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1. Introduction

Research into soliton solutions of nonlinear partial differential equations (NLPDEs) has attracted
significant attention due to their wide-ranging applications in fields such as fluid dynamics, plasma
physics, and biological systems. Solitons are stable, localized wave solutions that retain their shape
during propagation and interaction. The study of solitons in time-fractional systems extends traditional
soliton theory into fractional calculus, offering a richer framework to describe wave phenomena in
complex systems [1]. For example, the behavior of solitons in the stochastic Chaffee-Infante equation,
a model for reaction-diffusion systems, has been explored in [2]. Recent research has applied various
computational techniques to solve NLPDEs and uncover different types of soliton solutions. Alraddadi
et al. (2024) used an efficient expansion method to find new soliton solutions for two nonlinear
PDEs [3]. Mhadhbi et al. (2024) combined classical methods, such as the inverse scattering transform,
with innovative approaches to derive exact solutions for nonlinear PDEs [4]. Other studies have
incorporated methods like the bilinear neural network technique, as shown in the work by Zhang et al.
(2024) and Ye et al. (2024), which focus on symbolic computation for solving NLPDEs, including
time-fractional equations [5, 6]. Moreover, the use of physics-informed neural networks (PINN) has
expanded the approach to solving complex PDEs, as demonstrated in works by Hu et al. (2024)
and Linghu et al. (2025), which applied PINN methods to various solid mechanics and composite
material problems [7, 8]. Sarker et al. (2024) explored soliton solutions to nonlinear wave equations
using modern methods such as the sine-cosine and exp-function methods [9], contributing to the broad
spectrum of soliton solutions, including bright, dark, singular, and periodic solitons. These solitons
are pivotal in several areas such as optics, plasma physics, fluid dynamics, nonlinear optics, and
quantum mechanics [10,11], where they model phenomena like light propagation, shock waves, rogue
waves [12], and shallow water dynamics [13].

The reaction-diffusion equation (RDE) has garnered substantial attention in recent years due to its
widespread relevance across various scientific fields, including physics, chemistry, and biology. This
interest is primarily fueled by the fascinating characteristics and diverse properties of the solutions
it provides [14]. The evolution of dynamic quantities in these systems is described by nonlinear
partial differential equations (NLPDEs). Diffusion and reaction processes play a crucial role in the
behavior of many systems, including those in plasma and semiconductor physics. The simultaneous
presence of both processes often leads to solutions that are only valid when they both influence the
system’s dynamics [15, 16]. Over time, the nonlinear RDE has been refined to capture a wider range
of complex behaviors. Key advancements include the incorporation of nonlinearities into the reaction
terms, which can give rise to intricate phenomena such as pattern formation, traveling waves, and
chaotic behavior [17]. To study these systems, researchers have developed a variety of analytical and
numerical methods, yielding valuable insights and contributing significantly to fields ranging from
ecology to materials science [18–20].

Numerous studies have explored the impact of multiplicative noise on soliton solutions in various
nonlinear equations. Key works include those by Abdelrahman et al. (2021) on the nonlinear
Schrödinger equation [21], Albosaily et al. (2020) on the stochastic chiral nonlinear Schrödinger
equation [22], and Mohammed et al. (2022) on the Hirota-Maccari system [23]. Further studies, such
as Mohammed et al. (2021) on the Ginzburg-Landau equation [24], and the coupled Konno-Oono
and Nizhnik-Novikov-Veselov systems [25, 26], show how noise alters soliton behavior. Additionally,
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research on the stochastic Burgers’ equation [27], the Konno-Oono system in a magnetic field [28],
and the time-fractional Gray-Scott model [29] highlights the significant role of noise in modifying
soliton structures across various systems. These studies emphasize the robustness of soliton solutions
in noisy environments, demonstrating their importance in understanding complex systems governed by
stochastic dynamics.

The stochastic nonlinear RD equation with multiplicative white noise represents a further
advancement of this concept [30]. By integrating stochastic processes, specifically multiplicative white
noise, into the traditional nonlinear reaction-diffusion framework, this extension enables the modeling
of random fluctuations impacting the system. This enhancement offers a more thorough representation
of phenomena affected by inherent uncertainties.

In this work, we present a novel approach to solving the stochastic nonlinear reaction-diffusion
equation with multiplicative white noise. By employing both the unified Riccati equation expansion
method [31] and the modified Kudryashov method [32], we derive a diverse set of soliton solutions,
including combo-dark solitons, dark solitons, singular solitons, combo-bright-singular solitons, and
periodic wave solutions. This dual-method approach enhances the scope of soliton analysis, providing
insights beyond existing studies. Unlike prior studies that may not fully address soliton stability under
noise, our stability analysis demonstrates that certain solitons maintain structural integrity even in
stochastic settings. This highlights the robustness of specific soliton solutions, which is a critical
finding for real-world applications where noise is inevitable.

