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Abstract—Hyperspectral band selection aims to identify an
optimal subset of bands for hyperspectral images (HSIs). For
most existing clustering-based band selection methods, they
directly stretch each band into a single feature vector and employ
the pixelwise features to address band redundancy. In this way,
they do not take full consideration of the spatial information and
deal with the importance of different regions in HSIs, which leads
to a nonoptimal selection. To address these issues, a region-aware
hierarchical latent feature representation learning-guided cluster-
ing (HLFC) method is proposed. Specifically, in order to fully
preserve the spatial information of HSIs, the superpixel segmen-
tation algorithm is adopted to segment HSIs into multiple regions
first. For each segmented region, the similarity graph is con-
structed to reflect the bands-wise similarity, and its corresponding
Laplacian matrix is generated for learning low-dimensional latent
features in a hierarchical way. All latent features are then fused
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to form a unified feature representation of HSIs. Finally, k-means
clustering is utilized on the unified feature representation matrix
to generate multiple clusters from which the band with max-
imum information entropy is selected to form the final subset
of bands. Extensive experimental results demonstrate that the
proposed clustering method can achieve superior performance
than the state-of-the-art representative methods on the band
selection. The demo code of this work is publicly available at
https://github.com/WangJun2023/HLFC.

Index Terms—Clustering, feature fusion, hierarchical latent
feature learning, hyperspectral band selection.

I. INTRODUCTION

IN RECENT years, hyperspectral images (HSIs) have been
widely employed in many applications, for example, med-

ical imaging processing [1], land cover classification [2],
mineral exploration [3], etc. However, there is a large num-
ber of spectral bands available for HSIs and adjacent bands
often produce relatively similar and redundant information [4]
in the HSIs, selection of an optimal subset of bands is needed
to reduce the redundant information.

Information redundancy in HSIs can be addressed via fea-
ture extraction [5]–[8] and feature selection [9]–[12], where
the latter is also known as band selection. For the former
approach, hyperspectral data are transformed into a lower-
dimensional feature space according to a certain specific
mapping, and then new features are constructed by combining
some representative bands. Typical methods include princi-
pal component analysis (PCA) [13], LDA [14], and so on.
Although these methods had achieved satisfying performance
in data dimension reduction, due to the new features are gener-
ated from a linear combination of the original spectral bands,
this will raise explicit spectral distortion and make the phys-
ical meaning of features difficult to be interpreted [15], [16].
Thus, this manner limits the applications of physical spec-
tral measures. On the contrary, band selection only discards
some redundant bands with preserving the original hyperspec-
tral information, which is a benefit for subsequent quantitative
analysis. Therefore, we mainly focus on the band selection.

Various band selection methods have been studied, which
can be classified into supervised [17], semisupervised [18], and
unsupervised [19] ones. Supervised and semisupervised band
selection methods can achieve satisfying results in many cases
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due to the advantages of labeled samples. However, it is labor-
intensive and time-consuming to annotate HSIs. Therefore,
unsupervised band selection methods are more practically
feasible and often preferred.

Unsupervised band selection methods can be generally
grouped into clustering-based [9] or ranking-based [20], and
searching-based ones [21]. Clustering-based methods parti-
tion all bands into multiple clusters, and then the bands
are selected to form the selected band subset in each clus-
ter [22], [23]. Ranking-based methods calculate the weight
of each band according to certain predefined metrics, and
then the top-ranked bands are selected as the feature bands.
Searching-based methods mainly select a subset of bands that
produce optimal performance under the evaluation of a certain
metric.

Despite the recent advance in unsupervised band selection,
there are several limitations to existing methods. First, most
existing methods tend to regard each band as a single fea-
ture, for example, [24]. In such a manner, the spatial structure
information of HSIs is ignored. Second, hyperspectral data
are often contaminated by noise during acquisition [25] and
a mechanism to reduce the impact of the noise on select-
ing bands is needed. Third, regions corresponding to various
land covers are often with different importance and such prior
information has been neglected in previous methods, such
as [26].

To address the above limitations, a band selection method
via region-aware hierarchical latent feature representation
learning-guided clustering (HLFC) is proposed. In order to
fully preserve the spatial information of HSIs, HLFC segments
the first principal component of HSIs into multiple regions
via superpixel segmentation. For each segmented region, its
corresponding Laplacian matrix is constructed to capture the
spatial structure, and low-dimensional latent features are gen-
erated from the Laplacian matrix via a hierarchical strategy.
The latent features are then fused to construct the comple-
mentary and common features in different regions. Finally,
all bands are partitioned into multiple clusters based on the
unified feature representation, and the band with maximum
information entropy in each cluster is selected as the feature
band.

The main contributions of this article include as follows.
1) A novel region-aware feature representation learning-

guided clustering method for hyperspectral band selec-
tion. This method exploits spatial and spectral properties
of HSIs and learns low-dimensional discriminative latent
features of HSIs via a hierarchical strategy.

2) An effective feature fusion method to construct a
global feature representation of HSIs. Different from
the previous methods that keep the unified representa-
tion matrix fixed during fusion, our method couples the
learning and fusion of features into a joint framework
so that the two processes can reinforce each other.

