎𝜔

, their independent separation is
not feasible (obtaining 𝜇𝜔

𝜎𝜔
+ 𝑎 is possible through linear regression).

Thus, when expressing that the correlation equals ±1 and under the
assumption:

𝐴𝑖 = ±⟨𝑝𝑖𝑛𝑡𝑖 ⟩, (24)

We get then
𝜇𝜔
𝜎𝜔

= 1
𝑆

∑

𝑖

(

⟨𝑝𝑖⟩
𝐴𝑖

− 1
)

(𝑐 𝑜𝑟𝑟 = 1), (25)

and
𝜇𝜔
𝜎𝜔

= 1
𝑆

∑

𝑖

(

⟨𝑝𝑖⟩
𝐴𝑖

+ 1
)

(𝑐 𝑜𝑟𝑟 = −1), (26)

while considering that choosing 𝜇 = 1 is thought to have no negative
impacts, as discussed in Barthélemy et al. (2010).

3.3. LSTM model

Recurrent neural networks (RNNs) are designed to process sequen-
tial data using gates that retain prior inputs (Chung et al., 2014). How-
ever, they struggle with long sequences due to the vanishing (Hochreiter
1998) and exploding gradient problems (Bengio et al., 1994). To
address these issues, Long Short-Term Memory (LSTM) networks were
4 
Fig. 1. LSTM model architecture.

Fig. 2. Forget gate of LSTM cell.

developed, offering enhanced memory capabilities for sequence pre-
diction (Le et al., 2019). LSTMs are particularly effective at capturing
patterns over long sequences compared to traditional RNNs and feed-
forward neural networks. Stock market prediction is challenging due to
its non-linear and volatile nature. This study introduces a hybrid model
that combines ETICA and LSTM to improve prediction accuracy. ETICA
decomposes stock prices into external trends and internal factors,
providing cleaner data. LSTM, with its ability to capture long-term
dependencies, processes these components separately. Each LSTM cell
uses forget, input, and output gates (illustrated in Figs. 1–4 and detailed
in Eqs. (27)–(29)) to manage information.

The forget gate in an LSTM decides whether to retain or discard
information from the previous time step, based on the current input
and previous hidden state. It produces a value between 0 and 1, using
weights 𝐷 and bias 𝑔.

𝑠𝑡 = 𝜎(𝐷𝑠 × [ℎ𝑡−1, 𝑥𝑡] + 𝑔𝑠). (27)

The input gate applies a sigmoid function to the current input and
previous hidden state, producing a value between 0 and 1. A tanh
function is then applied, and the result is combined with the input to
update the cell state.

𝑛𝑡 = 𝜎(𝐷𝑛 × [ℎ𝑡−1, 𝑥𝑡] + 𝑔𝑛),

𝑧𝑡 = 𝑡𝑎𝑛ℎ(𝐷𝑧 × [ℎ𝑡−1, 𝑥𝑡] + 𝑔𝑧).
(28)

The output gate applies a sigmoid to the input and previous hidden
state, and a tanh to the new cell state. These are multiplied to determine
the next hidden state, which, along with the updated cell state, moves
to the next time step.
𝑦𝑡 = 𝜎(𝐷𝑦 × [ℎ𝑡−1, 𝑥𝑡] + 𝑔𝑦),

ℎ𝑡 = 𝑦𝑡 × t anh(𝑐𝑡).
(29)

LSTM’s ability to retain and forget information across time steps
makes it particularly suitable for the data produced by the ETICA
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Fig. 3. Input gate of LSTM cell.

Fig. 4. Output gate of LSTM cell.

decomposition. While ETICA breaks the data into internal compo-
nents and external trends, LSTM processes these decomposed elements
over time, learning the temporal dependencies that exist within these
components, which enhances predictive accuracy.