1.1. Principal model

In this article, we investigate the stochastic nonlinear RD equation with multiplicative white noise,
which is formulated as follows [30]:

qt =
(
aqn−1qx

)
x
− bq + cqn + σq

dW(t)
dt

. (1)

In this context, q(x, t) denotes the population density at a specific position x and time t. The constants
a, b, and c each uniquely influence the system’s dynamics. Specifically, a , 0 ensures that the
reaction term remains significant, while n (with n , 1) characterizes the nonlinearity of the equation.
Additionally, σ represents the noise strength coefficient, and W(t) denotes the standard Wiener process.
The term “white noise” is mathematically defined as dW(t)

dt . The stochastic process is characterized by
the following properties:

(i) The function W(t) is continuous for t ≥ 0.
(ii) The difference W(t)−W(s), for t > s, is normally distributed with a mean of zero and a variance

of t − s.
This process is commonly referred to as Brownian motion.
The structure of this paper is outlined as follows: In Section 2, we present the mathematical analysis.

Section 3 addresses the solution of Eq (1) using the unified Riccati equation expansion method. In
Section 4, we apply the modified Kudryashov method. Section 5 focuses on the stability analysis of
Eq (1). The results and discussion are introduced in Section 6, and the conclusions are provided in
Section 7.
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2. Mathematical analysis

To achieve this objective, we assume the following about the formal solution to Eq (1):

q(x, t) = Φ(z) exp
[
σW(t) −

n − 1
2

σ2t
]
, (2)

and
z = x − v t, (3)

where Φ(z) represents a traveling wave solution moving with velocity v. This function describes the
shape of the wave as it propagates through space. σ is a constant representing the strength of the
noise in the system. It quantifies the influence of stochastic effects on the solution. W(t) denotes the
standard Wiener process (or Brownian motion), which models the random fluctuations over time due
to noise. The term σW(t) represents the contribution of these stochastic fluctuations to the solution.
The exponential factor exp

[
σW(t) − (n−1)

2 σ2t
]

adjusts the amplitude of the solution, accounting for the
combined effects of noise and the nonlinearity characterized by the integer n. t is time, and x is the
spatial coordinate. This form of the solution suggests that the population density evolves as a traveling
wave, with its amplitude modulated by both stochastic effects and nonlinearity.

By substituting Eqs (2) and (3) into Eq (1), we obtain the following result:

vΦ′(z)+
(
n − 1

2
σ2−b

)
Φ(z)+

[
a(n−1)Φn−2(z)Φ′2(z)+aΦn−1(z)Φ′′(z)+cΦn(z)

]
e−

(n−1)2
2 σ2te(n−1)σW(t) =0. (4)

Taking the expectation on both sides of Eq (4), where Φ(z) is a deterministic function, yields:

vΦ′(z)+
(
n−1

2
σ2−b

)
Φ(z)+

[
a (n−1)Φn−2(z)Φ′2(z)+aΦn−1(z)Φ′′(z)+cΦn(z)

]
e−

(n−1)2
2 σ2tE

(
e(n−1)σW(t)

)
=0. (5)

Recognizing a fundamental property of the expectation operator applied to exponential functions of

standard normal random variables, we note that E(eγZ) = e
γ2
2 t, where γ is any real number and Z is a

standard normal random variable. This property remains valid for any γ and standard normal Z. Thus,
E

(
e(n−1)σW(t)

)
= e

(n−1)2
2 σ2t. As a results, Eq (5) is represented as:

aΦ(z)Φ′′(z) + a (n − 1) Φ′2(z) + vΦ′(z)Φ2−n(z) + cΦ2(z) +

(
n − 1

2
σ2 − b

)
Φ3−n(z) = 0. (6)

By balancing Φ(z)Φ′′(z) and Φ′(z)Φ2−n(z) in Eq (6), we derive the balance N = 1
1−n . Since N is not an

integer, we proceed by taking:

Φ(z) =
[
g(z)

] 1
1−n . (7)

Substituting (7) into Eq (6), we derive a new equation:

2a(n − 1)g(z)g′′(z) + 2a(1 − 2n)g′2(z) + 2v(n − 1)g2(z)g′(z)

− 2c(n − 1)2g2(z) + (n − 1)2
[
2b − (n − 1)σ2

]
g3(z) = 0.

(8)

The following approaches will then be used to solve Eq (8).
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3. Unified Riccati equation expansion method (UREEM)