3) An optimization algorithm is designed to solve the newly
formulated HLFC problem.

4) Extensive experiments verify that HLFC can achieve
considerable improvement over other representative
band selection methods.

The remainder of this article is organized as follows. In
Section II, we review some representative band selection meth-
ods, for example, clustering-based ones, ranking-based ones,
and searching-based ones. Section III introduces the proposed
method and an optimization solution to the proposed model is
presented in Section IV. Extensive experiments and compar-
isons to the state-of-the-art methods are reported in Section V.
Section VI concludes this article with remarks.

II. RELATED WORK

This section briefly reviews typical band selection meth-
ods, including clustering-based, ranking-based, and searching-
based methods in relation to the proposed method.

A. Clustering-Based Methods

The clustering-based methods partition all original bands
into multiple clusters and the representative band is selected
to form the optimal feature band subset. There are two essen-
tial steps in these methods, one is how to group the bands
into clusters, and another is how to select representative bands
from multiple clusters. Yang et al. [27] adopted k-means clus-
tering to partition all bands into multiple classes. Different
from traditional clustering-based methods that select feature
bands individually from each class, they select feature bands
by traversing all classes simultaneously. However, because k-
means clustering is very sensitive to the selection of initial
clustering centers, different initialization methods are usually
needed to determine a better solution. In addition, only when
the number of samples is small, this method can achieve
good performance. In order to solve the sensitivity of the k-
means clustering algorithm to initial conditions, [28] proposed
a sample-based AP clustering algorithm. Although it can
obtain stable clustering results, the time complexity is rel-
atively high. In addition, inspired by the graph theory in
clustering, many graph-based methods have been proposed.
Li et al. [29] constructed the affinity matrix to describe the
similarity between pairwise bands, and then spectral cluster-
ing was utilized to generate multiple subgraphs from which
the representative bands were selected. To preserve the local
structure of HSIs, Sun and Du [30] proposed to construct
the regularized Laplacian graph of HSIs, which was utilized
to partition all hyperspectral bands into multiple classes. In
addition, to improve the performance of feature selection on
high-dimensional data, Song et al. [31] proposed a new hybrid
evolutionary feature selection algorithm. Furthermore, other
clustering-based evolutionary feature selection algorithms have
also been developed, such as [32]–[34]. With the development
of deep learning, some deep clustering methods have been
proposed, for example, [35]–[37].

Overall, although these methods can achieve satisfying
performance, the issues with them mainly lie in they regard
each band as a single and high-dimensional feature vector and
consider all pixels or all regions in the HSIs as equal impor-
tance. This does not accommodate well the cases where some
regions in the HSIs are more important than others.
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Fig. 1. Overview of the proposed HLFC. First, PCA and ERS are employed to segment an HSI cube H ∈ R
w×h×b into multiple regions from which the

similarity graph {W(i)}N
i=1 is constructed. Second, latent feature matrices {Y1

(i)}N
i=1, one for each region, are computed from the Laplacian matrices, referred

to as region-aware latent feature learning. The dimensionality of the latent feature matrices is further reduced in a hierarchical manner to {Ym
(i)}N

i=1. Third, a

unified latent feature matrix F ∈ R
b×d is obtained by fusing {Ym

(i)}N
i=1. Finally, the k-means algorithm is utilized to partition all bands into multiple clusters.

The band with maximum information entropy in each cluster is selected to form the subset H∗ of the bands.

B. Ranking-Based Methods

The ranking-based band selection methods quantify the
weight of all bands via a predefined metric, and then the top-
ranked bands are selected as the feature bands. Thus, the most
important problem of this kind of method is how to determine
the optimal metric. Most current methods mainly consider the
information or correlation of bands, such as signal-to-noise
ratio [38], information entropy [39], mutual information [40],
and so on. In [41], information entropy was used to mea-
sure the importance of bands. Chang et al. [42] adopted PCA
to prioritize the variance of all bands. However, neither of
them took the correlation among bands into consideration. To
address this, the Kullback–Leibler divergence was employed
in [15] to remove the redundant bands. To be specific, the K–L
divergence between the Gaussian distribution of all bands is
calculated, and the difference between bands was evaluated
through divergence. Finally, all bands are sorted according
to the divergence and the band with maximum information
(i.e., maximum divergence) is selected to form the optimal
band subset. In addition, mutual information [43] and signal-
to-noise [44] were also used to measure the importance of
bands. Li et al. [45] proposed the constrained multiple-band
selection method to select the feature bands, which intends to
minimize the correlation of all selected feature bands.

In a word, ranking-based methods either select the most
informative bands or the least correlated bands to form the
feature band subset without considering explicitly discrimina-
tiveness. The proposed HLFC addresses this issue.

