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Many studies on Graph Data Augmentation (GDA) approaches have emerged. The techniques have
rapidly improved performance for various graph neural network (GNN) models, increasing the current
state-of-the-art accuracy by absolute values of 4.20%, 5.50%, and 4.40% on Cora, Citeseer, and PubMed,
respectively. The success is attributed to two integral properties of relational approaches: topology-
level and feature-level augmentation. This work provides an overview of some GDA algorithms which
are reasonably categorized based on these integral properties. Next, we engage the three most
widely used GNN backbones (GCN, GAT, and GraphSAGE) as plug-and-play methods for conducting
experiments. We conclude by evaluating the algorithm’s effectiveness to demonstrate significant
differences among various GDA techniques based on accuracy and time complexity with additional
datasets different from those used in the original works. While discussing practical and theoretical
motivations, considerations, and strategies for GDA, this work comprehensively investigates the
challenges and future direction by pinpointing several open conceivable issues that may require further
study based on far-reaching literature interpretation and empirical outcomes.
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1. Introduction

Data augmentation [1,2] applies label-preserving transforma-
ions such as rotation and translations [3] in input images in
omputer Vision (CV) and back translation [4] and Easy Data Aug-
entation (EDA) [5] in Natural Language Processing (NLP) tasks.

t effectively increases the available training set by construct-
ng apparent data variations without additional ground truth
abels, with minimal computational overhead, providing an ex-
ellent justification for combating overfitting in deep neural net-
orks [6]. Unfortunately, despite being effective for images and
exts, the structured and hand-crafted data augmentation strate-
ies often employed in CV and NLP cannot be extended to graph-
evel data due to irregular node connectivity encoding in a graph
tructure compared to positional encoding image and text data
tructure [7] as far as graph representation learning with GNN [8–
1] is concerned.
Graph representation learning has emerged as a practical ap-

roach to exploring graph-level data [12] over the past few years.
here has been substantial interest in transforming nodes into
ow-dimensional dense embeddings [13] that maintain the struc-
ural features and attributes of the graph. Therefore, it is be-
oming more and more widespread for graph-level data [14].
oreover, multiple works in graph-based studies involve vari-
nts of GNNs for link prediction [15], node classification [8,9,16,
7], and graph classification [18] and have achieved remarkable
tate-of-the-art performances.
Apparently, after a few years of development, the research

n GNN suffered from impediments due to the highly limited
ata sizes of the traditional graph datasets. Such impediments
nclude over-fitting and over-smoothing [19–21], unrealistic and
rbitrary data splits, non-rigorous evaluation metrics, and com-
on neglect of validation set [22–24]. However, the Open Graph
enchmark (OGB) datasets [25] have tackled some of these sig-
ificant issues and unraveled more practical challenges in the
NN research society. Furthermore, a review of the standard
CN for node classification reveals that they are usually shallow,
imiting the number of layers to 2 [7]. Therefore, an attempt
o go deeper is still entrenched with these impediments. Most
ecently, several works have proposed research on developing
eep GNN models [17,19,26,27] for node classification, ranging
rom node sampling [28–30], layer sampling [16,31,32], and sub-
raph sampling [33,34]. Nevertheless, such research still falls in
he highly limited data sizes of graph datasets which have led to
DA such as adversarial perturbation [35–38], node and struc-
ural perturbation [13,14,39] and all other methods. Despite the
rogress of numerous GDA techniques developed for various GNN
rchitectures, we observe that there are only a few surveys [40]
o recap and examine recent progress.

Furthermore, all these works on graph data augmentation,
anging from global [41] to local [42] perturbations, can be
rouped into two categories. Therefore, we provide an overview
f GDA by discussing current state-of-the-art algorithms and their
rogress to bridge the gap in other works over time. More im-
ortantly, various studies propose various mathematical formu-
ations, making comparing different methods challenging. How-
ver, this work unifies the formulation surrounding most GDA
2

Table 1
Algorithms and augmentation types used relative to the part considered in the
graph data.
Method Type Considered part Perturbed part

AdaEdge Sampling A A
DROPEDGE Sampling A A
GAUG-O Reconstruction A&X A
G-GNN Reconstruction A&X X
LA-GNN Generation A&X X
NodeAug Sampling A&X X
FLAG Generation X X
GCA Generation A&X A

studies by grouping the algorithms into two categories: topology-
level A′

= Hϕ(X,A) (Section 3.1) and feature-level X′
= Hϕ(X,A)

(Section 3.2), augmentation. Then, we tune the formulation of
the proposed algorithms for each category based on each group.
What is more, all the proposed GDA methods can be applied
with any GNN model in a plug-and-play manner to extensively
perform experimental analysis across a diverse set of benchmarks
without using a sophisticated architecture. Hence, we perform
such experiments on eleven public graph datasets to evaluate
their performance. Note that the evaluation is not to prove which
algorithms perform best since they are uniquely designed to ex-
periment on a different datasets. Instead, our main objective is to
project how data augmentation has improved accuracy to current
state-of-the-art and demonstrated significant differences among
various GDA techniques. Furthermore, the various algorithms
discussed (See Table 1 for perturbed parts) involve different types
of data augmentation, such as sampling and reconstruction, in the
adjacency matrix A, the feature matrix X, or the combination of
both. Table 2 describes the notations used in this work.

In summary, the contributions of this work are as follows:

1. We provide an overview of GDA in GNN based on an
in-depth exploration of the state-of-the-art techniques.

2. We reasonably categorize the state-of-the-art GDA algo-
rithms into topology-level and feature-level augmentation
to comprehend the similarity and the difference between
various works. In addition to the outlined category, we
interpret the algorithms proposed for each in a unified
mathematical formulation.

3. We apply the GDA methods to the three most widely
used GNN variants to conduct extensive experiments with
additional datasets different from the datasets used in the
original work to test the algorithm’s effectiveness for a
fair and reliable comparison based on accuracy and time
complexity.

4. Finally, we comprehensively investigate the challenges and
future directions of GDA based on the interpretation of the
wide-reaching literature and empirical results. We provide
a GitHub repository1 with a reading checklist of various
GDA works and codes that will be constantly updated.