The UREEM provides multiple soliton solutions, including combo, dark, singular, and periodic
solitons, making it widely applicable. The method is straightforward and systematic, which makes
it easy to implement for various nonlinear PDEs. It is versatile, as it captures a range of physical
phenomena by producing different types of soliton solutions. Additionally, UREEM offers exact
solutions, providing valuable analytical insights into the systems being studied. One major limitation of
the UREEM is its inability to deduce bright soliton solutions, which restricts its applicability to certain
systems. The method depends on the Riccati equation structure, which may not always align with
the requirements of all nonlinear systems. Furthermore, the solutions obtained can involve complex
coefficients or parameters, often necessitating additional simplification. According to this method [31],
it is assumed that Eq (8) has the following formal solution:

g(z) =

N∑
l=0

ζlz
l(z), (9)

where ζl are constants and N is a positive integer with the condition ζN , 0. Consequently, z(z) satisfies
the Riccati equation:

z′(z) =

2∑
j=0

π jz
j(z), (10)

such that π j are constants, with the condition π2 , 0. Equation (10) has the following fractional
solutions:

z(z) = − π1
2π2
−

√
π2

1−4π0π2

2π2

A1 tanh

 z
2
√
π2

1−4π0π2

+A2

A1+A2 tanh

 z
2
√
π2

1−4π0π2



 , if π2
1 − 4π0π2 > 0 and A2

1 + A2
2 , 0, (11)

z(z) = − π1
2π2

+

√
−(π2

1−4π0π2)
2π2

A3 tan

 z
2
√
−(π2

1−4π0π2)
−A4

A3+A4 tan

 z
2
√
−(π2

1−4π0π2)


 , if π2
1 − 4π0π2 < 0 and A2

3 + A2
4 , 0, (12)

z(z) = −
π1

2π2
+

1
π2z + A5

, if π2
1 − 4π0π2 = 0, (13)

where Ar(r = 1, 2, ..., 5) are constants.
Balancing g(z)g′′(z) with g2(z)g′(z) in Eq (8), one gets N = 1. From Eq (9), the solution to Eq (8)

takes the following form:

g(z) = ζ0 + ζ1z(z), (14)

where ζ0 and ζ1are constants, provided ζ1 , 0. Substituting Eqs (10) and (14) into Eq (8) yields the
following algebraic equations:
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2 ζ3
1nvπ2 − 2 ζ3

1vπ2 − 2 aζ2
1π

2
2 = 0,

2 bζ3
1n2

+ 2 ζ3
1π1nv + 4 ζ2

1nvπ2ζ0 − 2 aζ2
1π1π2 − 4 bζ3

1n − σ2ζ3
1n3

+ 3σ2ζ3
1n2
− 3σ2ζ3

1n
−4 ζ2

1vπ2ζ0 − 2 aζ2
1π1nπ2 + σ2ζ3

1 − 4 aζ1π
2
2ζ0 − 2 ζ3

1π1v + 2 bζ3
1 + 4 aζ1nπ2

2ζ0 = 0,

−2 ζ2
1c − 2 vζ3

1π0 − 2 vζ1π2ζ
2
0 − 12 bζ2

1nζ0 − 6 aζ1π1π2ζ0 − 2 ζ2
1cn2 − 2 aζ2

1π
2
1n

+6 bζ2
1ζ0 − 3σ2ζ2

1n3
ζ0 + 3σ2ζ2

1ζ0 − 9σ2ζ2
1nζ0 + 2 vζ3

1nπ0 + 4 ζ2
1π1nvζ0 + 2 ζ1nvπ2ζ

2
0

−4 aζ2
1nπ0π2 + 9σ2ζ2

1n2
ζ0 + 6 aζ1π1nπ2ζ0 + 4 ζ2

1cn − 4 ζ2
1π1vζ0 + 6 bζ2

1n2
ζ0 = 0,

9σ2ζ1n2ζ2
0 − 2 ζ1π1vζ2

0 + 2 ζ1π1nvζ2
0 − 4 ζ1cζ0 + 2 aζ1π

2
1nζ0 + 3σ2ζ1ζ

2
0 − 4 aζ1ζ0π0π2

−2 aζ1π
2
1ζ0 + 8 ζ1cnζ0 − 4 ζ1cn2ζ0 − 3σ2ζ1n3ζ0

2 − 4 vζ2
1ζ0π0 − 9σ2ζ1nζ2

0 + 6 bζ1ζ
2
0

−12 bζ1nζ2
0 + 2 aζ2

1π0π1 + 6 bζ1n2ζ2
0 − 6 aζ2

1nπ0π1 + 4 vζ2
1ζ0nπ0 + 4 aζ1ζ0nπ0π2 = 0,

2 aζ1ζ0nπ0π1 − 4 aζ2
1nπ2

0 − 2 cn2ζ2
0 + 4 cζ2

0n − 2 vζ1ζ
2
0π0 − 2 cζ2

0 + 3 n2σ2ζ3
0 − 4 nbζ3

0
−3σ2nζ3

0 + 2 vζ1ζ
2
0nπ0 + 2 bζ3

0 + σ2ζ3
0 − 2 aζ1ζ0π0π1 + 2 n2bζ3

0 − n3σ2ζ3
0 + 2 aζ2

1π
2
0 = 0.