C. Searching-Based Methods

This kind of method regards band selection as a combinato-
rial optimization problem, and the optimal solution is obtained
via some search algorithms. Based on the type of objective
function and searching strategy, the searching-based methods
can be roughly divided into evolutionary-based [46]–[48] and
greedy-based methods [49]–[51]. The former mainly apply
some evolutionary algorithms to obtain the optimal feature
subset. For example, based on the variable-size clustering,
He et al. [52] proposed a multitask artificial bee colony band
selection method to simultaneously obtain different sizes of
optimal band subset. To be specific, they modeled the band
selection problem as a multitask optimization problem and

then designed a variable-size band clustering method as the
objective function. Finally, multiple different sizes of band
subsets are searched via a multi-micro-group bee colony algo-
rithm. To address the local optimal and high computational
burden of some existing PSO-based feature selection algo-
rithms, Chen et al. [53] decomposed the high-dimensional
feature selection task into several low-dimensional feature
selection tasks from which the optimal feature subset is
obtained by knowledge transfer. The greedy-based methods
mainly adopt some greedy algorithms to obtain the optimal
band subset. For instance, Geng et al. [50] proposed a volume-
gradient-based band selection method to capture the subtle
relationship between the volume of a subsimplex and the vol-
ume gradient of a simplex for HSIs. Based on the assumption
that the optimal band subset should reconstruct the whole
band with minimum error, they regarded the distance between
each band and the hyperplane constructed by the rest bands
as the prediction error and then tried to find the bands with
the maximum volume of the parallelotope.

Although the most existing searching-based methods are
very effective for band selection, they have high computa-
tional complexity as a result of searching all feasible solutions
of band subset.

III. PROPOSED METHOD

A. Notations

Notations used throughout this article are briefly explained
in this section. Bold uppercase letters and bold lowercase let-
ters represent matrices and vectors, respectively, and scalars
are denoted in a nonbold italic font. In addition, for a matrix
M ∈ R

m×n, its trace and transpose are denoted by Tr(M)

and M�, respectively. Its ijth entry and Frobenius norm are
denoted as Mij and ||M||F = (

∑
i
∑

j M2
ij)

[1/2], respectively. If
M is a 3-way tensor, then M(n) is used to represent the nth
frontal slices, that is, M(:, :, n). In addition, M(i) is treated
as the intermediate tensor of the ith level. In represents an
identity matrix, and mi denotes the ith element of vector m.

B. Overview

Fig. 1 shows the block diagram of the proposed HLFC.
First, PCA and entropy ratio segmentation (ERS) are employed
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to segment an HSI cube H ∈ R
w×h×b into N regions from

which the similarity graphs {W(i)}N
i=1 are constructed. Second,

latent feature matrices {Y1
(i)}N

i=1, one for each region, are com-
puted from the Laplacian matrices, referred to as region-aware
latent feature learning. The features are refined in a hierarchi-
cal manner to {Ym

(i)}N
i=1 with reduced dimensionality. Third, a

unified latent feature matrix F ∈ R
b×d is obtained by fusing

{Ym
(i)}N

i=1. Finally, the k-means algorithm is employed to group
all bands into multiple clusters. And the band with maximum
information entropy in each cluster is selected to form the
subset H∗ of the bands.

C. Region-Aware Hierarchical Latent Feature Learning

For an HSI cube, how to fully exploit its abundant spec-
tral and spatial information to improve the performance on
band selection is a critical factor. Although some existing
representative band selection methods have achieved satisfy-
ing performance by only using spectral information, we think
the utilization of spatial structure can further improve their
performance. It is well known that the first principal com-
ponent contains most of the information of original HSIs,
which motivates us to use it for capturing the spatial struc-
ture. Considering that pixels in a region of the same land
cover would have similar spectral properties [54], that is,
similar pixel values in the HSIs, and different regions are
of different importance. We use the entropy rate segmenta-
tion (ERS) [55], [56] to get a relatively accurate segmentation
result that reflects the spatial structure of different objects from
the first principal component, and then the segmented maps are
extended to all bands and yields

H = {R1,R2, . . . ,RN} s.t. Ri ∩ Rj = ∅ (∀i, j, i 	= j) (1)

where H ∈ R
w×h×b denotes original HSIs; and N and Ri are

the number of segmented regions and the ith region of HSIs,
respectively.

In order to deal with redundant information and noise
interference, discriminative latent features are learned from
each region. Specifically, similarity matrices of segments in
each band are constructed via the k-nearest neighbor graph.
Suppose the similarity of two bands is relatively high in the
original feature space, then the similarity property of them
should remain the same as the previous in the new feature
space. Thus, Laplacian matrices are generated from the graphs
to learn the latent features, that is

L(i) = I − D
− 1

2
(i) W(i)D

− 1
2

(i) (2)

where L(i) and W(i) are the Laplacian matrix and the simi-
larity matrix across different bands of the ith region, respec-
tively. D(i) is the diagonal matrix with each element Djj =
∑b

i=1 Wij. In the proposed method, k-nearest neighbor graph
and Euclidean distance are adopted to construct similarity
matrix W(i). With respect to the Laplacian matrix of each
segmented region, the latent features can be distilled via spec-
tral embedding. Mathematically, the problem is formulated as
follows:

min
Y(i)

N∑

i=1

Tr
(

Y�
(i)L(i)Y(i)

)
s.t. Y�

(i)Y(i) = Id (3)

Fig. 2. Band-correlation matrix corresponding to different latent feature
dimension for the Botswana dataset.

where Y(i) ∈ R
b×d represents the latent feature matrix with

d dimension for the ith region. Equation (3) can be easily
solved by performing eigenvalue decomposition on L(i). To
be specific, the solution Y(i) is formed by the eigenvectors
corresponding to the first d smallest eigenvalues of L(i).