The rest of the paper is organized as follows. Section 2 in-
troduces an overview of recent Graph-level data augmentation

1 https://github.com/Madjeisah/gda-overview.

https://github.com/Madjeisah/gda-overview
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nd some key augmentation strategies. A representative of GDA
lgorithms and newly proposed ones based on the two categories
xplaining their core methods are thoroughly discussed in Section
. Section 4 presents various graph datasets, experimental analy-
is, and visualization of results. Section 5 discusses the challenges
nd future direction associated with GDA. Finally, we conclude
his work in Section 6.

. Overview

.1. Graph neural network

Given that G = (V, E), is an undirected graph, with vertices or
ode set V = {v1, . . . , vn} and edge set E . The adjacency matrix
f G is the A ∈ Rn×n matrix such that:

ij =

{
1, if(vi, vj) ∈ E;

0, if(vi, vj) /∈ E.
(1)

hus binary matrix A in a graph with edges of n nodes is such that,
f there is an edge between node i and j, then Aij = 1, else Aij = 0.
Hence A is also written as A = [Aij]. The attribute matrix X is
represented as X ∈ Rn×q, where the ith row denotes vi’s attributes
and q denotes the total number of the attributes. During training
the entire adjacency matrix A and node attributes X serves as an
input data:

X = H
(
A,X

)
, (2)

where, H
(
·
)
is a perturbation function. GNN, such as Graph Con-

volutional Networks (GCN) [8] and Graph Attention Networks
(GAT) [9], are neural network types that operate on graph struc-
tures to capture the dependence of graphs through message
handling between the nodes. The feed forward propagation in
graph convolutional operations is mathematically expressed as:

H (l)
= λ

(
ÂH (l−1)W (l)

)
. (3)

Here, H (l)
∈ Rn×d(l) and H (l−1)

∈ Rn×d(l−1)
are the output and input

node representation matrices of the lth layer, W (l)
∈ Rd(l−1)

×d(l)

is a trainable weight matrix for the lth layer. Â = D−
1
2
ˆ̂AD−

1
2 ,

here, ˆ̂A = A + I is the adjacency matrix with self-connections.

he diagonal node degree matrix D =

⎛⎜⎝d1 · · · 0
...

. . .
...

0 · · · dn

⎞⎟⎠ , if di be

he degree of vi in Eq. (1), and λ
(
·
)
is a non-linear activation

unction. Following Hu et al. [43], the GNN architecture operates
n two main layer parameters–AGGREGATE

(
·
)
and COMBINE

(
·
)
.

The former is passing messages from all neighboring nodes and
edges [44], and COMBINE with the previous embedding of the
given node in the later.

msg(k)v = AGGREGATE(k)
({

h(k−1)
u : u ∈ N (v)

})
h(k)

v = COMBINE(k)
(
h(k−1)

v ,msg(k)v

)
,

(4)

where, h(k)
v denotes the embedding of node v at the kth layer

and N (v) represents the neighbor set of node v which produces
the propagation perspective through the graph by its edges. The
formulation allows the GNN to function on arbitrary sizes and
shapes of graphs, ensuring that the update stage is consistent
with the sequence of nodes (generally known as permutation in-
variance). GCN integrates the aggregate and combined functions
3

into a single update equation [8,45] as:

h(k)
v = λ

⎛⎝W (k)
·

∑
u∈N (v)∪{v}

1
dudv

h(k−1)
u

⎞⎠ , (5)

where, λ is a ReLU activation function. Given a node, GAT updates
the embedding by assigning attention to each edge with a non-
isotropic aggregation to specify the contribution of neighboring
nodes. Mathematically,

e(k)uv = λ

(
Λ · CONCAT(k)

[
W (k)h(k−1)

u ,W (k)h(k−1)
u

])
α(k)
uv = λ̄u∈N (v)∪{v}

(
e(k)uv

)

h(k)
v = σ

⎛⎝ ∑
u∈N (v)∪{v}

α(k)
uv W

(k)h(k−1)
u

⎞⎠ .

(6)

ere, Λ denotes the attention, λ and λ̄ are the activation func-
ions of LeakyReLU and SOFTMAX, respectively. α is the final
on-linearity (usually a softmax or logistic sigmoid for classifica-
ion problems) [9]. Such learned attentions are helpful to analyze
nd interpret the graph. Similarly to GCN, Graph SAmple and
ggreGatE (GraphSAGE) [29], on the other hand, uses max pooling
nstead of symmetric mean pooling or normalization as:

(k)
v = MAX

({
λ

(
W (k)

pool · h
(k−1)
u

)
: u ∈ N (v)

})
h(k)

v = λ

(
W (k)

· CONCAT
[
h(k−1)
u , a(k)v

])
.

(7)

All node embeddings are transformed using a fully connected
ayer in the aggregate function, performing an element-wise max-
ooling function to aggregate information from all neighbors.
he aggregate and previous embedding output are first concate-
ated with the combine function for a fully connected layer
ith the ReLU activation function. Other variants of GNN include
he Graph Isomorphism Network (GIN) [10] and Simple Graph
onvolution (SGC) [46]. However, we limit this work to how
arious GDAs engage the three widely used variants (GCN, GAT,
nd GraphSAGE, also called GSAGE).
The primary motivation is that GCN is the most popular GNN

rchitecture due to its simplicity and effectiveness in various
asks and applications. To be precise, the node representations in
ach layer are updated according to a propagation rule, as shown
n Eq. (3). In GCNs, the importance of a neighbor j is specified
y the weight of its edge Aij for a target node i. Nevertheless,
n practice, the edge weights may not be able to reflect the true
trength between two nodes, hence the inability to handle noisy
nput graphs.

GAT is built on the principle that the approach automatically
earns the importance of each neighbor based on the Attention
echanism [47]. In GAT, the attention layer defines how to trans-

er the hidden node representations in layer k−1 to the new node
epresentations k. A shared linear transformation is then applied
o every node to sufficiently transform the lower-level node to
igher-level node representations. Self-attention is finally defined
n the nodes to estimate the attention coefficients for any pair
f nodes. Both GCN and GAT are suitable for node classification
n the transductive setting; however, they are not scalable in the
nductive setting.