(15)

When solving system (15) using Maple, the following results are obtained:

π0 =
naπ2

1 + c(n − 1)2

4naπ2
, ζ0 =

π1
√
−nac + c(n − 1)

(n − 1)
[
2b + (1 − n)σ2] , ζ1 =

2π2
√
−nac

(n − 1)
[
(1 − n)σ2 + 2b

] , (16)

and

v =
a
[
(1 − n)σ2 + 2b

]
2
√
−nac

. (17)

The solutions for Eq (1) are as follows:
Case 1. If π2

1 − 4π0π2 > 0, then substituting (11) and (16) into (14) yields the combo soliton solution
of Eq (1) as:

q(x, t)=


c

2b + (1 − n)σ2

1 +

A1 tanh
(
n − 1

2

√
−

c
na

(x − vt)
)

+ A2

A1 + A2 tanh
(
n − 1

2

√
−

c
na

(x − vt)
)



1
1−n

exp
[
σW(t) −

n − 1
2

σ2t
]
. (18)

From solution (18), if A1 , 0 and A2 = 0, then the dark soliton solution is obtained as follows:

q(x, t) =

{
c

2b + (1 − n)σ2

[
1 + tanh

(
n − 1

2

√
−

c
na

(x − vt)
)]} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
, (19)

while, if A1 = 0 and A2 , 0, then the singular soliton solution is obtained as follows:

q(x, t) =

{
c

2b + (1 − n)σ2

[
1 + coth

(
n − 1

2

√
−

c
na

(x − vt)
)]} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
. (20)
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Case 2. If π2
1 − 4π0π2 < 0, then substituting (11) and (16) into (14) yields the periodic solution of

Eq (1) as:

q(x, t)=


c

2b + (1 − n)σ2

1 +

iA3 tan
(
n − 1

2

√
−

c
na

(x − vt)
)
− A4

A3 − iA4 tan
(
n − 1

2

√
−

c
na

(x − vt)
)



1
1−n

exp
[
σW(t) −

n − 1
2

σ2t
]
. (21)

From solution (21), if A3 , 0 and A4 = 0, then one gets the periodic solution:

q(x, t) =

{
c

2b + (1 − n)σ2

[
1 + i tan

(
n − 1

2

√
−

c
na

(x − vt)
)]} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
, (22)

while, if A3 = 0 and A4 , 0, then one gets the periodic solution:

q(x, t) =

{
c

2b + (1 − n)σ2

[
1 − i cot

(
n − 1

2

√
−

c
na

(x − vt)
)]} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
. (23)

In solutions (18)–(23), the velocity v is given by (17).
Case 3. By substituting π0 =

π2
1

4π2
into the system given by Eq (15) and solving it using Maple, the

following results are obtained:

ζ0 =
ζ1π1

2π2
, (24)

and
b = (n − 1)σ2, c = 0, v =

aπ2

ζ1(n − 1)
. (25)

Substituting (13) and (24) into (14) yields the rational solution of Eq (1) as:

q(x, t) =

(
−

ζ1

π2 (x − vt) + A5

) 1
1−n

exp
[
σW(t) −

n − 1
2

σ2t
]
. (26)

Solution (26) is satisfied under the constraint conditions (25).

4. The modified Kudryashov method (MKM)

The MKM provides a wide range of solutions, including combo bright-singular solitons, dark
solitons, and singular solitons. It is flexible and adaptable to various nonlinear PDEs. The method often
offers higher precision and requires fewer assumptions compared to other approaches. Additionally, it
effectively deduces singular soliton solutions, which are vital for certain physical models. The MKM
cannot deduce bright soliton solutions, limiting its use in some applications. It may require intensive
symbolic computations due to its reliance on higher-degree polynomial expansions. Moreover, unlike
the UREEM, it may not produce periodic solutions, which are essential in some scenarios, such as wave
propagation in periodic media. According to the method described in [32], we assume that Eq (8) has
the following formal solution:
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g(z) =

N∑
l=0

ElF l(z), (27)

where El are constants, such that EN , 0, and F (z) satisfies the auxiliary ODE:

F′ (z) = F (z) [Fr (z) − 1] ln A, 0 < A , 1. (28)

We establish the relationship between N and r as follows:

D
[
g (z)

]
= N, D

[
g′ (z)

]
= N + r,D

[
g′′ (z)

]
= N + 2r. (29)

Consequently, in general, we have

D
[
gp (z) g(s) (z)

]
= N (p + 1) + sr. (30)

It is well-known that Eq (28) has the following solution:

F(z) =

[
1

1 + ε expA (rz)

] 1
r

, (31)

where ε = ±1, and r is a positive integer. The solution (31) reduces to the combo bright-singular
soliton solution:

F(z) =

[
1 −

1
1 + sinh [rz ln (A)] − cosh [(rz) ln (A)]

] 1
r

, (32)

the dark soliton solution:

F(z) =

[
1
2

[
1 − tanh

(rz
2

ln (A)
)]] 1

r

, (33)

and the singular soliton solution:

F(z) =

[
1
2

[
1 − coth

(rz
2

ln (A)
)]] 1

r

. (34)

Balancing g(z)g′′(z) with g2(z)g′(z) in Eq (8), one gets

N + N + 2r = 2N + N + r =⇒ N = r. (35)