Since the determination of optimal latent feature dimension
is still an open problem, we can only set it empirically. When
the latent feature dimension is fixed, the final hyperspectral
band selection via clustering would highly depend on the qual-
ity of latent representation Y(i). Accordingly, how to obtain a
better latent representation with a fixed dimension becomes
a critical problem. For a Laplacian matrix, the key cluster
information is only embedded in its a few smallest eigenvec-
tors, and different dimensions of eigenvectors would influence
the final clustering performance due to the impact of noise.
To observe the diverse information between different dimen-
sions intuitively, the band-correlation matrix corresponding to
different Y(i) on the Botswana dataset is visualized in Fig. 2.
As can be seen in Fig. 2, when the latent feature dimension
is reduced from 6 to 3, the advantageous information in the
top left and bottom right of the figure is lost, which indi-
cates that the drop in feature dimension would significantly
change the correlation among bands. Thus, in order to distill
and preserve this kind of dimension-specific information, a
hierarchical strategy is adopted to improve the representation
capability of the generated latent features with fixed dimen-
sions. Specifically, to obtain latent features with d dimension,
intermediary latent feature matrices {Y(1)

(i) }N
i=1 ∈ R

b×d1 are
constructed via (3), where b > d1 > d. Then, the sec-
ond intermediary latent feature matrices {Y(2)

(i) }N
i=1 ∈ R

b×d2

are derived from the first intermediary latent matrices, where
b > d1 > d2 > d. Repeating the above process m times, the
final latent feature dimension is gradually reduced to d, where
b > d1 > d2 > · · · > dm−1 > d. Without loss of generality,
the problem can be expressed as

max
Y(t)

(i)

Tr
(

Y(t−1)
(i) Y(t−1)�

(i) Y(t)
(i)Y

(t)�
(i)

)

s.t. Y(t)�
(i) Y(t)

(i) = Idt , Y(t)
(i) ∈ R

b×dt . (4)

In such a manner, the latent features with predefined
dimension are well distilled from each region.

D. Multiregional Latent Feature Fusion

For an HSI, the spatial information often exists in the
pixels. According to the ground truth of each hyperspectral
dataset, we can find that different regions present diverse
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characteristics, which indicate that the spatial information of
each region is different. That is to say, the pixels of diverse
regions are different. In addition, we can also observe that
the land covers are continuous in spatial distribution and the
adjacent pixels show similar spectral features. Thus, one ratio-
nal assumption is that pixels from one homogeneous region
are more likely to be the same class, and each region car-
ries different information and contributes differently to the
selection of bands. In order to simultaneously capture the sup-
plementary information and common information of various
graphs, the most popular method is constructing a unified fea-
ture matrix by fusing the features of all graphs in clustering,
such as [23] and [57]–[61]. Inspired by the above methods,
the unified matrix for HSIs is constructed as follows:

max
F,βi

N∑

i=1

βiTr
(

Y(m)
(i) Y(m)�

(i) FF�)

s.t. F�F = Id,

N∑

i=1

βi
2 = 1, βi ≥ 0 (5)

where βi is the weight corresponding to the ith region, and
F ∈ R

b×d presents the unified feature matrix with d dimension.

E. Prior Information Constraint

Since each region corresponds to the same type of land
cover though the region would have different spectral prop-
erties in different bands, the underlying structure should be
the same. This prior information is adopted to regularize the
construction of the unified latent feature matrix, that is

max
F

N∑

i=1

λTr
(

F F
�

FF�)
s.t. F�F = Id (6)

where F ∈ R
b×d denotes the average latent feature matrix of

HSIs, and λ is a parameter. Furthermore, the solution for F is
similar to Y(i) in (3), that is, via the spectral embedding for the
average Laplacian matrix of the whole HSIs. Mathematically,
the problem is modeled as follows:

min
F

N∑

i=1

Tr
(

F
�

L(i)F
)

s.t. F
�

F = Id. (7)

F. Overall Objective Function

Combining the items expressed in (3)–(6), the overall
objective function is

max
Y,F,γ ,β

N∑

i=1

−γ
(1)
i Tr

(
Y(1)�

(i) L(i)Y
(1)
(i)

)

+
m∑

t=2

N∑

i=1

γ
(t)
i Tr

(
Y(t−1)

(i) Y(t−1)�
(i) Y(t)

(i)Y
(t)�
(i)

)

+
N∑

i=1

βiTr
(

Y(m)
(i) Y(m)�

(i) FF�)
+ βN+1Tr

(
F F

�
FF�)

s.t. F�F = Id, Y�
(i)Y(i) = I,

N∑

i=1

γi
(t)2 =

N+1∑

i=1

βi
2 = 1

γi ≥ 0, βi ≥ 0 (8)

where γ t is the weight corresponding to each region in the tth
layer. Obviously, the parameter λ can be automatically deter-
mined like βi. To simply the expression, let βN+1 be λ in
(8). For (8), it is worth noting that the intermediary latent
feature matrices and the unified feature matrix reinforce each
other. With the latent feature dimension decreasing in steps,
the intermediary matrices are utilized to update the unified
feature matrix F, and then F will go back to boost the latent
features distilling process. Thus, F can be tuned automatically
for optimal hyperspectral band selection.