3.4. Hybrid model ETICA-LSTM

Algorithm 1 ETICA-LSTM model
1: Padding Null Values: any missing values are padded to ensure there

are no gaps in the dataset
2: 𝑃𝑖(𝑡) transformation via Eq. (1) to get 𝑝𝑖(𝑡)
3: ETICA Input: 𝑝𝑖(𝑡)
4: ETICA Output: 𝑝𝑒𝑥𝑡𝑖 (𝑡), 𝑝𝑖𝑛𝑡𝑖 (𝑡)
5: 𝑝𝑒𝑥𝑡𝑖 (𝑡), 𝑝𝑖𝑛𝑡𝑖 (𝑡) reverse transformation to get 𝑃 𝑒𝑥𝑡

𝑖 (𝑡) and 𝑃 𝑖𝑛𝑡
𝑖 (𝑡) using

Eqs. (31)–(32)
6: Normalise and prepare the 𝑃𝑖(𝑡), 𝑃 𝑒𝑥𝑡

𝑖 (𝑡), 𝑃 𝑖𝑛𝑡
𝑖 (𝑡) for LSTM via

Min-Max normalization function using Eq. (33)
7: Split data into training and testing sets
8: Train LSTM model using the selected features
9: Predict future stock prices also their internal and external

components via the trained LSTM model
10: Evaluate the model’s performance using standard metrics RMSE

and MAE

In this study, a model incorporating the ETICA decomposition
method alongside the LSTM model was proposed. As shown in Al-
gorithm 1, the hybrid model first applies ETICA to decompose the
stock data into distinct internal components and external trends. After
ETICA decomposition, both internal components and external trends
are processed separately using LSTM. This separation allows the model
to capture both the external trends and internal components, ultimately
improving prediction accuracy compared to using LSTM alone.
5 
The integration of the ETICA with the LSTM aims to enhance
the predictive accuracy by separating the internal components from
the external trends. By merging these techniques, the model aims to
improve prediction performance while offering valuable insights into
the underlying factors driving the predictions. Fig. 5 outlines a hybrid
model that combines ETICA and LSTM for stock price prediction.
The process begins with stock price data, which is preprocessed by
filling any missing values. Next, the ETICA method decomposes the
data into important components, and the data is normalized to ensure
consistency. The ETICA method is used to separate internal components
from external trends. As proposed in Barthélemy et al. (2010), this
method can be applied to rate-based data. Therefore, stock prices have
been transformed into daily rates via Eq. (1). After calculating the rates
for both internal and external components 𝑝𝑖𝑛𝑡𝑖 and 𝑝𝑒𝑥𝑡𝑖 , we reverse the
transformation to convert the data back into price format, as the LSTM
model performs better with actual price values. To do this, we use the
equation:

𝑃𝑖(𝑡) =
[

𝑝𝑖𝑛𝑡𝑖 (𝑡) + 𝑝𝑒𝑥𝑡𝑖 (𝑡)
100

× 𝑃𝑖(𝑡 − 1)
]

+ 𝑃𝑖(𝑡 − 1). (30)

We split 𝑃𝑖(𝑡− 1) between the internal and external components to avoid
disproportionately affecting the importance of either component:

𝑃 𝑖𝑛𝑡
𝑖 (𝑡) =

[

𝑝𝑖𝑛𝑡𝑖 (𝑡)
100

× 𝑃𝑖(𝑡 − 1)
]

+
𝑃𝑖(𝑡 − 1)

2
, (31)

and

𝑃 𝑒𝑥𝑡
𝑖 (𝑡) =

[

𝑝𝑒𝑥𝑡𝑖 (𝑡)
100

× 𝑃𝑖(𝑡 − 1)
]

+
𝑃𝑖(𝑡 − 1)

2
. (32)

This format allows for proper normalization, which is essential for the
LSTM model to prevent gradient errors and ensure stable weight values
during training. By transforming the rates back into prices, we retain
the model’s predictive power while ensuring consistency in the data
format for both internal and external components. In conclusion, our
approach of transforming data into rates for ETICA decomposition and
then back into prices for LSTM prediction ensures a more accurate and
stable model.

The next step is featuring scaling, which uses Eq. (33) to normalize
the data and convert it into a desired range, usually 0 to 1, which
ensures consistency across various ranges:

𝑃 𝑠𝑐 𝑎𝑙 𝑒𝑑 =
𝑃 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
. (33)

Because normalization reduces the likelihood of significant gradient
errors, unstable weight values in the LSTM model are avoided. All
dataset can be scaled to a range between 0 and 1 by using MinMax
Scaler from the sklearn preprocessing module. MinMax is suggested
since it can maintain the shape of the dataset without causing any
distortions. Proceeding forward, the data is divided into training and
testing partitions to continue with the analysis. This is accomplished
by employing a 60:40 ratio, which designates that 40% of the data are
used for testing and the remaining 60% are used to train the LSTM
model. From 1890 data, 1134 are used for training and 756 for testing.
With a step value of 15, the data is transformed into time steps in order
to get it ready for the LSTM model.