As the graph data is rapidly growing, the graph size is in-
reasing exponentially. The medium-size ogbn-arxiv dataset of
he OGB datasets consists of relatively large nodes and edges.
herefore, the original implementation of GNN is not suitable due
o the large memory requirement and weak gradient update. Also,
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Fig. 1. The various types of data augmentation strategies for graphs [45].

as mentioned, most of the work focuses on transductive learning
on a fixed-size graph [8] at the early stage of GNN development.
In many cases, the inductive setting is more applicable. Although
Yang et al. [48] developed inductive learning on graph embed-
dings, inductive representation learning was first considered in
GraphSAGE on large-scale graphs. It presents a generalized ag-
gregator, mini-batch training, and fixed-size neighbor sampling
algorithm to accelerate the training process, hence more scalable.

Ultimately, GCN is a spectral-based graph convolutional net-
ork, GAT is based on the Attention mechanism, and GraphSAGE
ses mean, LSTM and max-pooling aggregator, respectively, to
ggregate the information from neighbors [47].

.2. Graph data augmentation

Graph data augmentation initiates data objects through struc-
ure modification or feature generation, a technique similar to
ata augmentation in CV and NLP. However, graphs are connected
ata with complex non-Euclidean structures. The advantage of
raph data is the ability to model a complex data relationship
hat is intimately structured to accommodate inference of indirect
acts and tangentially related information. The edges are just as
mportant and detailed as the vertices/nodes. Therefore, the GDA
ethods modify the entire graph for tasks at the node and edge

evel instead of some data objects [40].
Researchers have recently focused on uncovering suitable aug-

entation strategies for learning better representations for dif-
erent GNN tasks. While some augmentation approaches change
he original graph’s structure, others maintain the graph struc-
ure. In addition, they perturb the node features, making the
epresentations consistent with initial node attributes. It has also
een established that the involvement of various pairs of aug-
entations relative to the graph and its augmentation further

mproves performance [14,49,50]. For instance, GCA composed
dge perturbation and applied attribute masking to achieve ad-
quate performance in denser graphs. Subgraph and node drop-
ing are generally beneficial in various domains of datasets. On
he other hand, edge perturbation benefits social networks, how-
ver, and damages some biochemical molecules [14]. The follow-
ng is a summary of the popular GDA approaches for GNN and an
llustration in Fig. 1.

.2.1. Edges perturbation
Given the graph G or batched graphs Gb it perturbs the con-

nectivity by randomly adding or dropping a specific ratio of edges
in an existing graph to create new graphs. The implication is
that the semantic aspects of G or Gb have a certain robustness
o the variances of the edge connectivity patterns [14,26,27,51].
4

In particular, edge perturbation has been established to benefit
social networks, but is conceptually incompatible with data from
biomedical molecules [36,52].

After DropEdge [27], which randomly dropped a fixed frac-
tion of edges, TADropEdge [53] dropped the edges utilizing the
weights of the edges as probabilities. Zheng et al. [54] employed
an MLP-based graph sparsification model to remove the poten-
tial tasks-irrelevant edges; the proposed Neural Sparse model is
supervised and jointly trained with GNN for node classification
tasks. However, set a high constraint on the modified graph. Luo
et al. [55] further proposed using a nuclear norm regularization
loss to impose a low-rank constraint by the graph sparsification
model [40].

2.2.2. Node augmentations
Given the graph, the primary objective of node dropping is

to randomly discard a certain fraction of vertices along with
their connections to create new graphs. The underlying prior
enforced by it is that all edges linked to that particular node are
deleted, while missing parts of the vertices does not affect the
semantic aspects of the graph [14,35,36]. For example, DropN-
ode [56] removes nodes by masking selected nodes’ features.
Some works [7] modified the graph structure for training, and
Mixup [57] combined two existing nodes to generate new nodes.

2.2.3. Attributes masking
The underlying objective of attribute masking is to learn rep-

resentations consistent with node features based on the graph
structure. Some masking approaches are fashioned by sampling
each mask entry from a Gaussian of pre-specified mean and vari-
ance [11,43]. In contrast, others propose masking patterns and
more high-degree hub nodes to benefit from denser graphs [14].
For example, FLAG [6] engaged gradient-based adversarial per-
turbations to increase the characteristics of the nodes, and You
et al. [14] randomly masked off-node features.

2.2.4. Graph diffusion
This approach transforms the adjacency matrix in graph con-

volution into a diffusion matrix using a heat kernel that provides
a global view instead of the local view of the graph [58,59]. GNNs
can aggregate information only in one hop in each layer during
message passing. The diffusion-based induced graph by Klicpera
et al. [60] is used for training and inference. The method allows
GNNs to learn from multi-hop information without redesigning
the model. However, the approach is limited to only the created
views. The MV-GCN method [61] utilizes the information given
by the different graph diffusions (both the created views and the
original graph).

2.2.5. Subgraph extraction
Random walk [22,62] has been established as one of the ap-

proaches to continue adding nodes until a fixed predecided num-
ber of nodes is achieved to form a subgraph given the graph G
or batched graphs Gb. The works [63,64] related to the subgraph
how that implementing local (subgraphs) and global information
onsistency is advantageous for representation learning. Although
perations are established to affect numerous nodes, they are
enerally adopted for graph-level tasks. In particular, the recent
se of subgraph cropping [49,65] and the creation of new graphs
y mixing up two subgraphs [66–68] in subgraph augmentation.
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Fig. 2. Schematic diagram of a two-layer GNN illustrating structure representa-
tion learning.

3. Categorization of GDA

This section presents a detailed discussion of eight GDA al-
orithms based on Topology-level (graph structure representation

learning) and Feature-level (graph feature representation learn-
ing) augmentation, respectively, considering practical and the-
oretical motivations. Accordingly, the attributed graph G, can
be divided into two parts: the topology part and the feature
part [69].

3.1. Topology-level augmentation

Topological augmentation, which focuses on the generation of
structure representations, can be perceived as a modification to a
partition-based relation such as the direction relation matrix [70].
Topology-level enhancement is focused on the graph part, as
shown in Fig. 2. It usually perturbs the adjacency matrix A to
enerate different graph structures, which can be formulated as:

′
= Hϕ

(
X,A

)
, (8)

where Hϕ

(
·
)
is a structure generation function. The approach

involves the removal or adding edges. While dropping and adding
edges emerge as the most promising augmentation scheme for
graphs, the question remains, which edges to alter or eliminate?
In addition, some implementations treat the graph topology as
ground-truth information, leading to a low prediction.