With the unified feature matrix F of HSIs, the k-means
algorithm is utilized to generate multiple clusters. The band
with the maximum information entropy from each cluster is
selected as the feature band.

IV. OPTIMIZATION ALGORITHM

As seen from (8), the proposed model contains four vari-
ables Y, F, γ , and β. Since it is difficult to directly solve
each variable at once, we consider to solve it by an iteration
algorithm. Instead of using existing iteratively optimization
algorithms to get the optimal solutions, such as ALM [62]
and its variant ADMM [63], we design a simpler optimization
algorithm without introducing any parameters to derive the
solution with respect to each variable.

A. Optimizing Y

1) Optimizing {Y(1)
(i) }N

i=1: When {Y(t)
(i)}m

t=2, F, γ , and β are
fixed, (8) can be simplified to

max{
Y(1)

(i)

}N

i=1

Tr
(

Y(1)�
(i)

(
−γ

(1)
i L(i) + γ

(2)
i Y(2)

(i) Y(2)�
(i)

)
Y(1)

(i)

)

s.t. Y(1)�
(i) Y(1)

(i) = Id1 . (9)

2) Optimizing {Y(t)
(i)}

m−1
t=2 : When {Y(1)

(i) }N
i=1, {Y(m)

(i) }N
i=1, F, γ ,

and β are fixed, (8) can be reformulated as

max
Y(t)

(i)

Tr
(

Y(t)�
(i)

(
γ

(t)
i Y(t−1)

(i) Y(t−1)�
(i)

)
Y(t)

(i)

)

+Tr
(

Y(t)�
(i)

(
γ

(t+1)
i Y(t+1)

(i) Y(t+1)�
(i)

)
Y(t)

(i)

)

s.t. Y(t)�
(i) Y(t)

(i) = Idt , t ∈ {2, . . . , (m − 1)}, i ∈ {1, . . . , N}.
(10)

3) Optimizing {Y(m)
(i) }N

i=1: When {Y(t)
(i)}m−1

t=1 , F, γ , and β are
fixed, (8) can be rewritten as

max{
Y(m)

(i)

}N

i=1

Tr
(

Y(m)�
(i)

(
γ

(m)
i Y(m−1)

(i) Y(m−1)�
(i) + βiFF�)

Y(m)
(i)

)

s.t. Y(m)�
(i) Y(m)

(i) = Idm . (11)

B. Optimizing F

Given Y, γ , and β, (8) can be simplified to

max
F

N∑

i=1

βiTr
(

Y(m)
(i) Y(m)�

(i) FF�)
+ βN+1Tr

(
F F

�
FF�)

s.t. F�F = Id. (12)
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The above objective functions, from (9) to (12), are all can
be generalized into

max
U

Tr
(

U�VU
)

s.t. U�U = Id. (13)

Equation (13) can be solved by performing eigenvalue
decomposition on V. Specifically, the optimal solution U is
generated by the eigenvectors of V corresponding to the first
d largest eigenvalues.

C. Optimizing γ and β

Given Y, F, and β, the optimization problem of (8) is
equivalent to

max
γ

N∑

i=1

γ
(t)
i σ

(t)
i

s.t. when t = 1, σ
(1)
i = −Tr

(
Y(1)�

(i) L(i)Y
(1)
(i)

)

when 2 ≤ t ≤ m, σ
(t)
i = Tr

(
Y(t−1)

(i) Y(t−1)�
(i) Y(t)

(i)Y
(t)�
(i)

)

1 ≤ t ≤ m,

N∑

i=1

γi
(t)2 = 1, γi ≥ 0. (14)

Considering that for ∀ t, according to the Cauchy inequal-

ity, we can derive
∑N

i=1 γiσi ≤
√∑N

i=1 γi
2
∑N

i=1 σi
2 =

√∑N
i=1 σi

2. When the equal sign holds, (γ1/σ1) =
(γ2/σ2) = · · · = (γN/σN) = k, we can derive that
∑N

i=1 γi
2 = k2 ∑N

i=1 σi
2 = 1 and k =

√
(1/

∑N
i=1 σi

2). So

γi = ([σi]/[
√∑N

i=1 σi
2]) is the optimal solution of (14).

Furthermore, the solution for β is similar to γ .

D. Convergence Analysis

In order to simplify the expression, (8) can be denoted as

max
Y,F,γ ,β

�
(

Y(t)
(i), F, γ ,β

)
. (15)

For each iteration of the above optimization, we can derive
that

�
({

Y(t)
(i)

}s
, F, {γ }s, {β}s

)

≤ �

({
Y(t)

(i)

}s+1
, F, {γ }s+1, {β}s+1

)

(16)

where superscript s denotes the optimization at the sth
iteration. By optimizing one variable and fixing others, the
optimal solution can be obtained, thus (16) holds. Based
on (16), the following similar inequality also holds for each
iteration:

�
({

Y(t)
(i)

}s
, {F}s, {γ }s, {β}s

)

≤ �

({
Y(t)

(i)

}s+1
, {F}s+1, {γ }s+1, {β}s+1

)

. (17)

Consequently, (8) monotonically increases at each iteration.
Furthermore, (8) is upper bounded. Therefore, the alternative
iterative algorithm can be guaranteed to converge.

