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A B S T R A C T

Clustering analysis has been widely used in various real-world applications. Due to the simplicity of K-means,
it has become the most popular clustering analysis technique in reality. Unfortunately, the performance of
K-means heavily relies on initial centers, which should be specified in prior. Besides, it cannot effectively
identify manifold clusters. In this paper, we propose a novel clustering algorithm based on representative data
objects derived from mutual neighbors to identify different shaped clusters. Specifically, it first obtains mutual
neighbors to estimate the density for each data object, and then identifies representative objects with high
densities to represent the whole data. Moreover, a concept of path distance, deriving from a minimum spanning
tree, is introduced to measure the similarities of representative objects for manifold structures. Finally, an
improved K-means with initial centers and path-based distances is proposed to group the representative objects
into clusters. For non-representative objects, their cluster labels are determined by neighborhood information.
To verify the effectiveness of the proposed method, we conducted comparison experiments on synthetic data
and further applied it to medical scenarios. The results show that our clustering method can effectively identify
arbitrary-shaped clusters and disease types in comparing to the state-of-the-art clustering ones.
1. Introduction

With the great advancement of information technology, data col-
lected from real-world applications is getting larger and larger, and the
distributions of data are becoming more and more complicated [1].
This poses great challenges to conventional data mining and analysis
algorithms, which often assume the scale of data is not so massive [2].
Thus, it is necessary to amend the conventional mining algorithms to
acclimate such big data, or develop new mining algorithms accordingly
. Note that it is nontrivial to the former. Thus, most endeavors have
been attempted to the latter case.

As a typical data analysis technique, clustering has been widely and
successfully used in various scenarios, range from biological data anal-
ysis, medical diagnosis, text categorization, data summarizing, social
network analysis, to image and video processing [3,4]. Until now, a
great number of clustering methods, including distance-based, density-
based, subspace-based, model-based and hierarchy clustering, have
been developed [5,6]. Among them, K-means is undoubtedly the most
popular one, due to the fact that it is conceptually simple and versa-
tile [7].

Generally, the classic K-means algorithm [8] works in an intuitive
manner. It first randomly chooses 𝑘 data objects as initial centers of
clusters, and then arranges other data objects to one of the clustering
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centers in the light of nearest distances. Afterwards, the clustering
centers are updated according to the mean of their own members.
This clustering process is iterated, until the centers are not changed.
It is noticeable that nonetheless the popularity of K-means, its final
performance heavily relies on the selection of initial centers. More-
over, it cannot effectively identify non-spherical clusters, because of
the global property of Euclidean distance [9]. To remedy these prob-
lems, several variants, such as K-medians [10], K-means++ [11] and
K*-means [12], have been proposed during the past decades. The K-
medoids clustering algorithm [13] represents cluster centers by actual
data objects within clusters. Recently, Huang et al. [14] adopted deep
learning techniques to extract hidden representations of data objects
and hierarchically employed K-means with deep structures. However,
the time costs are expensive and most importantly, the interpretation
of deep learning ones is poor, making them unsuitable for medical
applications especially.

The intrinsic properties of data objects, e.g., distributions, densi-
ties and structural information, have also been exploited to excavate
clusters with complex structures in literature. Representative examples
include DPC (Density peak clustering) [15] and densityCut [16]. Both
of them assume that cluster centers often have higher densities than
their neighbors and far from each other. APC (Affinity propagation
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clustering) [17] probes structural information of data points by a
message-passing mechanism, where the similarities of points are itera-
tively propagated until cluster centers gradually emerge. However, they
only take global densities or structural information into consideration,
without involving local information [18].

In this paper, we propose a novel clustering algorithm coupling
K-means with mutual neighbors, dubbed MN-Kmeans. Specifically, it
exploits mutual neighbors to derive representative data objects. Based
on the representative objects, a minimum spanning tree is generated
to estimate the similarities of objects thorough a notion of path-based
distance. This kind of path-based distance is quite suitable for evalu-
ating dissimilarities between data objects on different shaped clusters,
including both spherical and manifold clusters, so that the proposed
method can efficiently identify arbitrary-shaped clusters. Finally, an
improved K-means with initial centers and path-based distances is ex-
ploited to group the representative objects into clusters. To demonstrate
the effectiveness of MN-Kmeans, we extensively conducted experiments
on benchmark datasets with arbitrary-shaped clusters by comparing
MN-Kmeans to the state-of-the-art clustering algorithms. The experi-
mental results show that MN-Kmeans has outstanding performance in
identifying arbitrary-shaped clusters.