Across 200 epochs, the model training employed a batch size of 32.
In order to train this configuration, the data is divided into batches
of 32 samples each, and the dataset is iterated 200 times in total.
Predictions are produced utilizing the training and testing datasets
after training. The projected data is first converted back to its original
scale using the inversetransform () function in order to properly assess
the predictions. To measure accuracy, one can directly compare the
rescaled data against the original data. The evaluation of the model’s
performance employs metrics including RMSE and MAE.
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Fig. 5. Proposed model ETICA-LSTM.
Table 1
Descriptive statistics of S&P 500, NASDAQ and Dow Jones indices daily closing price.

Index Count Mean Min Max Std

S&P 500 1891 2822.18 1829.08 4796.56 800.04
NASDAQ 1891 8365.79 4266.84 16 057.44 3338.54
Dow Jones 1891 24 208.85 15 660.18 36 799.65 5835.05
SSE 2383 3257.68 2464.36 5166.35 287.88
SZSE 2383 10 813.75 7684 17 399 2474.45

3.5. Assessment metrics

The performance of deep learning model predictions is commonly
measured by loss error. It describes the gap between the actual ob-
served values and the predicted values. RMSE and MAE are among the
standard metrics employed in this study for such models.

RMSE: This metric is the square root of the mean squared errors
between the actual and predicted outcomes, indicating how well the
predictions align with the actual data. This measure is defined by the
following expression:

𝑅𝑀 𝑆 𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑃𝑖 − 𝑃𝑖)2. (34)

MAE: This metric is calculated as the average of the absolute deviations
between the estimated and observed values. Its expression is:

𝑀 𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑃𝑖 − 𝑃𝑖|. (35)

4. Results and discussion

4.1. Data pre-processing

The dataset utilized in this study comprises stock prices for the
S&P 500, NASDAQ, and Dow Jones indices, covering the period from
January 6, 2015, to July 11, 2022. Additionally, it includes data for
the SSE and SZSE stock indices, spanning from January 6, 2015, to
October 23, 2024. To optimize the training process, the data underwent
normalization via the MinMax scaling technique. During the model
compilation, the loss function selected was mean squared error, and the
optimizer chosen was Adam. Table 1 provides the descriptive statistics
for the daily closing prices of the following stock indices: S&P 500,
NASDAQ, Dow Jones, SSE and SZSE.
6 
4.2. Results

The suggested algorithm prediction results are presented in this
section. The suggested model, which is explained in detail in the section
above, is a unique hybrid method that combines LSTM and ETICA
decomposition. The ETICA technique is first used to split the time
series into internal components and external trends, which are then
predicted individually using the LSTM model. The accuracy of the
model’s prediction is assessed by utilizing the RMSE and MAE metrics
to compare predicted values with original values. From Table 2 it can
be observed that:

𝑅𝑚𝑠𝑒(𝑃𝑖(𝑡)) > 𝑅𝑚𝑠𝑒(𝑃 𝑖𝑛𝑡
𝑖 (𝑡)), (36)

and

𝑅𝑚𝑠𝑒(𝑃𝑖(𝑡)) > 𝑅𝑚𝑠𝑒(𝑃 𝑒𝑥𝑡
𝑖 (𝑡)). (37)

By summing both equations:

2 × 𝑅𝑚𝑠𝑒(𝑃𝑖(𝑡)) > 𝑅𝑚𝑠𝑒(𝑃 𝑖𝑛𝑡
𝑖 (𝑡)) + 𝑅𝑚𝑠𝑒(𝑃 𝑒𝑥𝑡

𝑖 (𝑡)), (38)

so

𝑅𝑚𝑠𝑒(𝑃𝑖(𝑡)) >
[

𝑅𝑚𝑠𝑒(𝑃 𝑖𝑛𝑡
𝑖 (𝑡)) + 𝑅𝑚𝑠𝑒(𝑃 𝑒𝑥𝑡

𝑖 (𝑡))
]

∕2. (39)