Algorithm 1 Hyperspectral Band Selection via HLFC

Input: Hyperspectral image cube H ∈ R
w×h×b, the number

of selected bands k, the latent feature dimension d.
Output: The selected feature band subset H∗.
1: Segment HSIs via PCA and superpixel segmentation.
2: Calculate the Laplacian matrix L(i) of each segmented
region via Eq. (2).
3: Initialize Y according to Eq. (3).
4: Initialize {γi}N

i=1 = 1√
N

, {βi}N+1
i=1 = 1√

N+1
and t = 1.

5: Calculate the information entropy for each band.
6: while true
7: Update F by solving Eq. (12).
8: Update Y by solving Eq. (9)-Eq. (11).
9: Update γ and β by solving Eq. (14).
10: t = t + 1.
11: end while if (objt−objt−1)

objt−1 ≤ 10−6 or t ≥ 100.
12: Employ k-means algorithm on the unified latent feature
matrix F to generate all clusters.
13: Select the band with maximum information entropy as
the feature band from each cluster.
14: Return the selected feature band subset H∗.

E. Time Complexity Analysis

The time complexity of HLFC mainly lies in the superpixel
segmentation, solutions to Y, F, γ , and β. For HSIs, the com-
putation complexity of ERS is O(PlogP), where P denotes the
total number of pixels in each band. For updating Y, from (9)
to (11), it costs O(b3) in each iteration, where b represents the
number of bands. For updating F, that is, (12), it costs O(b3)

by adopting SVD on matrices of size R
b×b in each iteration.

For updating γ and β, it costs O(Nm) and O(N), respec-
tively. N represents the number of segmented regions, and m
is the number of layers. Finally, the k-means costs O(bk2),
where k is the number of selected bands. Overall, the total
time complexity of HLFC is O(PlogP+2b3+bk2+N(m+1)).

In summary, the details for solving HLFC are listed in
Algorithm 1.

V. EXPERIMENTS

Extensive experiments are conducted on four public hyper-
spectral datasets to verify the effectiveness of HLFC. Results
used different classifiers and different metrics are reported and
compared to the state-of-the-art algorithms.

A. Experimental Setup

1) Datasets: Four public HSIs datasets are used for exper-
iments, including Indian Pines Scene, Kennedy Space Center,
Botswana, and Salinas.

Indian Pines: This dataset was captured by AVIRIS sensor
over the Northwestern Indian in 1992. It contains 220 spectral
bands, and each band is composed of 145 × 145 pixels. In
addition, there are 16 different classes of land covers for each
band, and the spatial resolution of this dataset is 20-m pixels.
Due to the water absorption, we select 200 bands and discard
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TABLE I
SUMMARY OF FOUR PUBLIC HYPERSPECTRAL DATASETS

20 spectral bands with the index of 104–108, 150–163, and
200 in the experiment.

KSC: This dataset was acquired by AVIRIS sensor over
the Kennedy Space Center, Florida, in 1996. It contains 224
spectral bands, and each band consists of 512 × 614 pixels
with 13 different classes of land covers. The spatial resolution
of this dataset is 18-m pixels. In the experiment, we discard
48 bands due to water absorption.

Botswana: This dataset was obtained by NASA EO-1 satel-
lite sensors over Okavango Delta, Botswana, between 2001
and 2004. It contains 242 spectral bands with the size of
1476 × 256 pixels, and there are 14 different classes of land
covers. The spatial resolution of this dataset is 30-m pixels.
In the experiment, we select 145 spectral bands by discarding
97 bands for the same reason as for other datasets.

Salinas: This dataset was collected by AVIRIS sensor in
California. It consists of 224 spectral bands with the size of
512×217 pixels, and its spatial resolution of it is 3.7-m pixels.
Each band contains 16 different classes of land covers. We
select 204 spectral bands for the experiment by removing 20
bands due to water absorption.

In a word, the detailed information of these datasets is
summarized in Table I.

2) Compared Methods: To verify the effectiveness of
HLFC, the proposed method is compared to the state-of-the-art
algorithms as briefly described as follows.

Uniform band selection (UBS) [42] partitions the whole
HSIs uniformly, and the index of each segmented point is
selected.

E-FDPC [64] groups the bands into clusters and then selects
the feature bands by maximizing their intercluster distance and
local density.

TOF [65] employs dynamic programming to obtain an
optimal segmentation combination of HSIs and selects the
band as the feature band according to [64] in each subcube.

OPBS [66] selects a band with maximum variance first, and
then the band maximized the orthogonal projection to subspace
is selected.

ASPS_MN [24] adopts a search algorithm to generate the
optimal subspace. In each subspace, the band with maximum
information entropy or minimum noise value is selected.

ONR [4] searches the optimal band combination by mini-
mizing the reconstructing error of HSIs data.