In essence, the main contributions of this paper are briefly summa-
rized as follows:

• We exploit representative objects, derived from mutual neigh-
bors, to precisely represent data distributions and identify cluster
centers.

• A notion of path-based distance in a minimum spanning tree is
adopted to estimate the similarities of data objects. This distance
has local property and is suitable to manifold data.

• An improved K-means algorithm is proposed based on represen-
tative objects and path-based distances. The advantage is that it
can identify arbitrary-shaped clusters.

The rest of this paper is organized as follows. Section 2 briefly re-
iews the related work about K-means clustering analysis. In Section 3,
e present the framework of the proposed clustering method. The
xperimental results on synthetic data are reported in Section 4, and
he applications to medical data are discussed in Section 5, followed
y the conclusion of the paper in Section 6.

. Related work

As mentioned above, clustering techniques can be broadly grouped
nto hierarchy-based, partition-based, density-based, graph-based and
ubspace-based ones [3,5], where the partition-based clustering seems
o be more popular, because of its versatility. It initially designates
everal clusters and then iteratively reallocates data objects to these
lusters. The partition-based clustering methods can be further clas-
ified into K-means, K-medoids and probabilistic ones [19]. Here we
oncentrate on K-means and its extensions.

K-means [8] is by far the most popular clustering algorithm and
idely used in real-world applications nowadays. It first randomly
icks 𝑘 data objects as initial centers, and then allocates the rest objects
o one of these centers according to appropriate distance measure-
ents. Subsequently, the cluster centers are updated as the mean (or
eighted average) of their affiliated members. This process iterates
ntil the centers have not been changed. Since the performance of K-
eans heavily reckons on the initial centers, K-mean++ [11] improves

he quality of initial centers by taking the objects far from them as new
luster centers.

Another concern for K-means, which has also been received consid-
rable attraction, is its computational efficiency. For example, multi-
tage K-means (MKM) [20] filters data objects via a coarse-to-fine
earch strategy and speeds up the allocation step of K-means by a
ashing technique. Compressed K-means (CKM) [21] encodes high-
imensional data into short binary codes to reduce expensive compu-
2

ation and memory costs. A-means [22] is based on the criterion that
a data object may shift between its two closest centers at different
iterations. Thus, it allows some data objects to be clustered in an early
stage and excluded in subsequent iterations. Newling and Fleuret [23]
developed a general improvement of K-means through estimating dis-
tance bounds, so as to reduce the number of distance calculations.
Recently, Peng et al. [24] adopted a localization strategy to allocate
data objects and a neighbor update strategy to quickly search neighbors
for each cluster.

Heuristic strategies and data structures, e.g., KD-tree and dual-
tree, have also been adopted to further improve the effectiveness and
efficiency of K-means in literature. As a representative, Curtin [25]
developed a dual-tree clustering algorithm which can yield the ex-
act same results as the classical K-means algorithm. Especially, the
single-iteration runtime is linear if cover trees are considered. Ball
K-means [26] reduces the point-centroid distance computation by rep-
resenting each cluster as a ball. Within these balls, data objects are
tagged as stable or active ones, where the former is not changed while
the latter are adjusted within a few neighbor clusters. As a result, only
the distances between an object and its neighbor center, instead of all
centers, are estimated. K*-means [12] first establishes a hierarchical
structure for K-means by initializing 𝑘 ∗ seeds of centers to reduce the
risk of random selection, and then uses clusters merging and pruning
strategies to improve the efficiency of K-means.

As we know, the classical K-means algorithm cannot effectively
identify non-spherical clusters. To end this, various sophisticated tech-
niques have been adopted. GK-means [27] is a typical example of such
kind. It applies an approximate 𝑘-nearest neighbors graph to allocate
data objects to clusters that their neighbors reside. Similarly, GKM
(Graph-based K-means) [28] takes use of a graph technique to expose
nonlinear manifold structures of data. Based on the structures, global
information of data geometric distribution is available, and clusters can
also be obtained accordingly. Besides, data density has also been ex-
ploited to detect non-spherical clusters. For instance, DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [29] exploits
data densities, as well as density-connected or reachable property,
to identify clusters and noise, where are determined by a minimum
number of neighbors in a given radius. Contrastively, DPC [15] takes
those objects with larger densities and distances as cluster centers,
and then tags the rest objects to the nearest centers with higher
densities. Although it is very versatile, setting the cutoff threshold
for DPC is a challenging issue. Thus, many variants, such as FastD-
Peak [30] and SNN-DPC [31], attempt to address this problem. Fast
LDP-MST [32] identifies arbitrary-shaped clusters by density peaks,
coupled with minimum spanning tree for the sake of efficiency.