Table 2 compares the performance of the ETICA-LSTM and LSTM
models in predicting the S&P, NASDAQ, Dow Jones, SSE, and SZSE
indices, based on RMSE and MAE. In the training phase, ETICA-LSTM
outperforms LSTM for the S&P 500 index, with a lower RMSE (17.3837
vs. 22.3655) and MAE (12.2970 vs. 15.6273). Similarly, for the NAS-
DAQ index, ETICA-LSTM shows significantly lower RMSE (46.7012
vs. 72.6584) and MAE (33.1337 vs. 50.8848), indicating better ac-
curacy. For the Dow Jones index, ETICA-LSTM again performs better
with lower RMSE (152.6741 vs. 192.6454) and MAE (106.0264 vs.
132.9207). Additionally, for the SSE index, ETICA-LSTM improves per-
formance with a lower RMSE (31.8371 vs. 34.5248) and MAE (23.2217
vs. 24.6561). Similarly, for the SZSE index, ETICA-LSTM shows better
accuracy with lower RMSE (80.11205 vs. 179.2499) and MAE (56.9475
vs. 127.1322).

In the testing phase, ETICA-LSTM consistently demonstrates supe-
rior performance. For the S&P 500, the model achieves a lower RMSE
(96.3502 vs. 143.2097) and MAE (70.1420 vs. 103.5561). Likewise, for
the NASDAQ index, ETICA-LSTM shows a significant reduction in RMSE
(278.276 vs. 536.6437) and MAE (225.7819 vs. 393.9449). For the
Dow Jones, ETICA-LSTM also outperforms LSTM with a lower RMSE
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Table 2
The RMSE and MAE results for prices, internal components, and external trends for S&P500, NASDAQ, Dow Jones SSE AND SZSE indices.
Metrics Index Prices Internal components External trend

Train Test Train Test Train Test

RMSE

S&P 500 22.3655 143.2097 13.0655 87.57098 21.70192 105.1294
NASDAQ 72.6584 536.6437 34.9628 362.2687 58.4395 194.2832
Dow Jones 192.6454 457.5253 122.0281 454.3025 183.3201 427.1806
SSE 34.5248 49.5867 24.8098 31.9203 38.8644 52.9558
SZSE 179.2499 203.6735 85.1974 99.3579 75.0267 93.1630

MAE

S&P 500 15.6273 103.5561 9.4493 63.6573 15.1447 76.6267
NASDAQ 50.8848 393.9449 25.8360 303.8989 40.4314 147.6648
Dow Jones 132.9207 350.1138 85.8132 342.9603 126.2396 302.0947
SSE 24.6561 30.5344 18.6487 22.3041 27.7947 35.0905
SZSE 127.1322 134.6148 60.7412 66.4097 53.1538 60.4220
Fig. 6. Training and testing RMSE and MAE values.
(440.7416 vs. 457.5253) and MAE (322.5275 vs. 350.1138). Further-
more, for the SSE index, ETICA-LSTM shows better test results with a
lower RMSE (42.43805 vs. 49.5867) and MAE (28.6973 vs. 30.5344).
For the SZSE index, ETICA-LSTM again improves prediction accuracy,
with a lower RMSE (96.26045 vs. 203.6735) and MAE (63.41585 vs.
134.6148). Overall, ETICA-LSTM consistently demonstrates superior
accuracy and predictive performance compared to the LSTM model
across all five indices in both the training and testing phases.

Fig. 6 compare the performance of the ETICA-LSTM and LSTM
models in predicting the S&P 500, NASDAQ, Dow Jones, SSE and SZSE
indices based on RMSE and MAE values during the training and testing
phases. In the training phase (Fig. 6(a)), ETICA-LSTM consistently
outperforms LSTM across all indices, showing lower RMSE and MAE
values, indicating better accuracy and fit to the training data. Similarly,
in the testing phase (Fig. 6(b)), ETICA-LSTM again outperforms LSTM
with significantly lower RMSE and MAE values, demonstrating superior
generalization to new, unseen data. This consistent performance across
both phases highlights that the ETICA-LSTM model not only fits the
training data better but also performs more accurately on the testing
data, making it a more reliable model for predicting the S&P 500,
NASDAQ, Dow Jones, SSE and SZSE indices compared to the standard
LSTM model.