FNGBS [67] adopts a coarse to fine method to segment HSIs
into multiple cube, and the band is selected via the product of
local density and information entropy.

3) Classification Settings: Classification experiments are
conducted to verify the effectiveness of the proposed method

and all compared algorithms on the selected subset of bands.
Three classical classifiers, for example, support vector machine
(SVM), random forest (RF), and spatial–spectral kernel sparse
representation classifier (KSRC) [68], are adopted to examine
the classification performance. Since these classifiers are all
supervised classification, for Indian_Pines, KSC, Botswana,
and Salinas, we randomly choose 5%, 1% 1%, and 1% of the
whole dataset as training samples, respectively. To the best of
our knowledge, the optimal number of selected bands is still
unknown. To make use of the advantages of competitors on
hyperspectral band selection, as well as facilitate experimental
comparisons, we remain the same number of selected bands
as in their paper [69], that is, it is set to range from 5 to 50
every 5 intervals. Furthermore, three metrics are employed to
estimate the precision of the classified pixels on three classi-
fiers, including overall accuracy (OA), average accuracy (AA),
and kappa coefficient (Kappa). To reduce the randomness of
the final results, we conduct each experiment ten times and the
averages and standard deviations of these metrics are reported.
The latent feature dimension d is set to 5 for all datasets. The
hierarchical level m is set to two and each level’s correspond-
ing intermediary dimensions are set to {3d, 4d, 5d, . . . , 10d}
and {2d, 3d, 4d, . . . , 10d}, respectively. In order to determine
the optimal intermediary feature dimension, grid search is
employed in the experiments. Experiments are conducted on
Windows10 with an Intel Core processor, 24-GB RAM, and
MATLAB 2020a.

Segmentation of HSIs plays an important role in band selec-
tion. As far as we know, the determination of the optimal
number of segments N is still an open problem, and it is deter-
mined experimentally. In [56], the textural information of the
first principal component of HSIs is exploited to determine
the number of segmented regions, and the objective function
is constructed as follows:

N = T × Nz

P
(18)

where Nz denotes the number of nonzero values at the edge of
the first principal component of HSIs, P denotes the total num-
ber of pixels of each band, and T is a fixed number. Followed
this work, we can adaptively set the number of superpixels for
all datasets by setting T = 750.

B. Results and Analysis

Table II lists OA, AA, and Kappa of the proposed method
and the compared methods on the four public hyperspectral
datasets with three different classifiers. In the experiments, the
number of feature bands is set to 15, and the results include
the average values of these indicators and their standard devi-
ations over multiple runs of each method. The best results
are highlighted in bold. As seen from Table II, the proposed
method outperforms other competitors in most cases.

Since the optimal number of feature bands is difficult to
determine in practice. Thus, we show the OA curves for each
dataset with the number of feature bands from 5 to 50 with
an interval of 5. According to Figs. 3–6, the following can be
observed.
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TABLE II
RESULTS OF ALL COMPETITORS ON FOUR PUBLIC HYPERSPECTRAL DATASETS (%)

Fig. 3. OA of all competitors on the Indian Pines dataset. (a) Indian Pines-SVM. (b) Indian Pines-RF. (c) Indian Pines-KSRC.

1) The classification results of our proposed method outper-
form that of the compared methods, especially when the
number of selected features band is small. For instance,

taking Indian Pines dataset as an example, the proposed
method achieves over 2% and 3% improvement com-
pared with the second performer FNGBS and OPBS in
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Fig. 4. OA of all competitors on the KSC dataset. (a) KSC-SVM. (b) KSC-RF. (c) KSC-KSRC.

Fig. 5. OA of all competitors on the Botswana dataset. (a) Botswana-SVM. (b) Botswana-RF. (c) Botswana-KSRC.

Fig. 6. OA of all competitors on the Salinas dataset. (a) Salinas-SVM. (b) Salinas-RF. (c) Salinas-KSRC.

SVM and RF classifiers, respectively. This demonstrates
the effectiveness of our method. The primary reason
can be attributed to the learning of latent feature rep-
resentations and the utilization of spatial information of
HSIs.

2) When the number of selected feature bands is small, the
proposed method can achieve superior performance by
using discriminative latent features, while most competi-
tors using the original pixelwise features do not perform
satisfyingly. In other words, these methods often lead to
the selection of an increased number of feature bands
in order to improve the final accuracy. For example, in
these OA curves, the proposed method consistently out-
performs other algorithms on four datasets with different
classifiers when the number of feature bands is 10. As to

the other number of selected feature bands, the proposed
method still achieves superior performance. When five
feature bands are selected, compared with the second
performer ONR, the proposed method yields more than
3% improvement on the Botswana dataset using SVM
and RF classifiers, respectively, as seen in Fig. 5. In a
word, the results have shown that the proposed method is
a promising algorithm for hyperspectral band selection.

3) The proposed method has gained obvious improvement
over other methods based on spectral property alone,
such as ASPS_MN, FNGBS, and ONR. As shown in OA
curves on the KSC dataset, the proposed method keeps
performing better than comparable competitors when
the number of selected bands increases. The compared
methods do not pay sufficient attention to the spatial
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Fig. 7. Visual classification maps of all baselines on the Indian Pines dataset. (a) Ground truth. (b) UBS. (c) E-FDPC. (d) TOF. (e) OPBS. (f) ASPS_MN.
(g) ONR. (h) FNGBS. (i) HLFC.