3. Materials and methods

In this section, we introduce an improved K-means clustering al-
gorithm based on mutual neighbor, named MN-Kmeans. Fig. 1 gives
a toy example of MN-Kmeans on a synthetic data. As illustrated in
Fig. 1, MN-Kmeans mainly consists of three stages, where the first stage
is to derive representative objects with high densities, estimated by
mutual neighbors, from data. Afterwards, cluster centers are identified
according to a notion of path-based distance, calculated on a minimum
spanning tree. Finally, data objects are grouped into clusters by virtue
of K-means, along with neighborhood information.

3.1. Data density

Data density is often used to formally represent distribution in-
formation of data objects, i.e., how dense or sparse the data objects
locate in. Since the concept of density is vivid and intuitive to convey
neighborhood information, it is also used to measure the structural
property, e.g., manifold network or graph, of objects in literature [33].

Here we also exploit this concept to represent the data objects. Before
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Fig. 1. A toy example of MN-Kmeans on a synthetic data, where MN-Kmeans consists of three stages: deriving representative objects, identifying cluster centers and grouping
objects into clusters.
we delve into the density, let us retrospect to neighborhood relation of
objects first.

Here and later, bold-faced uppercase and lowercase letters, e.g., X
and x, denote data matrices and (column) vectors respectively. 𝑥𝑖𝑗 and
𝑥𝑖 indicate the (𝑖, 𝑗)-th element of X and the 𝑖th element of x respec-
tively. A notation ‖⋅‖𝑝,𝑞 denotes the 𝓁𝑝,𝑞 norm of matrices or vectors. For
clarity, the letter x also represents a random variable (feature vector).
Let 𝐗 ∈ 𝑅𝑛×𝑝 be a data collection consisting of 𝑛 objects, i.e., X= {𝐱𝑖}𝑛𝑖=1,
where x𝑖 ∈ 𝑝 is represented by a 𝑝-dimensional feature vector.

Given a data object 𝐱 ∈ 𝐗, its nearest neighbors refer to the subset
of objects that is defined as follows.

𝑁(𝐱) = {𝐱𝑖|𝑑(𝐱, 𝐱𝑖) ≤ 𝑑(𝐱, 𝐱𝑗 ),∀𝑖, 𝑗 = 1..𝑛}, (1)

where 𝑑(𝐱, 𝐱𝑖) is the Euclidean distance between x and x𝑖. Based on
this definition, the 𝑘 nearest neighbors (𝑘NN), 𝑁𝑘(𝐱), of x is that 𝑁(𝐱)
contains 𝑘 nearest neighbors, i.e., |𝑁𝑘(𝐱)| = 𝑘. Since the concept of
𝑘NN is intuitive, it has been widely used and many 𝑘NN algorithms
have been developed. However, 𝑘NN is sensitive to the parameter
𝑘 [34]. To address this concern, several variants, such as reverse nearest
neighbors, shell neighbors, shared neighbors, natural neighbors and
mutual neighbors, have been introduced [35].

One of the variants of 𝑘NN is mutual neighbor (MN). The central
idea of mutual neighbor bridges nearest neighbors and reverse neigh-
bors together to represent neighborhood information of data. Given a
data object 𝐱 ∈ 𝐗, its mutual neighbors are formally defined as

𝑀𝑁(𝐱) = {𝐱𝑖|𝐱𝑖 ∈ 𝑁𝑘(𝐱) ∧ 𝐱 ∈ 𝑁𝑘(𝐱𝑗 )}, (2)

where 𝑁𝑘(𝐱) is the 𝑘 nearest neighbors of 𝐱. From the definition,
we know that the notation of mutual neighbor is insensitive to the
parameter. Since the mutual neighbor can exactly capture the inter-
connectivity of adjacent relations between data objects, it is often used
to represent the connectivity properties of neighborhood graphs.

We exploit the notion of mutual neighbor to represent the density
or distribution of data. As we know, a data object has many neighbors
and many data objects also take it as neighbors simultaneously, if it
locates at dense regions. On the contrary, the object has less neighbors
and few of them take it as neighbor at the same time if it is in sparse
regions. This property is inherently and naturally consisting to the
notion of mutual neighbor. That is to say, the objects locating within
dense regions have more mutual neighbors. With this assumption, we
take the number of mutual neighbors for a data object as its density.
Formally, the density of 𝐱 ∈ 𝐗 is denoted as

𝐷𝑆(𝐱) = |𝑀𝑁(𝐱)|
𝑘

, (3)

where 𝑘 is the number of neighbors or the maximum number of mutual
neighbors.