Adding/removing certain edges makes node connections spa-
rse, therefore, avoiding over-smoothing to some extent when the
GCN goes deeper [27]. In topology-level augmentation, Adaptive
Edge Optimization (AdaEdge) [26] and DropEdge have proven
such a capability. While the latter randomly terminates a substan-
tial proportion of edges of the input graph by generating different
random distorted copies of the original graph, the former engages
the graph topology by iteratively adding the intra-class edges
and removing the inter-class edges during training. In addition,
DropEdge is treated as a message-passing reducer when the mes-
sage passing between adjacent nodes is carried out along the edge
paths in GCNs. The GAUG framework (GAUG-O) [7] engages in a
dual step, that is; (1) to obtain edge probabilities for all potential
and existing edges through the edge predictor function; (2) to
use the predicted edge probabilities to add/remove existing edges
to construct a modified graph to serve as input to a GNN node
classifier. Other techniques include Memory Tower Augmentation
(MeTA) [71]. This augmentation approach augments both the
temporal and topology features by first perturbing the edge time
to simulate time shifts and removing/adding edges to modify the
topology.

The following subsections discuss practical and theoretical
motivations, considerations, and strategies for topology-level GDA
5

Table 2
List of key notations.
Notations Description

G =
(
V, E

)
Graph representation

Gi =
(
Vi, Ei

)
Subgraph representation

A Adjacency matrix
X Attribute matrix
H

(
·
)

Perturbation function
Θ&Θ̃ Model parameter
W Trainable weight matrix
χ /η Regularization coefficients

dω

(
·
)

Calculates the distance between the input matrix
and the subspace

DKL
(
· · ·

)
The Kullback–Leibler divergence (KL divergence)

Qφ The generator
Pϑ The predictor
ȷζ

(
z|Xj,Xi

)
The encoder

Pκ

(
Xj|Xi, z

)
The decoder

ηCE /ηBCE Standard (binary) cross-entropy loss

techniques [72]. Specifically, we focus on AdaEdge, DropEdge,
GAUG-O, and Graph Contrastive Learning with Adaptive Augmen-
tation (GCA) [13] that engaged a joint adaptive GDA strategy at
the topology and node attribute levels.

3.1.1. DropEdge
Rong et al. [27] developed a novel approach called DropEdge

that alleviates over-fitting and over-smoothing, the two primary
impediments [19–21] of deep GNN. The approach acts as a data
augmenter and a message-passing reducer. DropEdge draws addi-
tional virtual examples from neighborhood information for each
node by randomly removing edges using the Vicinal Risk Mini-
mization (VRM) principle [73] to increase support for the train-
ing distribution. The technique randomly removes a substantial
proportion of the edges of the input graph by forcing nonzero
elements Vs of the adjacency matrix A to be zeros. In this case V
becomes the total number of edges and s represents the rate of
drop. Therefore, the resulting adjacency matrix in relation to A is:

ϕ

(
X,A

)
= A − Aq. (9)

In particular, Eq. (9) is independent of X, where Aq is a sparse
atrix consisting of a random subset of size Vs from the original

edges E . Layer-wise, DropEdge formulation is a one-shot with all
layers sharing a similar perturbed adjacency matrix, and hence it
can be applied on the individual layer. Meaning Hϕ

(
X,A

)(l) can
be obtained independently by computing the lth layer, making
different layers have a different adjacency matrix. The aggrega-
tion of neighborhood information for each node; the weighted
sum (associated with the edges) of the neighbor features is the
key in GCN. To make DropEdge an unbiased data augmentation
approach for GNN variants during training, the authors used a
multiplier s to anticipate neighbor aggregation with respect to
the probability of edges to drop. In practice, s is terminated after
weight normalization. Therefore, DropEdge models the vicinity
for the nodes sharing the same class and not altering any change
in anticipation of neighbor aggregation, hence combatting over-
fitting. Another major issue of deep GCN training is the node
features that converge to a fixed point as the network layer
increases, resulting in over-smoothing [19]. For a more general
purpose, DropEdge deals with this by working with the con-
cept of subspace [74,75], introducing several useful definitions to
simplify the idea.

Given a definition of a subspace, ω :=
{
ΛC |C ∈ RM×C

}
s a subspace of dimensions M in RN×C , such that Λ ∈

N×M
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s orthogonal, meaning ΛTΛ = IM and M ≤ N . The authors
resented the ϵ-smoothing notation of node characteristics for a
CN, if the entire hidden vectors exceed a specific layer (L) with
distance not larger than ϵ (ϵ > 0). Hence, represent a subspace

ndependent of the input features as:

ω

(
H (l)

)
< ϵ,∀l ≥ L. (10)

ere dω

(
·
)
calculates the distance between the input matrix and

he subspace ω. In particular, the definition of subspace and
-smoothing produces an ϵ-smoothing layer which engages a
inimal value of layers to satisfy Eq. (10) as:

∗

(
ω, ϵ

)
:= minl

{
dω

(
H (l)

)
< ϵ

}
. (11)

owever, it is challenging to perform analysis based on the ϵ-
moothing layer; therefore, a final definition called the relaxed
-smoothing layer proved to be an upper bound of l∗ was intro-
uced as:(
ω, ϵ

)
=

⌈ log
(
ϵ⧸dω(X)

)
logδι

⌉
, (12)

here
⌈
·
⌉

calculates the input ceil, δ is the supremum of the
ingular filter values on all layers and ι is the second largest eigen-
alue of Â in addition with l̂ ≥ l∗4. Note that Â is replaced with
ϕ

(
X,A

)
in Eq. (9) for propagation and training. In conclusion,

he authors [74] demonstrate the existence of ϵ-smoothing in the
eep GCN; however, they did not address it. DropEdge eliminates
he ϵ-smoothing problem by slowing down the convergence of
ver-smoothing when node connections are reduced. Secondly,
ropEdge measures the amount of information loss between the
nterval in the original space N and the converging subspace
. A larger interval implies intense information loss. Therefore,
ropEdge can increase the converging subspace dimension, while
educing information loss.