Case 1. Selecting r = 1, we deduce that N = 1. It follows that Eq (8) has the solution form as:

g(z) = E0 + E1F(z), (36)

where E0 and E1 are constants, provided E1 , 0. Substituting (28) and (36) into Eq (8), one gets the
following algebraic equations:
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−2 vE3
1 ln (A) + 2n vE3

1 ln (A) − 2 aE2
1 ln2 (A) = 0,

2 bE3
1 + 2 vE3

1 ln (A) + 2 aE2
1 ln2 (A) n + 3 n2σ2E3

1 − n3σ2E3
1 − 4 aE1 ln2 (A) E0

+σ2E3
1 − 3σ2nE3

1 + 4 aE1 ln2 (A) E0n − 4 vE2
1 ln (A) E0 + 2 aE2

1 ln2 (A) − 2 vE3
1 ln (A) n

+4 vE2
1 ln (A) E0n + 2 n2bE3

1 − 4 nbE3
1 = 0,

6 n2bE0E2
1 − 2 vE1 ln (A) E2

0 − 12 nbE0E2
1 − 9σ2nE0E2

1 + 2 vE1 ln (A) E2
0n

−4 vE2
1 ln (A) E0n − 6 aE1 ln2 (A) E0n − 2 cE2

1 + 9 n2σ2E0E2
1 − 2 cn2E2

1 − 2 aE2
1 ln2 (A) n

+6 bE0E2
1 + 3σ2E0E2

1 + 4 cE2
1n + 6 aE1 ln2 (A) E0 − 3 n3σ2E0E2

1 + 4 vE2
1 ln (A) E0 = 0,

6 bE2
0E1 + 2 aE1 ln2 (A) E0n + 6 n2bE2

0E1 + 2 vE1 ln (A) E2
0 − 4 cn2E0E1 + 8 cE0E1n

−12 nbE2
0E1 − 2 vE1 ln (A) E2

0n − 9σ2nE2
0E1 + 3σ2E2

0E1 − 3 n3σ2E2
0E1 − 4 cE0E1

−2 aE1 ln2 (A) E0 + 9 n2σ2E2
0E1 = 0,

−n3σ2E3
0 + 4 cE2

0n − 2 cn2E2
0 − 2 cE2

0 + σ2E3
0 + 2 bE3

0
−4 nbE3

0 + 3 n2σ2E3
0 + 2 n2bE3

0 − 3σ2nE3
0 = 0.



(37)

As a results, one uses Maple to solve system (37) to get

E0 =
2c

2b + (1 − n)σ2 , E1 = −
2c

2b + (1 − n)σ2 , (38)

and

a = −
c (n − 1)2

n ln2 (A)
, v =

[
2b − (n − 1)σ2

]
(n − 1)

2n ln (A)
. (39)

Now, substituting (38) along with (31)–(34) into (36), one gets the solutions of Eq (1) as:

q(x, t) =

{
2c

2b + (1 − n)σ2

[
1 −

1
1 + ε expA (x − vt)

]} 1
1−n

exp
[
σW(t) −

n − 1
2

σ2t
]
, (40)

the combo bright-singular soliton solution:

q(x, t)=

{
2c

2b+(1−n)σ2

[
1

1+sinh[(x−vt)ln (A)]−cosh [(x−vt)ln (A)]

]} 1
1−n

exp
[
σW(t)−

n−1
2
σ2t

]
, (41)

the dark soliton solution:

q(x, t) =

{
2c

2b + (1 − n)σ2

[
1 + tanh

(
1
2

(x − vt) ln (A)
)]} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
, (42)

and the singular soliton solution:

q(x, t) =

{
2c

2b + (1 − n)σ2

[
1 + coth

(
1
2

(x − vt) ln (A)
)]} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
. (43)
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Solutions (40)–(43) are satisfied under the constraint conditions (39).
Case 2. Selecting r = 2, we deduce that N = 2. It follows that Eq (8) has the solution form as:

g(z) = E0 + E1F(z) + E2F2(z), (44)

where E0, E1, and E2 are constants, provided E2 , 0. Substituting (28) and (44) into Eq (8), one gets
algebraic equations, and as a result, we use Maple to solve it to get

E0 =
2c

2b + (1 − n)σ2 , E1 = 0, E2 = −
2c

2b + (1 − n)σ2 , (45)

and

a = −
c (n − 1)2

4n ln2 (A)
, v =

[
2b − (n − 1)σ2

]
(n − 1)

4n ln (A)
. (46)

Now, substituting (45) along with (31)–(34) into (44), one gets the solutions of Eq (1) as:

q(x, t) =

{
2c

2b + (1 − n)σ2

[
1 −

1
1 + ε expA (2(x − vt))

]} 1
1−n

exp
[
σW(t) −

n − 1
2

σ2t
]
, (47)

the combo bright-singular soliton solution:

q(x, t)=

{
2c

2b+(1−n)σ2

[
1

1+sinh[2(x−vt)ln (A)]−cosh[2(x−vt)ln (A)]