Generally, a cluster center locates at the central position, and has
highest density than others. Inspiring by this, we also choice those data
objects with high densities to stand for other objects within the same
cluster. Let 𝐱 ∈ 𝐗 be a data object, it is a representative object if its
density is larger than its mutual neighbors, that is,

𝑅𝐶(𝐱) = {𝐱𝑖 ∈ 𝑀𝑁(𝐱)|𝐷𝑆(𝐱) ≥ 𝐷𝑆(𝐱𝑖)}. (4)

Given the data collection 𝐗, there are many representative objects, each
standing for its mutual neighbors. It seems to be reasonable to take
3

them as potential cluster centers. In fact, these representative objects
are local ones. This implies that not all representative objects are cluster
centers, but the cluster centers are definitely representative ones.

We can further refine the cluster centers from the representative
objects. Note that the representative objects are accessible to each
other and connected thorough data objects. Thus, there is some paths,
i.e., connection relations, between two adjacent representative objects.
With the connection relations, the representative objects can be further
combined together to form cluster centers. For instance, let 𝑦 and 𝑧 be
representative objects of 𝑥 and 𝑦, respectively, that is, 𝑅𝐶(𝑥) = 𝑦 and
𝑅𝐶(𝑦) = 𝑧. Then the representative object of 𝑥 can be represented as 𝑧,
because the density of 𝑧 is larger than that of 𝑦, and 𝑧 is more likely
becoming a cluster center than 𝑦. This updating strategy is called chain
rule, which can help us to identify cluster centers from a larger region.
In the subsequent processing of our method, we only need to cluster
these representative objects, which greatly reduces the scale of data.
The clustering result on representative objects can be easily expanded
to the entire data according to the connection relations.

3.2. Path-based distance

Given a data collection 𝐗, there are many representative objects.
It is observed that only several of them may become cluster centers
while most of them are unimportant, if they are clustered. Generally,
the representative ones with larger densities have higher probabilities
to become cluster centers. For the sake of efficiency, the representative
objects with lower densities should be excluded before the clustering
stage. Specifically, we introduce a threshold 𝜃 to filter those represen-
tative objects with lower density. For each object x, if its density is
larger than the threshold, i.e., 𝐷𝑆(𝐱) ≥ 𝜃, it will be considered during
the clustering stage. Otherwise, it will be considered as noisy one and
filtered straightforwardly. Empirically, the value of 𝜃 can be determined
by various strategies. As an example, it can be assigned to the 𝑝 ∗ 𝑛-th
minimum density, where 𝑝 is a proportion of data densities, sorted in
ascending order.

As discussed above, we now only need to cluster the representative
objects with high densities. Unfortunately, the Euclidean distance fails
to measure the dissimilarities between objects within manifold struc-
tures, because of its global property [36]. To end this, local strategies,
e.g., neighborhood relations, are often taken into consideration for
manifold data. Here, we exploit the neighborhood relation, coupling
with the Euclidean distance, to redefine the distance between the
representative objects.

Assume that 𝐱 and 𝐲 are two representative objects, i.e., 𝐷𝑆(𝐱) ≥ 𝜃
and 𝐷𝑆(𝐲) ≥ 𝜃. The common neighbors of 𝐱 to 𝐲 are the intersection of
their mutual neighbors, that is,

𝐶𝑁(𝐱, 𝐲) = {𝐱𝑖|𝐱𝑖 ∈ 𝑀𝑁(𝐱) ∩𝑀𝑁(𝐲)}. (5)

Based on the common neighbors, the distance between the representa-
tive objects x and y is formally represented as follows,

𝑁𝐷(𝐱, 𝐲) =
{ 𝑑(𝐱,𝐲)

|𝐶𝑁(𝐱,𝐲)|×𝛴𝐳∈𝐶𝑁(𝐱,𝐲)𝐷𝑆(𝐳) , |𝐶𝑁(𝐱, 𝐲)| > 0,

𝛿 × (1 + 𝑑(𝐱, 𝐲)) , |𝐶𝑁(𝐱, 𝐲)| = 0.
(6)

where 𝑑(𝐱, 𝐲) is the Euclidean distances between x and y, and 𝛿 is the
maximum value of 𝑑(𝐱, 𝐲).
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According to Eq. (6), one may observe that the distance or dis-
similarity between two representative objects will be compressed, if
they have common neighbors. Otherwise, their distance is amplified.
Besides, the more the common neighbors, the closer the distance. This
is inherently consistent with the common sense that two representative
objects locating a dense area are more similar than those separated by
sparse areas, because they are connected with more neighbors.