In both training and testing phases, the proposed model exhibits
lower RMSE and MAE values based on the S&P 500, NASDAQ, Dow
Jones, SSE, and SZSE indices, signifying that it generally produces
smaller prediction errors compared to the LSTM model. A lower RMSE
indicates that the proposed model has fewer large errors, minimiz-
ing the magnitude of significant deviations from the actual values.
Meanwhile, a lower MAE signifies that the proposed model has fewer
overall errors, consistently providing accurate predictions. This dual
reduction in error metrics highlights the superior predictive accuracy
and reliability of the proposed model.

The robustness and generalization capacity of the model can be
evaluated by testing it with different proportions of training data and
varying the number of epochs. A resilient model should maintain its
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performance despite changes in the training arrangement. In this study,
the RMSE and MAE were assessed for epochs set to 200, 100, 75,
50, and 25. The results are presented in Table 3 for scenarios where
60% of the data was used for training, and in Table 4 for scenarios
where 80% of the data was used for training using S&P 500 index.
As shown in these tables, the RMSE and MAE values consistently
remain lower on average when the decomposition method is integrated
with the LSTM model. Regardless of the variations in epochs and
training data proportions, the LSTM model demonstrates stable and
continuous performance. This consistency confirms the model’s efficacy
and dependability for prediction, highlighting its strong generaliza-
tion capability, well-chosen initial training parameters, and stability
in handling various data patterns. Notably, the comparison of several
performance metrics clearly indicates that the proposed ETICA-LSTM
model is more precise than the single LSTM model. Specifically, this
study reveals that the ETICA-LSTM algorithm significantly improves
the effectiveness of predicting S&P 500, NASDAQ and Dow Jones price
indices.

Figs. 7–8 display the actual and predicted values of various stock
indices S&P 500, NASDAQ, Dow Jones, SSE, and SZSE using the ETICA-
LSTM model. In these figures, black lines represent actual values,
pink lines denote predictions on training data, and cyan lines indicate
predictions on testing data. Across all indices, the ETICA-LSTM model
demonstrates strong predictive accuracy, closely aligning with actual
values and effectively capturing overall trends. For the S&P 500, NAS-
DAQ, Dow Jones, SSE and SZSE price indices, the model shows a high
degree of accuracy, tracking both upward and downward movements
with minimal error, even in testing phases. Similarly, for the SSE and
SZSE indices, the model effectively captures both the trend direction
and general volatility, though minor discrepancies appear in periods of
high volatility, particularly during sharp declines or rebounds. These
results highlight the ETICA-LSTM model’s robust performance across
different stock markets, illustrating its capability to forecast both trend
patterns and short-term fluctuations in market behavior.
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Fig. 7. Actual and predicted values of S&P 500, NASDAQ and Dow Jones indices.
Fig. 8. Actual and predicted values of SSE and SZSE indices.
The results presented in Table 5 demonstrate that the ETICA-LSTM
model consistently outperforms the other models (LSTM, CEEMDAN-
LSTM, and EMD-LSTM) in predicting the S&P 500, NASDAQ, Dow
Jones, SSE and SZSE indexes, based on both RMSE and MAE met-
rics. The ETICA-LSTM model achieves the lowest RMSE and MAE
8 
values across all indices, indicating its superior ability to minimize
large errors. This suggests that the ETICA-LSTM model captures the
underlying market trends and patterns more accurately than the other
models. CEEMDAN-LSTM also performs reasonably well, but it still falls
short of ETICA-LSTM in terms of accuracy. Both the standard LSTM
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Table 3
The RMSE and MAE results for different epochs using 60% of the S&P500 training data.
Metrics Epochs Prices Internal components External trend

Train Test Train Test Train Test

RMSE

200 22.36551 143.2097 13.06547 87.57098 21.70192 105.1294
100 25.24784 474.9842 14.44803 82.41494 22.1677 103.9955
75 25.05909 754.0312 15.97812 123.849 22.32238 85.18125
50 31.05927 454.2541 14.30924 74.01685 22.10692 166.6111
25 43.9962 712.2969 16.41208 114.1639 24.2606 129.6719