]} 1
1−n

exp
[
σW(t)−

n−1
2
σ2t

]
, (48)

the dark soliton solution:

q(x, t) =

{
c

2b + (1 − n)σ2 [1 + tanh ((x − vt) ln (A))]
} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
, (49)

and the singular soliton solution:

q(x, t) =

{
c

2b + (1 − n)σ2 [1 + coth ((x − vt) ln (A))]
} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
. (50)

Solutions (47)–(50) are satisfied under the constraint conditions (46).
General Case. From Cases 1 and 2, we deduce that Eq (1) has the following general solutions:

q(x, t) =

{
2c

2b + (1 − n)σ2

[
1 −

1
1 + ε expA (r(x − vt))

]} 1
1−n

exp
[
σW(t) −

n − 1
2

σ2t
]
, (51)

the combo bright-singular soliton solution:

q(x, t)=

{
2c

2b+(1−n)σ2

[
1

1+sinh[r (x−vt)ln (A)]−cosh[r (x−vt)ln(A)]

]} 1
1−n

exp
[
σW(t)−

n−1
2
σ2t

]
, (52)
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the dark soliton solution:

q(x, t) =

{
c

2b + (1 − n)σ2

[
1 + tanh

( r
2

(x − vt) ln (A)
)]} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
, (53)

and the singular soliton solution:

q(x, t) =

{
c

2b + (1 − n)σ2

[
1 + coth

( r
2

(x − vt) ln (A)
)]} 1

1−n
exp

[
σW(t) −

n − 1
2

σ2t
]
. (54)

The general solutions (51)–(54) are satisfied under the constraint conditions:

a = −
c (n − 1)2

r2n ln2 (A)
, v =

[
2b − (n − 1)σ2

]
(n − 1)

2rn ln (A)
. (55)

Here r = 1, 2, 3, ...,∞.

5. Stability analysis

In this section, we will analyze the stability of Eq (1). To find the steady-state solutions, assume
g(z) is constant [33], and let

g(z) = gs. (56)

At a steady state,
d
dz

g(z) = 0 and
d2

dz2 g(z) = 0, (57)

so, Eq (8) simplifies to
(n − 1)2

{
− 2c +

[
2b − (n − 1)σ2

]
gs

}
g2

s = 0. (58)

This gives two possible solutions:

gs = 0 or gs =
2c

2b − (n − 1)σ2 , provided 2b − (n − 1)σ2 , 0. (59)

These solutions represent the potential equilibrium points where the system can remain stable.
To analyze the stability of these steady-state solutions, let us consider a small perturbation around

the steady state gs. Assume that
g(z) = gs + ε g̃(z), (60)

where ε is a small parameter, and g̃(z) is the perturbation. Substitute (60) into Eq (8), and one gets

2a(n − 1)
[
gs + ε g̃(z)

] d2

dz2

[
gs + ε g̃(z)

]
+ 2a(1 − 2n)

(
d
dz

[
gs + ε g̃(z)

])2

+2v(n − 1)
[
gs + ε g̃(z)

]2 d
dz

[
gs + ε g̃(z)

]
− 2c(n − 1)2 [

gs + ε g̃(z)
]2

+(n − 1)2
[
2b − (n − 1)σ2

] [
gs + ε g̃(z)

]3
= 0.

(61)

Here
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[
gs + ε g̃(z)

] d2

dz2

[
gs + ε g̃(z)

]
= ε gs

d2

dz2 g̃(z) + ε2g̃(z) d2

dz2 g̃(z),

(
d
dz

[
gs + ε g̃(z)

])2

=
(

d
dzεg̃(z)

)2
= ε2

(
d
dz g̃(z)

)2
,

[
gs + ε g̃(z)

]2 d
dz

[
gs + ε g̃(z)

]
= εg2

s
d
dz g̃(z) + 2ε2gsg̃(z) d

dz g̃(z) + ε3g̃2(z) d
dz g̃(z),

[
gs + ε g̃(z)

]2
= g2

s + 2εgsg̃(z) + ε2g̃2(z),

[
gs + ε g̃(z)

]3
= g3

s + 3εg2
s g̃(z) + 3ε2gsg̃2(z) + ε3g̃3(z).



(62)

Since ε is small, we linearize the equation by keeping only the first-order terms in ε, and one derive:

2a(n−1)gs
d2

dz2 g̃(z)+2v(n−1)g2
s

d
dz

g̃(z)+
{
−4c(n−1)2gs+3(n−1)2

[
2b − (n − 1)σ2

]
g2

s

}
g̃(z) = 0. (63)

To determine the stability, we assume
g̃(z) = eλz, (64)

where λ is a constant. Substituting (64) into the linearized Eq (63) gives us the characteristic equation:

2a(n − 1)gs λ
2 + 2v(n − 1)g2

s λ − 4c(n − 1)2gs + 3(n − 1)2
[
2b − (n − 1)σ2

]
g2

s = 0. (65)