To further measure the local property of manifold data, we exploit
a concept of path-based distance on a minimum spanning tree to
represent the distance of representative objects. Specifically, we first
construct a minimum spanning tree from the representative objects and
their distances, representing vertexes and edges of the spanning tree
respectively. With the minimum spanning tree, the path-based distance
of two vertexes refers to the path from a vertex to another one. That
is to say, let 𝐱1 and 𝐱𝑚 be two representative objects, their path-based
istance 𝑃𝐷(𝐱1, 𝐱𝑚) is the weighted path from 𝐱1 to 𝐱𝑚 on the spanning

tree. Formally,

𝑃𝐷(𝐱1, 𝐱𝑚) =
𝑚−1
∑

𝑖=1
𝑁𝐷(𝐱𝑖, 𝐱𝑖+1), (7)

where 𝐱1, 𝐱2,… , 𝐱𝑚 is the path from 𝐱1 to 𝐱𝑚 on the spanning tree.
Since the path-based distance takes neighborhood information into
consideration, it has the local property for manifold data and can ef-
fectively measure similarity between the representative objects, making
the objects within the same cluster is more similar than that in different
clusters.

3.3. Data clustering

With the help of the representative objects and the path-based
distance, here we introduce an improved K-means clustering algorithm.
As mentioned above, the performance of K-means heavily relies on the
quality of initial cluster centers. To choice high quality initial centers,
we first take the representative object with the maximum density as
the first cluster center. Subsequently, the representative object with the
largest path-based distance from the chosen centers is considered as
the following center. This selection stage proceeds until the number
of chosen centers reaches to the given one. The chosen initial centers
have higher quality and can speed up the convergence of clustering
procedure.

Following the routine of K-means, we iteratively update the centers
and cluster the rest data objects in the next step, after the initial cluster
centers available. To capture the intrinsic geometric structures of data,
the new centers should be obtained from the manifold. Meanwhile, the
similarities between the new centers are estimated on their path-based
distances.

Assume the data collection X consists of 𝑚 clusters 𝐶𝑖(𝑖 = 1, 2,… , 𝑚).
For the 𝑖th cluster center 𝐜𝑖 of X, it can be determined as follows,

𝐜𝑖 = arg min
𝐱∈𝐶𝑖

∑

𝐳∈𝐶𝑖

𝑃𝐷(𝐱, 𝐳). (8)

From the equation above, the new center of the 𝑖th cluster 𝐶𝑖 refers
to the representative object that has the minimum sum of path-based
distances to others in the same cluster.

Once the initial cluster centers are available, the next stage of
clustering is to determine which cluster the data objects belonging
to. Similar to the routine strategy of the classical K-means algorithm,
we assign each object to the closest centers with the minimum path
distance. Let 𝐜𝑖(𝑖 = 1..𝑚) be 𝑚 cluster centers. The cluster label of the
representative object 𝐱 is also determined by the path distance to the
cluster centers, that is,

𝐜𝑘 = arg min
𝐜𝑖

𝑃𝐷(𝐱, 𝐜𝑖). (9)

In a nutshell, Algorithm 1 summarizes the implementation details
4

of the improved K-means clustering method with mutual neighbors, t
dubbed as MN-Kmeans. The clustering process of MN-Kmeans mainly
consists of four stages, where the first stage is to obtain the mutual
neighbors (step 3) and estimate the density (step 4) for each data object.
Based on the densities of objects, representative objects are picked out
while noisy ones are filtered. Within this stage (from step 6 to step
9), the chain rule is applied to further refine representative objects.
Meanwhile, the efficiency of clustering can be improved along with less
representative objects.

The third stage (from step 10 to step 12) plays a core role in
MN-Kmeans. It aims at constructing the minimum spanning tree from
the representative objects obtained by the previous stage. Before con-
structing the tree, the distances based on common neighbors between
the representative objects should be estimated at first. Once the tree
available, we can calculate the path-based distances between any pair
of vertexes in the tree. The reason of taking the path-based distance is
to exactly represent the local structural property of manifold data.