Fig. 8. (a) OA on the KSC dataset for different intermediary dimension. (b) OA on the proposed method with different number of layers and TOF. (c) Objective
function value of HLFC on the KSC dataset.

information, resulting in unsatisfying performance while
a fewer number of feature bands are selected. On the
contrary, the proposed method can select the most dis-
criminative bands and yield significant performance as
a result of exploiting the spatial information of HSIs.
As seen, compared with the second performer FNGBS,
when the number of selected bands is 10, the proposed
method improves OA by 2%, 2%, and 1% on the KSC
dataset using SVM, RF, and KSRC classifiers, respec-
tively, as seen in Fig. 4. In terms of AA and Kappa, the
proposed method also can perform better than competi-
tors. For example, as seen in Table II, the AA and Kappa
value of the proposed method are 83.25% and 86.49%,
respectively, on the KSC dataset with the KSRC classi-
fier, while the second performer FNGBS only achieves
80.65% and 84.11%, respectively. Thus, these results
have verified the advantages of the proposed method.

Fig. 7 shows the classification maps of all methods which
have clearly shown their classification performance on the
Indian Pines dataset.

C. Parameter and Convergence Study

As seen from (8), the proposed method only has one param-
eter m, that is, the size of layers. It should be noted that the
intermediary feature dimension {di}m

i=1 is fixed. That is, its size
only depends on the latent feature dimension d, and its max-
imum value, and the minimum value is 10d, 2d, respectively.
d = 5 works well for the four datasets in our experiments.
In order to further study the influence of intermediary matrix
dimension, the performance of HLFC with different intermedi-
ary latent feature dimensions on the KSC dataset is presented
as shown in Fig. 8(a). To the best of our knowledge, the
optimal intermediate feature dimension for each dataset is
difficult to determine, so grid search is adopted in the exper-
iments. From Fig. 8(a), we can find that the intermediary
dimension has a strong impact on the final classification accu-
racy, and OA will improve when larger scale d1 and d2 are
assigned. Furthermore, we compare the performance of the
model with 0, 1, and 2 layers. Results are shown in Fig. 8(b).
As seen, two layers outperform others on the KSC dataset
with KSRC classification. This indicates that the hierarchical
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Fig. 9. Visualization of a typical unified latent feature matrix with (a) zero layer, (b) one layer, and (c) two layers on the Botswana dataset.

TABLE III
OA BY SELECTING DIFFERENT NUMBERS OF SUPERPIXELS ON FOUR PUBLIC HYPERSPECTRAL DATASETS WITH USING THE KSRC CLASSIFIER (%)

TABLE IV
OA BY SELECTING DIFFERENT LAYERS ON THE INDIAN PINES DATASET WITH USING THE SVM CLASSIFIER (%)

strategy adopted in the proposed method contributes to the
final performance.

In Section IV, we have theoretically proved that the
proposed optimization algorithm is convergent. Now, the
experiments are conducted to verify its convergence property.
In Fig. 8(c), the proposed method can quickly converge with
several iterations.

As aforementioned, the optimal number of segmented
regions is difficult to be determined, and it is usually set exper-
imental. In order to study the impact of T on the classification
accuracy, we set it to 500, 750, and 1000, respectively, and uti-
lize the KSRC classifier to verify the effectiveness of HLFC
on four public hyperspectral datasets, as seen in Table III.
It can be observed from Table III that the final results are
not sensitive to T , and the satisfactory performance can be
obtained when T = 750.

D. Validation on the Unified Matrix

In Fig. 9, a typical unified latent feature matrix is visualized
on the Botswana dataset. As seen, a much clearer clustering
structure is shown in Fig. 9(c), hence, the hierarchical strategy
is effective to generate the unified latent feature matrix.

E. Study of Different Layers

To the best of our knowledge, the determination of the
optimal intermediate dimension is still an open problem, we
can only obtain it by adopting a grid searching strategy. As
seen from Table IV, we can find that when bigger layers
are conducted, more improvements can be obtained. However,
considering the model stability and time complexity, the two
layers are recommended in the proposed method.
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VI. CONCLUSION

In this article, a novel band selection method is proposed,
namely, HLFC. HLFC adopts PCA and superpixel segmenta-
tion to segment HSIs into multiple regions to capture both
spectral and spatial information. Then, latent features are
generated to improve feature discrimination and reduce the
computational complexity via a hierarchical strategy from each
segmented region. These features are fused for band cluster-
ing and selection. Extensive experimental results demonstrate
that HLFC is effective and outperforms other state-of-the-art
methods.

For the HSIs, the two nonadjacent regions may contain
strong correlations to some extent. In this article, the proposed
method only exploits the local structure information of the
whole HSIs while ignoring the nonlocal structure information.
Thus, we will focus on how to employ the hybrid hypergraph
to integrate the local and nonlocal spatial structure information
of HSIs so as to guide the band selection in the future.
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