Next, we will check the two equilibrium points:
Case 1. Substitute gs = 0 into (65) to find the characteristic equation. At gs = 0, the system’s
characteristic equation does not give meaningful information about the stability, suggesting neutral
stability. Without a linear restoring force, small perturbations neither grow nor decay, implying that
gs = 0 is a marginally stable equilibrium point. The detailed behavior of the system might depend on
nonlinear effects or external factors.
Case 2. Substitute the non-zero steady state gs = 2c

2b−(n−1)σ2 into the linearized Eq (65), and one gets the
characteristic equation with these coefficients as:

aλ2 +
2cv

2b − (n − 1)σ2λ + c(n − 1) = 0. (66)

The roots of the characteristic equation λ1 and λ2 are given by

λ =

− 2cv
2b−(n−1)σ2 ±

√
4c2v2

[2b−(n−1)σ2]2 − 4ac(n − 1)

2a
. (67)

Thus, the stability of the steady state depends on the real parts of these roots:

(1) For the system to be stable: Both roots must be negative and the following condition should be
met:

4c2v2[
2b − (n − 1)σ2]2 − 4ac(n − 1) > 0 ⇒ cv2 > a(n − 1)

[
2b − (n − 1)σ2

]2
. (68)

This inequality provides a condition on the parameters a, b, c, v, n, and σ for the equilibrium point
gs = 2c

2b−(n−1)σ2 to be stable.
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(2) For the system to be unstable: One root is positive or the following condition is satisfied:

4c2v2[
2b − (n − 1)σ2]2 − 4ac(n − 1) < 0 ⇒ cv2 < a(n − 1)

[
2b − (n − 1)σ2

]2
. (69)

(3) For the system to be marginally unstable: The following condition is satisfied:

4c2v2[
2b − (n − 1)σ2]2 − 4ac(n − 1) = 0 ⇒ cv2 = a(n − 1)

[
2b − (n − 1)σ2

]2
, (70)

leading to repeated real roots.

The analysis shows that the trivial steady-state solution gs = 0 represents a simple equilibrium
point, whose stability depends on specific system parameters. In contrast, the non-trivial steady-state
solution gs = 2c

2b−(n−1)σ2 requires a more nuanced analysis, as the stability is influenced by a combination
of factors including the coefficients a, b, c, v, n, and σ. Understanding these dependencies is crucial for
predicting the behavior of the system under small perturbations.

6. Results and discussion

Solitons are self-reinforcing solitary waves that preserve their shape and travel at a constant velocity.
These solutions to specific nonlinear partial differential equations are observed in various physical
systems, including fluid dynamics, plasma physics, and optical fibers. A crucial feature of solitons is
their ability to retain their shape even after interacting with other solitons or external forces, making
them a central topic in nonlinear wave theory.

In this section, we compare soliton solutions for different values of σ, focusing on how the soliton’s
behavior changes as external forcing becomes more pronounced. This comparison highlights the
soliton’s resilience and eventual breakdown as external influences increase. We simulate various figures
for different noise strengths σ for the dark soliton solution (Eq (19), with a = −1, b = 1, c = 1,
n = 2, n = 5, and W(t) = cos(t), refer to Figures 1–3) and the combo-bright-singular soliton solution
(Eq (41), with a = −1, b = 1, c = 1, n = 2, n = 5, A = 3, and W(t) = cos(t), see Figures 4–6).

The analysis explores the behavior of specific soliton solutions under the influence of stochastic or
external forcing, represented by σ. By comparing solutions for different values of σ, we gain insights
into how varying levels of external noise or forcing influence the soliton’s dynamics. We consider
three cases of σ = 0, 0.1, 0.2, representing no external influence, moderate external influence, and
strong external influence, respectively.

The physical interpretation of these solutions reveals the soliton’s stability, amplitude modulation,
and changes in velocity under various conditions. As σ increases, the soliton transitions from a stable,
undisturbed wave to one that undergoes significant oscillations, eventually decaying due to strong
external forces. This analysis deepens our understanding of soliton behavior in environments with
varying levels of stochasticity, ranging from ideal undisturbed settings to highly turbulent or noisy
media.
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Figure 1. Plots of the dark soliton solution (19), for σ = 0. The stochastic term W(t) has
no effect, resulting in a stable, undisturbed soliton. The soliton maintains its amplitude and
shape, propagating smoothly over time. This represents a classical soliton moving through a
medium with constant parameters, unaffected by external forces or randomness.

Applications:

• Optical fiber communications: Solitons propagate without disturbance.
• Shallow water waves: Solitary waves in undisturbed conditions.
• Stable energy or information transmission over long distances.
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Figure 2. Plots of the dark soliton solution (19), for σ = 0.1. The soliton’s profile
becomes more intricate. Its amplitude exhibits oscillations, leading to periodic stretching
and compression. This behavior models a soliton traveling through a medium influenced by
external oscillations or random forces.

Applications:

• Modeling wave propagation in optical fibers under moderate noise.
• Describing nonlinear waves in plasmas exposed to external electric fields.
• Quantum systems with particles interacting with moderate noise.
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Figure 3. Plots of the dark soliton solution (19), for σ = 0.2. The soliton undergoes
large oscillations and rapid dissipation, with its shape and energy quickly deteriorating. This
behavior reflects a soliton in a highly damped or noisy environment.