MAE

200 15.62731 103.5561 9.44937 63.65733 15.14469 76.62671
100 17.86555 330.7606 10.16471 69.22759 15.40807 78.30137
75 17.45219 542.768 11.16165 107.1391 15.61197 67.5348
50 22.11518 308.4285 10.37416 61.44397 15.14839 139.3365
25 32.58058 498.6752 11.93527 84.12145 16.99684 96.87104
Table 4
The RMSE and MAE results for different epochs using 80% of the S&P500 training data.
Metrics Epochs Prices Internal components External trend

Train Test Train Test Train Test

RMSE

200 35.53548 190.7905 18.1127 34.43347 31.99144 53.94969
100 35.81589 84.34714 19.03031 53.72668 30.63958 54.34137
75 35.47269 198.8299 20.92899 46.47105 30.78812 55.50921
50 36.87529 132.7711 25.86007 90.11835 31.2322 57.3451
25 41.69296 143.7354 21.38984 50.48286 31.22885 58.26161

MAE

200 23.30286 152.4025 11.28833 27.14972 19.35455 40.54725
100 24.74106 58.06614 11.98817 44.41505 19.28905 40.62808
75 23.75857 146.0501 13.16748 34.98189 19.26047 41.22664
50 23.78093 103.827 15.78541 76.89176 19.5384 43.57039
25 26.67055 116.4197 13.24014 37.48881 19.28638 44.75618
Fig. 9. RMSE and MAE comparison.
E

t
E

and EMD-LSTM models exhibit higher error rates, which implies that
they are less effective in handling the complexities of stock market
data, particularly in comparison to the decomposition-based models.
Overall, the findings highlight that ETICA-LSTM is the most robust and
reliable model for stock market prediction, benefiting from the added
precision of the ETICA decomposition technique. In summary, based
on these results, ETICA-LSTM stands out as the best performing model
for predicting stock indices, followed by the standard LSTM model.
The decomposition-based models (CEEMDAN-LSTM and EMD-LSTM)
show higher error rates, indicating that while decomposition is helpful,
ETICA might be better at capturing stock market patterns than the other

decomposition techniques.
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The RMSE and MAE comparison in Fig. 9 demonstrates that the
TICA-LSTM model consistently outperforms the other models across

various stock indices, achieving the lowest errors in both metrics.
For all indices, ETICA-LSTM exhibits lower RMSE and MAE values
compared to the standalone LSTM model, as well as the EMD-LSTM
and CEEMDAN-LSTM hybrid models, indicating its superior accuracy
and reliability in time series forecasting. While CEEMDAN-LSTM and
EMD-LSTM also reduce error compared to LSTM, they do not match
he error reduction achieved by ETICA-LSTM. These results suggest that
TICA-LSTM is particularly well-suited for stock market prediction, as

it minimizes both the root mean squared error and mean absolute error,

providing a more accurate and consistent forecasting performance.
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Table 5
Comparison of RMSE and MAE for LSTM, ETICA-LSTM, CEEMDAN, and EMD-LSTM.

Metrics Index LSTM ETICA-LSTM EMD-LSTM CEEMDAN-LSTM

RMSE

S&P 500 92.2042 60.9296 101.8114 90.2642
NASDAQ 343.9945 175.9742 327.0636 300.5837
Dow Jones 325.5471 278.7129 323.4276 312.3018
SSE 46.7960 26.8433 40.7021 34.4517
SZSE 210.1326 60.8872 143.1594 91.7752

MAE

S&P 500 66.5955 44.3562 51.8878 47.8889
NASDAQ 252.2192 142.7784 173.9248 153.9363
Dow Jones 244.1752 203.9577 223.3155 214.4895
SSE 27.1615 18.1522 24.9971 21.6138
SZSE 130.1781 40.1122 116.2839 59.3111

5. Conclusion

To improve stock market predictions for the S&P 500, NASDAQ,
ow Jones, SSE and SZSE indices, this study presents a novel hybrid

model that combines the LSTM model with the ETICA decomposi-
ion method. Extensive experiments demonstrate that the ETICA-LSTM
odel significantly outperforms the single LSTM model, achieving

ower RMSE and MAE values, indicating improved predictive accuracy
nd reduced error margins. These results underscore the robustness and
eliability of the ETICA-LSTM model, offering potential for transforma-
ive applications in investment strategies, risk management, and portfo-
io performance optimization. Future research could extend this hybrid
odel to other financial indices and integrate additional machine

earning techniques for further accuracy and reliability enhancements.
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