Revamping the classical K-means algorithm to orient manifold data
is the last stage of our method (from step 13 to step 18). Rather
than randomly picking cluster centers in the classical one, here we
deliberately choose 𝑚 initial cluster centers with high densities and
large distances. With the high-quality centers, we iteratively tag the
representative objects to the cluster labels which correspond to the
centers closest to the objects. Afterwards, the cluster centers will also be
updated accordingly. This iteration is continue, until the centers have
not been changed. Finally, all objects in the data collection are tagged
to their nearest centers.

Algorithm 1. MN-Kmeans: Mutual neighbors-based
K-means
Input: The data collection 𝑋, the cluster number 𝑚 and
the proportion of data 𝑝;
Output: The cluster labels of data objects in X;
(1) 𝑛 = |𝑋|;
(2) For each object 𝐱𝑖 ∈ 𝑋(𝑖 = 1..𝑛) do
(3) Get the mutual neighbors of 𝐱𝑖 via Eq. (2);
(4) Estimate the density of 𝐱𝑖 via Eq. (3);
(5) end
(6) Sort the densities 𝐷𝑆(x) in a descending order;
(7) Obtain top 𝑝-percent objects whose densities are
larger than the threshold;
(8) Derive representative objects 𝑅𝐶 ⊆ 𝑋 from the top 𝑝
objects via Eq. (4);
(9) For each object x ∈ 𝑅𝐶, update 𝑅𝐶(x) by virtue of
the chain rule;
(10) For each pair of representative objects x and y,
calculate 𝑁𝐷(x,y) by Eq. (6);
(11) Construct a minimum spanning tree with 𝑁𝐷(x,y);
(12) For each pair of vertexes x and y, estimate their
path-based distance by Eq. (7);
(13) Initialize 𝑚 cluster centers 𝐜𝑖(𝑖 = 1..𝑚);
(14) Repeat
(15) Assign each representative object to its nearest
center;
(16) Update 𝑚 centers 𝐜𝑖 by Eq. (9);
(17) Until the clustering process converges;
(18) Tag each object to the closest cluster label;

Given the data collection 𝐗 consisting of 𝑛 data objects. The time
f the first stage, i.e., obtaining mutual neighbors and estimating the
ensities, of MN-Kmeans mainly lies in searching mutual neighbors. In
general case, its time complexity is 𝑂(𝑛2). If heuristic strategies or data

tructures, e.g., KD-tree, were adopted, the time cost can be reduced
o 𝑂(𝑛 log 𝑛). For the stage of identifying representative objects, most
f time are spent on sorting the densities of objects (step 6), whose
ime cost is 𝑂(𝑛 log 𝑛). Indeed, both deriving the initial representatives
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Table 1
The brief properties of synthetic data.
Data sets #Objects #Clusters

D6 1400 4
E6 8537 7
CTH 1156 4
Square 1741 6

and updating them with the chain rule are 𝑂(𝑛). Suppose 𝑝 is the
quantity of representative objects. In the third stage, it took 𝑂(𝑛 + 𝑝2)
to get common neighbors, 𝑂(𝑝2) to construct the minimum spanning
tree and 𝑂(𝑝2) to estimate the path distances for the representative
objects. Since the last stage of MN-Kmeans works like the classical K-
means algorithm, its time complexity is 𝑂(𝑝2). As mentioned above, the
quantity of representative objects is far less than that of the original
objects. Therefore the overall time complexity of MN-Kmeans is 𝑂(𝑛2).

4. Experiments on synthetic data

To demonstrate the effectiveness of the proposed method, we made
a comparison of MN-Kmeans to K-means [8], DPC [15], DPC-KNN [37]
and DBSCAN [29] on synthetic data sets. Among the baselines, K-
means, DBSCAN and DPC are three classical and popular clustering
algorithms, whereas DPC-KNN is also an improved DPC clustering
algorithm for manifold data. It first performs PCA to reduce dimension
of data and then constructs a 𝑘NN graph on all objects to derive neigh-
borhood information of the objects. The experiments were conducted
on a PC with i7 1.8 GHz CPU and 8 GB RAM.

In this section, we mainly discuss the experimental results of MN-
Kmeans to the baselines on four synthetic data sets. These synthetic
data sets were frequently used to verify the performance of clustering
algorithms. They contain many noisy objects and consist of complex
cluster structures. Table 1 presents brief properties of them.