.1.2. AdaEdge
The main objective of AdaEdge [26] is to conduct a systematic

nd quantitative investigation of the over-smoothing situation in
NN. The authors found that the critical element behind over-
moothing is the information-to-noise ratio influenced by the
raph topology, which led to proposing two quantitative met-
ics; Mean Average Distance (MAD) and the gap of MAD values
MADGap). AdaEdge measures the smoothness of the graph rep-
esentation using the cosine distance between each pair of nodes.
o calculate the cosine distance, the authors formulate the adja-
ency matrix A ∈ Rn×n as the distance matrix for X in the form
of:

Aij = 1 −
Xi,: · Xj,:⏐⏐Xi,:

⏐⏐ ·
⏐⏐Xj,:

⏐⏐ i, j ∈
[
1, 2, . . . , n

]
, (13)

here X ∈ Rn×h is the graph representation matrix with term
h as hidden size, and Xk, : is the kth row of X. This generates
the possibility of further filtering the target node pairs with
element-wise multiplication of A as:

Atgt
= A ⊗ M tgt . (14)

Here, M tgt
∈ {0, 1}n×n is a mask matrix, notably, M tgt

ij = 1 if
the node pair (i, j) is the target node, otherwise M tgt

ij = 0. More
understandably, the nonzero values along each row in the target
node pairs Atgt can be used to compute the average distance as:

Ātgt
i =

∑n
j=0 A

tgt
ij∑n ( tgt) , (15)
j=0 ℓ Aij

6

where, ℓ(x) = 1 if x > 0, else 0. Therefore, given the target node
pairs, the MAD values are estimated by averaging the non-zero
values in Ātgt

i as:

ADtgt
=

∑n
j=0 Ā

tgt
ij∑n

j=0 ℓ
(
Ātgt
ij

) , (16)

The authors measure the quality of the message obtained from
he nodes by expressing the information-to-noise ratio as the bal-
nce of intra-class node pairs in all reference node pairs that have
elations via the GNN model. They concluded that an increase
n the network layer, where there is a small information-to-
oise ratio, causes an interaction between high-order neighbors
o bring too much noise and vice versa. Hence, it weakens the
aluable information, which is why the issue of over-smoothing.
herefore, Chen et al. [26] further proposed to compute the gap
f MAD values distinguishing remote and neighboring nodes to
valuate over-smoothness.

ADGap = MADrmt
− MADneb, (17)

here, MADrmt and MADneb are the MAD values of the remote and
eighboring nodes respectively in the graph topology. Based on
hese analysis, a MADGap-based regularizer (MADReg) objective
s defined on top of AdaEdge as;

=

∑
−llogp

(
l̂|A,X, Θ

)
− χMADGap. (18)

ere, l and l̂ are the golden and predicted labels of the nodes,
denotes the model parameter, and χ is the regularization

coefficient loss set to be consistent with the cross-entropy loss.

3.1.3. GAUG-O
The intricate non-Euclidean structure of graphs restricts the

possible manipulation operations in graph-level data augmen-
tation. Given graph structure, neural edge predictors can ade-
quately encode class-homophilic structure to facilitate intra-class
edges and downgrade inter-class edges to improve performance
in GNN-based node classification using edge prediction. The ob-
jective of GAUG-O [7] includes two steps: (1) to obtain edge
probabilities for all potential and existing edges in G via an edge
predictor function where the edge predictor can generally be
adjusted and replaced with an appropriate approach due to its
flexibility. (2) Add/remove new or existing edges utilizing the
redicted edge probabilities to construct a modified graph Gm to
erve as input to a GNN node-classifier. With this knowledge, an
dge predictor is defined as any model with graph input ϕep :

,X → Z , where Z is an output edge probability matrix. Here,
ab denotes the likelihood of an edge between nodes a and b.
he GAUG-O neural edge predictor produces a different structure
ampled adjacency matrix as:

′

ij =

⌈
1

1 + e(logPij+G)⧸γ
+

1
2

⌉
, (19)

where Pij = αMij + (1 − α)Aij, γ is the temperature of the
Gumbel-Softmax distribution, G ∼ Gumbel(0, 1) is a random vari-
able of Gumbel and α is a hyperparameter mediating the in-
fluence of the edge predictor on the original graph. For these
scenarios, it is clear that the graph autoencoder (GAE) [76] serves
as a suitable module for the edge predictor due to its simplic-
ity and competitive performance. In particular, the two-layer
GAE GCN encoder and an inner product decoder are defined as
follows:

M = λ

(
ZZT

)
. (20)

Here, Z = ϕ
(1)
GCL

(
A, ϕ

(0)
GCL

(
A,X

))
, where Z represents the hidden

embedding learned by the encoder, and λ is an activation func-
tion. GAUG-O handles the arbitrary deviation from the original
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raph adjacency of the edge predictor to derive an adjacency P
y interpolating the predicted M with the original A. Finally,
ith Bernoulli sampling at each edge, the adjacency of the graph
ariant A′ is derived during the edge sampling phase. The graph
ariant A′ is then processed along with the node features X,
herefore, a backpropagate with joint node classification loss and
dge prediction loss can be defined as:

= Lnc + χLep, (21)

here, χ is the regularization coefficient to weight the recon-
truction loss, Lnc = ηCE

(
ŷ, y

)
- the predicted and ground-truth

ode labels, Lep = ηBCE

(
σ
(
ϕep(A,X)

)
,A

)
, and ηCE /ηBCE denotes

he standard (binary) cross-entropy loss. The Lnc together with
Lep hypothetically helps to control possible tasks-irrelevant edges
in prediction performance during training.

3.1.4. GCA
GCA [13] engages a joint adaptive GDA strategy at the topology

and attribute level of the node, i.e., edge perturbation and at-
tribute masking by specifying essential edges and feature dimen-
sions using prominent criteria. The approach provides different
contexts for nodes in diverse views and representations consis-
tent with specialized perturbations learned for various graph-
level data [14], thus fostering optimization of the contrastive
objective.