Applications:

• Fluid dynamics modeling: Turbulence under strong stochastic forces.
• Signal degradation: Optical systems exposed to heavy noise.
• Describing perturbed plasma waves or Bose-Einstein condensates under significant external

influence.

Dark soliton solutions are critical for understanding nonlinear wave phenomena across many
scientific and technological fields. Their unique properties, such as localized amplitude dips and stable
propagation, make them valuable for applications in fiber optics, Bose-Einstein condensates, fluid
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dynamics, plasma physics, and more. These solitons provide insights into the fundamental behavior
of nonlinear systems while offering practical solutions to real-world challenges like improving data
transmission, controlling light in photonic devices, and modeling wave dynamics in complex media.
As research advances, the applications of dark solitons are likely to expand, driving innovations in
quantum computing, metamaterials, and nonlinear acoustic systems.

Figure 4. Plots of the combo-bright-singular soliton solution (41), for σ = 0. The soliton
remains unaffected by the stochastic term W(t). The solution is symmetric, with the soliton
maintaining a stable shape and amplitude during propagation. This represents a soliton
moving through an ideal, undisturbed medium, traveling steadily without modulation or
damping.

Applications:

• Fiber optics: Transmission of undisturbed optical solitons.
• Shallow water waves: Solitary water waves in stable environments.
• Mechanical systems: Stability in soliton transport in coupled oscillators.
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Figure 5. Plots of the combo-bright-singular soliton solution (41), for σ = 0.1. The soliton
retains its general wave shape but exhibits slight oscillations, with periodic stretching or
compression. This represents a soliton influenced by mild external forces or fluctuations,
maintaining relative stability.

Applications:

• Plasma physics: Modeling wave dynamics in moderately noisy plasma environments.
• Nonlinear acoustics: Propagation of sound waves in materials with minor imperfections.
• Quantum systems: Describing quantum solitons under weak external noise.
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Figure 6. Plots of the combo-bright-singular soliton solution (41), for σ = 0.2. The soliton’s
shape becomes distorted, exhibiting large oscillations and rapid energy dissipation. This
reflects a soliton under strong external influence, where large oscillations and high noise
levels dominate, causing the soliton to break down.

Applications:

• Fluid dynamics: Modeling turbulence in high-noise environments.
• Signal processing: Analyzing noisy signals in communication systems.
• Wave propagation in random media: Modeling seismic or oceanic waves in irregular

environments.

For σ = 0: The intensity is lower, and the wave propagation is more localized.
For σ = 0.1: The intensity increases moderately, with the spatial and temporal structure becoming
more pronounced.
For σ = 0.2: The intensity increases significantly, leading to wider regions of high intensity, as the
σ-dependent term exp[σW(t) − ((n − 1)/2)σ2t] becomes more significant.
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This plot illustrates the wave-like nature of the solution, showing how the intensity evolves
dynamically as a function of time and space, with higher σ values leading to greater intensity and
larger spatial and temporal spread.

7. Conclusions

In this study, we conducted an in-depth investigation into the behavior of solitons within the
stochastic nonlinear reaction-diffusion equation (RDE) with multiplicative white noise. Utilizing the
UREEM and MKM methods, we derived a variety of soliton solutions, including combo-dark solitons,
dark solitons, singular solitons, combo-bright-singular solitons, and periodic wave solutions. These
solutions provide crucial insights into the dynamics of solitons in stochastic nonlinear systems.

We analyzed the soliton solutions for different values of σ to explore the impact of external or
stochastic forces. For σ = 0, the soliton remained stable, representing a classical soliton traveling
through an ideal, undisturbed medium, with constant shape and amplitude and no external forces
affecting its propagation. At σ = 0.1, moderate external influences resulted in periodic oscillations
in the soliton’s amplitude and position, reflecting mild modulation without significant distortion. This
behavior suggests a soliton moving through a medium influenced by weak external or stochastic forces.
For σ = 0.2, the soliton experienced substantial external forces, leading to large oscillations, rapid
decay in amplitude, and significant distortion of its position. This indicated the breakdown of the
soliton’s stability under high external influences, causing the soliton to lose coherence and dissipate
quickly.

These findings highlight the progressive destabilization of solitons as the strength of external
influences, represented by σ, increases. Starting from stable, coherent behavior, the soliton transitions
to rapid dissipation and distortion under stronger external forces. Furthermore, our stability analysis
revealed that certain soliton solutions preserve their structural integrity even in the presence of
multiplicative noise, demonstrating their resilience in stochastic environments.

This study makes a significant contribution to understanding soliton dynamics in stochastic systems,
with potential applications in various scientific and engineering disciplines. Future research could
explore more complex types of noise and extend these methods to other classes of stochastic partial
differential equations, further advancing the understanding of soliton behavior in diverse environments.
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