For the baseline clustering algorithms, i.e., DPC, DPC-KNN and
DBSCAN, they have different parameters which should be set accord-
ingly. In our experiments, we followed the routine and assigned the
parameters for the clustering algorithms to default or recommended
values as suggested by authors in literature. For example, the MinPts
and r of DBSCAN were assigned as 6 and 0.7, respectively. For DPC
and DPC-KNN, five percents of objects were taken as candidate cluster
centers. Since it is not reasonable to quantitatively evaluate the clus-
tering performance on the synthetic data, we only presented the visual
results.

Fig. 2 presents the performance comparison of the clustering al-
gorithms on the synthetic data sets, where each row corresponds to
one clustering algorithm and each column stands for one data set.
From Fig. 2, we can learn that K-means failed to identify non-spherical
clusters from manifold data. Similarly, DPC and DPC-KNN are also not
suitable for manifold structural data. Even so, the DPC clustering algo-
rithm accurately got the number of clusters, but it divided each cluster
in manifold data into different clusters and took different clusters as one
cluster. DBSCAN could identify correctly the clusters in D6, CTH and
Square, but it considered many normal data objects in E6 as noises.
Besides, facing with well-distributed data objects, DBSCAN may fail
to discover clusters from them. It can be observed that the proposed
method, MN-Kmeans, exactly identified those spherical and manifold
clusters from the synthetic data sets, even in the case of noises.

5. Applications to medical data

To further validate the effectiveness of MN-Kmeans, in this section
we also applied it to the scenarios of medical diagnosis to cluster
disease types. We downloaded seven public medical data sets from
UCI Machine Learning Repository. They are Cryotherapy, Dermatology,
5
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Table 2
The brief properties of experimental data sets.
Data sets #Features #Objects #Clusters

Cryotherapy 6 90 2
Dermatology 34 366 6
Haberman 3 306 2
HCV-Egy 28 1385 4
Lymphography 18 148 4
Thyroid 5 215 3
Yeast 22 187 2

Haberman, HCV-Egy, Lymphography, Thyroid and Yeast. The brief de-
scription information, including the numbers of data objects, features
and clusters, of medical data sets are summarized in Table 2. Following
gives brief information about these medical data.

• Cryotherapy consists of 90 patient information about wart treat-
ment using cryotherapy.

• Dermatology is about six types of Eryhemato-Squamous disease
with 366 patients.

• Haberman describes the survival of breast cancer patients after
surgery.

• HCV-Egy contains blood donors and Hepatitis C patients, which
can be clustered into four groups.

• Lymphography includes 148 patients with four different sub-types
of lymph.

• Thyroid records patient information about thyroid disease.
• Yeast concerns about cellular localization sites of proteins.

To quantify the effectiveness of MN-Kmeans, we adopted AC (Accu-
racy) and NMI (normalized mutual information) [38] to compare the
clustering results from each algorithm to the ground truth. They are
frequently used to measure clustering performance in literature. Let 𝑝𝑖
and 𝑞𝑖 be the ground truth and derived cluster label of the 𝑖th object
𝐱𝑖 ∈ 𝐗. AC is formally defined as

𝐴𝐶(𝐗) = 1
𝑛

𝑛
∑

𝑖=1
𝐼(𝑝𝑖 = 𝑞𝑖), (10)

where 𝐼(⋅) is an indication function, and 𝐼(𝑝𝑖 = 𝑞𝑖) equals to 1 if the
clustering label 𝑞𝑖 of 𝐱𝑖 is the same to its ground-truth 𝑝𝑖. Otherwise,
𝐼(𝑝𝑖 = 𝑞𝑖) is zero.

NMI is capable of describing the structural quality of clusters and
the degree of conformity with the actual cluster structure. It is also used
to measure the similarity between the ground truth and the clusters
derived by a clustering algorithm. For two different data clusters 𝐶𝑖
and 𝐶𝑗 , their NMI is shown as follows:

𝑁𝑀𝐼(𝐶𝑖, 𝐶𝑗 ) =
2 × 𝐼(𝐶𝑖, 𝐶𝑗 )

𝐻(𝐶𝑖) +𝐻(𝐶𝑗 )
, (11)

here 𝐼(𝐶𝑖, 𝐶𝑗 ) = 𝐻(𝐶𝑖) +𝐻(𝐶𝑗 ) −𝐻(𝐶𝑖, 𝐶𝑗 ) is the mutual information
etween 𝐶𝑖 and 𝐶𝑗 . 𝐻(𝐶𝑖) is the information entropy associated with
he cluster 𝐶𝑖.

For these two metrics above, their value is in the range of [0, 1].
hat is more, the larger their value is, the more similar the two clusters

re. or the better the clustering is. When the NMI value is 1, the two
lusters are exactly the same.