Given Q as the set of all possible augmentation functions, the
authors sampled two stochastic augmentation functions q ∼ Q
and q′

∼ Q, in the GCN model, to generate two graph views
Ḡ = q

(
Ḡ
)
and Ḡ′ = q′

(
Ḡ
)
with two-node embeddings in view

as U = H
(
X̄, Ā

)
and U ′

= H
(
X̄′, Ā′

)
, where H (·) remains the

perturbation function of the characteristic for the characteristic
X̄∗ and adjacent matrices Ā∗. The goal is to score the agreement
between positive and negative pairs; hence the model can be
trained using the InfoNCE objective [77] for each positive pair
(ui, vi) as:

LInfoNCE = log
eo(ui,vi)⧸γ

eo(ui,vi)⧸γ +

∑
i=1

eo(ui,vi)⧸γ
+

∑
i=1

eo(ui,vi)⧸γ
. (22)

Here, γ remains the temperature parameter, and o (ui, vi) =

cossim
(
λ (u) , λ (v)

)
, where cossim (·) denotes the cosine similarity,

and λ (·) is a non-linear projection. Therefore, the overall objec-
tive of the two symmetric generated views is maximized as the
average over all positive pairs by:

L =
1
2N

N∑
i=1

[
LInfoNCE (ui, vi) + LInfoNCE (ui, vi)

]
(23)

nspired by GRACE [78], GCA considered a direct means of cor-
upting input graphs by randomly eliminating edges in the graph.
t simulates an altered subset Ei in Gi =

(
Vi, Ei

)
from the original

et Ei in G =
(
V, E

)
with probability function:((

u, v
)

∈ Ei
)

= 1 − peuv, (24)

here,
(
u, v

)
∈ E and peuv denote the probability of dropping

u, v
)
and Ei serves as the edge set in the generated sample. In

articular, peuv is an influential link structure of the edge
(
u, v

)
,

llowing the augmentation operation to have more potential to
orrupt trivial edges while preserving the essential connective
tructures during augmentation.
7

Fig. 3. Schematic diagram of a two-layer GNN to illustrate feature
representation generation.

3.2. Feature-level augmentation

Unlike the topology-level augmentation function in Eq. (8), the
feature-level augmentation function can be defined as:

X′
= Hϕ(X,A) (25)

where, Hϕ (·) is the feature representation function. Although
research argues that removing nodes decreases the data available
during node classification tasks, additional nodes pose a challenge
in labeling by assigning features and links of new nodes. How-
ever, it remains a fact that emphasizing the influential nodes by
placing a probability on the trivial ones can enhance the clas-
sification performance. Feature-level augmentation, which can
be termed feature representation generation (Fig. 3), mainly ex-
ploits the perturbation of nodes’ attributes guided by adversarial
training [6,38,79].

Global information for GNNs (G-GNN) [41], which preserves
the learned global information, is known for its performance,
easy implementation, and theoretical understanding. Summarily,
G-GNN (a.k.a. global preservative) constructs the global infor-
mation as the global structure and global attribute features to
each node and pre-trained them for a final parallel GNN-based
model to learn distinct characteristics from the pre-trained and
original features. Local Augmentation for GNN (LA-GNN) [42]
(a.k.a. local preservative) preserves the locality of node represen-
tations by their subgraph structure. Node-Parallel Augmentation
(NodeAug) [80], another feature-level augmentation technique,
offered three distinct GDA methods by (1) adjusting node at-
tributes, (2) graph structure, and (3) introducing a subgraph
mini-batch training for resourceful execution. The comprehensive
idea is that adversarial training harms generalization, hence not
performing well in model accuracy [81,82]. However, attention
has been focused on utilizing adversarial perturbations to expand
datasets and combat overfitting. Furthermore, despite its success
in language [83–85] and vision [86], it remains ambiguous how to
use adversarial augmentation to efficiently improve the accuracy
of GNN.

The following subsection concentrates on NodeAug, FLAG, G-
GNN, and LA-GNN. Most importantly, FLAG (an adversarial aug-
mentation method) engaged a large-scale dataset for experimen-
tal analysis, which is vital in inductive learning.

3.2.1. NodeAug
Graph data augmentation for different nodes influence each

other, leading to uncontrollable magnitudes and causing changes
in ground-truth labels. The NodeAug technique [80] initiates a
parallel system for each node to perform GDA tasks to help in-
tercept such unwanted results. In addition, NodeAug normalizes
the model prediction of both labeled and unlabeled nodes to be
uniform with respect to modifications yielded by augmentation
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or effectiveness. The authors offered three distinct GDA methods
y (1) adjusting the node attributes, and (2) the graph structure,
nd (3) introducing a subgraph mini-batch training for resource-
ul execution. That is, to achieve better generalization [87] and
ecrease computational costs, they proposed the subgraph mini-
atch training approach. Given a subgraph Ei in Gi =

(
Vi, Ei

)
of

he graph representation Ei in G =
(
V, E

)
, generally GCNs offer a

onditional outcome distribution of node i as:(
y|Gi =

(
Vi, Ei

)
,
{
xj
}
j∈vi

, Θ

)
, (26)

here y is the class label, xj indicates the attributes of node j
nd Θ denotes the model parameter. Clearly, the receptive field
i is smaller than G. Therefore, Gi and

{
xj
}
j∈vi

subsidized the
prediction of node i as demonstrated in Eq. (26) instead of a
full-batch training technique [7], which accumulates the entire
graph at each iteration. Subgraph Gi is the result of the k-hop
neighborhood around the selected center node i in a kth layer
of GCN with row-normalization [41]. Therefore, to increase i, it
would be more efficient to modify Gi and

{
xj
}
j∈vi

than to alter xi as
Gi and

{
xj
}
j∈vi

greatly influence input features of other nodes and
xi serves as the only part of the input characteristics. Due to such
a significant influence, the authors proposed a ‘parallel universes’
GDA strategy for separate and various individual nodes, changing
the input features without altering the class labels.

Assuming that the attributes of the Ĝ and
{
x̂j, j ∈ v

}
nodes are

enhanced from the graph G and the node i, the model minimized
a consistency loss similar to UDA [70] as:

Lc =
1⏐⏐V⏐⏐DKL

(
p
(
y
⏐⏐Gi,

{
xj
}
j∈vi

, Θ̃

)⏐⏐⏐⏐p(y⏐⏐Ĝi,
{
x̂j
}
j∈vi

, Θ

))
, (27)

where Ĝi denotes the subgraph corresponding to its receptive
field, DKL

(
·
⏐⏐⏐⏐·) is the Kullback–Leibler divergence (KL divergence)

[88] between the actual and observed probability distribution,
and Θ̃ is a fixed copy of the parameter Θ . However, UDA en-
gaged image data, while NodeAug focuses on graph-level data
augmentation. This knowledge is embedded into the model to
perform extraction, facilitating minimization of the consistency
loss on both original and augmented graphs. When extraction is
performed on only the labeled nodes of the original graph, the
authors tuned Eq. (27) for a supervised classification loss as:

Ls =
1⏐⏐VL

⏐⏐ ∑
i∈VL

ηCE

(
y∗

i , p
(
y|Gi =

(
Vi, Ei

)
,
{
x̂j
}
j∈vi

, Θ

))
. (28)

Here, VL is the set of all the labeled nodes, ηCE
(
·, ·

)
denotes the

cross-entropy function utilized by previous GCN models, and y∗

is a one-hot label of node i. Then the overall objective function of
NodeAug to consistently classify both the labeled and unlabeled
nodes before and after augmentation is computed as:

L = Ls + χLc, (29)

where, χ is the regularization coefficient to control the influence
of consistency loss with a default of 1 to balance Ls and Lc .
During augmentation, the authors engaged in three strategies: (1)
replacing attributes; (2) removing edges; and (3) adding edges for
GDA (Section 2.2).

3.2.2. FLAG
The FLAG [6] method iteratively augment node features with

gradient-based adversarial perturbations for better performance
during training. Following Eq. (25), the perturbation function in
FLAG is defined as:

Hϕ(X,A) = X + δ (30)
8

where perturbation δ is updated iteratively during the adversarial
training phase. In particular, FLAG adversarial perturbation is con-
sidered a strong candidate method for enhancing input features
based on the highly prominent out-of-distribution phenomenon
of graph domain data [41]. FLAG has a two-way approach; (1) the
problem of attacking a given neural network, (2) the problem of
training a robust classifier using adversarial training strategies.
Especially, their principle views the saddle point issue as forming
the outer minimization and inner maximization problem. Thus,
while inner maximization strives to craft an adversarial perturba-
tion of the data point x, outer minimization seeks to find the best
parameters to minimize the ‘‘adversarial loss’’ given the inner
maximization problem. Therefore, the creation of pseudo-data
points given samples from the distribution D, is expressed as:

min
ϑ

E(x,y) ∼ D
[
max
∥δ∥p≤ε

L
(
fϑ

(
x + δ

)
, y

)]
(31)

where y is the label, ∥δ∥p is some norm distance metrics, ε

is a perturbation parameter and L (·) is an objective function.
Previous work such as the Fast Gradient Sign Method (FGSM) [89]
and multiple variations of FGSM [90] engaged an l∞-bounded
constraint attack and formulated an adversarial data point as:

x + εsign
(
∆xL

(
ϑ, x, y

))
. (32)

However, the multi-step variant is a better practical adversary ap-
proach [91]. It essentially engages the projected gradient descent
(PGD) in the negative loss function for the inner maximization.
To satisfy the perturbation δ in Eq. (30), the estimate of inner
maximization under an l∞-norm constraint of the PGD algorithm
is formulated as follows:

δt+1 =

∏
∥δ∥∞≤ε

(
δt + α · sign

(
∆δL

(
fϑ

(
x + δt

)
, y

)))
, (33)

where
∏

∥δ∥∞≤ε performs projection onto the ε-ball in the l∞-
norm. The process generates the most vicious noise δM for max-
imum robustness by iteratively engaging multiple loops M times
via end-to-end forward and backward passes to serve as input
features.

Unraveling Min–Max optimization with PGD is effective; how-
ever, practice slows the model training M times due to the model
eights ε updating once in the final δM . The ultimate purpose

of FLAG is to improve the diversity and quality of adversarial
perturbations by leveraging multi-scale augmentations [92] to
influence the generalizing capability comprehensively. With ‘free’
adversarial training [35], the process simultaneously produces a
perturbation that updates the model parameter ε in the exact
backward pass in parallel, while estimating the gradient for the
perturbation δ with effectively zero extra cost. In particular, a
mini-batch M is triggered in a row to simulate inner maximiza-
tion in Eq. (31), resulting in competitive accuracy with fewer
epochs. The optimization step is formulated as follows:

ϑi+1 = ϑi −
τ

M

M∑
t=1

∆ϑL
(
fϑ

(
x + δt

)
, y

)
, (34)

here τ is the learning rate and δ1 is uniform noise. To achieve
multi-scale augmentation, X is augmented with additive pertur-
bations δ1 : M , using the ‘‘free’’ algorithm approach instead of
a single perturbation δM with scaling Mα in PGD. This approach
offers space for each perturbation budget to control a maximum
scale of mα, m ∈

{
1, . . . ,M

}
, thus dramatically adding to the

multiplicity of the augmented data. However, the ‘‘free’’ algo-
rithm encounters a suboptimal Min–Max optimization problem
during the batch-replay procedure. Therefore, the perturbation
estimated for the target maximization ϑ is used to optimize
t
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t + 1 relatively to ϑt robustly. FLAG alleviates such instances
by exploiting the acquired gradient’s ‘‘by-product’’ from the gra-
dient ascent step on δ. Instead of updating ϑ directly, the gra-
dients ∆ϑL are accumulated and are later applied to the model
parameters.

3.2.3. G-GNN
Global information for GNNs [41] constructs the global infor-

mation as (1) the global structure and (2) the global attribute
features to each node and pre-trained them. Finally, a proposed
parallel GNN-based model learns distinct characteristics from the
pre-trained global and original features via a hidden state by iter-
atively aggregating the neighborhood attributes. Mathematically,
the two-layer GCN using hidden states is defined as:

H = λ

(
ˆ̂AXW0

)
W1, (35)

where, each row in H represents the final hidden states of a node
and each row corresponds to a prediction category. W0 and W1
are the trainable weight matrices.