Table 3 provides the performance comparison of AC achieved by
he clustering algorithms on the experimental data sets, where the
old value indicates that it is the best one among the clustering al-
orithms on the corresponding data set. According to the experimental
esults, one can conclude that the proposed method significantly out-
erforms the comparison baselines, because the accuracy achieved by
N-Kmeans is the best one over all data sets. Among the baselines, K-
eans and DBSCAN had also comparable performance, but DPC-KNN

chieved relatively poor performance.
Analogous cases can be observed from the performance comparison
f NMI, whose values are offered in Table 4. From the table, we can also
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Fig. 2. The performance comparison of clustering algorithms on the synthetic data sets with noisy data. Each row corresponds to a clustering method (From top to bottom, they
are K-means, DBSCAN, DPC, DPC-KNN and MN-Kmeans, respectively), and each column represents a data set (From left to right, they are D6, E6, CTH and Square, respectively).
Table 3
The AC comparison of clustering methods on the data sets.

K-means DBSCAN DPC DPC-KNN MN-Kmeans

Cryotherapy 0.567 0.567 0.567 0.601 0.611
Dermatology 0.858 0.306 0.653 0.626 0.934
Haberman 0.501 0.735 0.569 0.536 0.755
Lymphography 0.439 0.547 0.568 0.501 0.581
HCV-Egy 0.267 0.261 0.269 0.201 0.281
Thyroid 0.781 0.837 0.758 0.712 0.861
Yeast 0.411 0.319 0.317 0.375 0.456
observe that MN-Kmeans is still superior to the baselines, because it
had seven highest NMI values. Although the NMI value of MN-Kmeans
on Soybean is smaller than that of DPC-KNN, it is still larger than
others. Another interesting fact is that DBSCAN had not achieved good
performance on the real data as it did on the synthetic data. Perhaps
the underlying reason is that it involves several parameters, which are
hard to set without prior knowledge and may bring great impacts to its
performance.

Computational efficiency is another aspect which should be con-
sidered in real-world applications. We also recorded the running time
of clustering algorithms in our experiments and showed in Fig. 3. As
6

illustrated in Fig. 3, MN-Kmeans had comparable efficiency to the
baselines. Although it took relatively more time than K-means and
DBSCAN on Yeast and Dermatology, it was still better than DPC and
DPC-KNN. It is reasonable that obtaining mutual neighbors usually
requires more time than that of 𝑘 nearest neighbors. Meanwhile, we
adopted traditional techniques, rather than KD-tree, to derive mutual
neighbors in the implement of MN-Kmeans. It is noticeable that DPC-
KNN had poor efficiency, because it performed both PCA and 𝑘NN
before the clustering stage of DPC.
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Table 4
The NMI comparison of clustering methods on the data sets.

K-means DBSCAN DPC DPC-KNN MN-Kmeans

Cryotherapy 0.377 0.381 0.377 0.331 0.422
Dermatology 0.848 0.461 0.493 0.512 0.891
Haberman 0.110 0.493 0.106 0.211 0.502
Lymphography 0.408 0.311 0.377 0.306 0.433
HCV-Egy 0.211 0.201 0.331 0.201 0.331
Thyroid 0.387 0.403 0.286 0.262 0.429
Yeast 0.253 0.229 0.236 0.266 0.281
Fig. 3. The running time (second) of clustering algorithms on the experimental data sets.
6. Conclusions

Since the Euclidean distance is a global one, it cannot exactly
represent neighborhood information, making the classical K-means
algorithm fail to identify non-spherical clusters. To end this, in this
paper a novel clustering algorithm based on representative objects
derived from mutual neighbors is proposed. It first exploits mutual
neighbors to estimate data densities, which can exactly represent the
distributions of data objects. Later it picks representative objects out
and calculates their path-based distances by a minimum spanning tree.
The path-based distances have local properties and are capable of
measuring similarities of objects in manifold structures. Finally, an im-
proved K-means with the path-based distances is developed to achieve
the clustering purpose, after deliberately choosing initial centers. The
experimental results on both synthetic and medical data sets show
that the proposed clustering algorithm is more superior to the popular
clustering algorithms in identifying arbitrary-shaped clusters.

Since MN-Kmeans needs to derive representative neighbors from
mutual neighbors and construct the minimum spanning tree, its time
complexity is relative higher than the classical K-means algorithm.
Our future work will focuses on this issue by virtue of sophisticated
techniques.
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