From Eq. (25), G-GNN first maximizes the probability source
context pairs, by minimizing the global structure feature matrix
with dimension vector ds using the objective function:

∏
v∈V

∏
u∈N(v)

exp
(
X (s)

v · X (s)
u

)
∑
k∈V

exp
(
X (s)

v · X (s)
k

) , (36)

here, vi denotes the ith row of the global structure feature
ector. In particular, neighborhood nodes within the convinced
istance to the source node v are reflected as context nodes v,
hich are represented as N(v) ⊂ V in node sequences. Sec-
nd, global attribute features are obtained by maximizing the
robability of context attributes.
Hypothetically, if the context attributes can be retrieved from

he source node, the learning approach has already preserved
ital information. Therefore, for each sampled context node u ∈

(v) some attributes of u are resampled as context attributes v.
iven the global attribute feature matrix X(a)

∈ Rn×da and S ∈
da×|U |, as the parameters for the prediction of attributes, the
bjective function is minimized as follows:

∏
v∈V

∏
a∈Csam(v)

exp
(
X (a)

v · Sa
)

∑
k∈U

exp
(
X (a)

v · Sk
) , (37)

here, Csam(v) is the context attributes sampled from v, and U
s the set of all attributes where |U | = shape(X) in Eq. (25) vi is
the ith row of the global attributes feature vector. Next, we have a
parallel model with GNN kernels to learn from the input matrices;
heterogeneous features X(s), X(a) and the original X. In particular,
the G-GNN methods are viewed as a transform from the original
X and A to the final hidden states Hfinal as:

Θ

(
X,A

)
: X,A → Hfinal (38)

where, Θ
(
·
)
is the learning kernel of the G-GNNs and each kernel

satisfies Eq. (35). Thus, these matrices serve as input to a parallel
GNN based model, to learn their respective hidden states H (1),
H (2) and the original H (0) to a final hidden state Hfinal. Observably,
feature matrices H (1) and H (2) and are highly correlated since
the amplitude varies in dimension on pre-trained. Therefore, a
transformation r =

r−µ(r)
σ (r) where, r denotes each row in H (1) or

(2), µ
(
·
)
is the mean and σ

(
·
)
represents the standard deviation
9

for normalization. To fulfill Eq. (35), the kernels to learn from the
three feature matrices are formulated as;

H (0)
= Θ

(
X,A

)
H (1)

= Θ

(
X(s),A

)
H (2)

= Θ

(
X(a),A

)
.

(39)

Finally, the overall hidden state matrix to linearly combine
the three obtained hidden state matrices can be formulated as
follows:

Hfinal = H (0)
+ χH (1)

+ ηH (2), (40)

where, χ and η are regularization coefficients between 0 and 1
to influence the tuning of the weight of the pre-trained features
for optimization.

3.2.4. LA-GNN
The Local Augmentation for GNN (LA-GNN) [39], approach is

motivated by three-folds: (1) prior feature-level augmentation
methods focus on global information, escaping the informative
neighborhood; (2) the representation distributions of the neigh-
bors are closely related to the central node, creating immense
space for feature-level perturbation; and (3) preserving locally
learned information leads to combatting over-smoothing [18,19,
93]. With respect to Eq. (25), LA-GNN uses a GNN classification
estimator to model a conditional distribution as:

Hϕ
(
X,A

)
= Pϑ

(
y|X,A

)
. (41)

Here, ϑ denotes the model parameter and y is the class label.
Therefore, given

{
X,A, y

}
as training samples, the authors es-

timated the parameter ϑ with Maximum Likelihood Estimation
(MLE), using optimization function:

max
∏
k∈K

Pϑ

(
yk|X,A

)
, (42)

where K is a set of node indices of the dataset with visible labels
during semi-supervised training. LA-GNN is treated as a node fea-
ture generation model, producing additional X̄ generated features
that produce a new model Pϑ

(
y, X̄|X,A

)
. Then to benefit from

decomposition, a marginalized likelihood Pϑ over X̄ is optimized
as:

max
∏
k∈K

∫
X̄
Pϑ

(
yk, X̄|X,A

)
. (43)

Pϑ can further be decomposed with Bayesian tractability as the
outcome of two posterior probabilities of Pϑ

(
y|X̄,X,A

)
and Qφ(

X̄|X,A
)
as:

Pϑφ

(
yk|X̄,X,A

)
:= Pϑ

(
yk|X̄,X,A

)
· Qφ

(
X̄|X,A

)
, (44)

where, the first indicates the probabilistic distributions estimated
by the downstream GNN, and the latter denotes the feature-
level generator (augmentation) which happens to be a conditional
variational auto-encoder (CVAE) [91,92]. The advantage of de-
composition is that it allows the model to decouple the generator
Qφ and the predictor Pϑ , allowing the generator to generalize to
other downstream GNN tasks efficiently, therefore being supe-
rior to a single predictor Pϑ

(
yk|X,A

)
. Therefore, with additional

generated X̄ feature samples from the conditional distribution
Qφ , the training process can optimize Pϑ

(
yk|X̄,X,A

)
once the

generator is sufficiently trained.
In particular, given

{
Xj|j∈Ni ,Xi

}
, the authors engaged in a naive

solution to learn a single distribution for all neighbors that em-

ploy the MLE scheme during feature generation by solving the
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ptimization problem.

max
κ

∑
j∈Ni

log pκ

(
Xj|Xi

)
= max

κ
log

∏
j∈Ni

pκ

(
Xj|Xi

)
, (45)

here pκ indicates the feature augmentation parameter for the
hole neighbor. The consequence is that the differences between
eighbors are ignored in such a solution, generating extreme
oise. However, the authors overcome these limitations presum-
ng that each neighbor benefits from various conditional distribu-
ions and used CVAE to learn the distribution of a latent random
ariable zj and an existing conditional distribution p

(
·|Xi, zj

)
.

Particularly with zj and p
(

·|Xi, zj
)
, one can compute Xi ∼

p
(
X|Xi, zj

)
for Xj|j∈Ni to generate augmented features X̄, which

can then be trained on Pϑ

(
yk|X̄,X,A

)
to improve the predictor

Pϑ performance.
The following previous work [94,95] log pκ

(
Xj|Xi

)
is written

with latent variables z to estimate CVAE optimization. Finally,
given the encoder and decoder preambles with two-layer Multi-
layer Perceptron (MLP) each, an estimation is made to satisfy the
Evidence Lower Bound (ELBO) as:

L
(
Xj,Xi; κ, ζ

)
= DKL

(
ȷζ

(
z|Xj,Xi

)⏐⏐⏐⏐Pκ

(
z|Xi

))
+

∫
ȷζ

(
z|Xj,Xi

)
log Pκ

(
Xj|Xi, z

)
dz,

(46)

here
{
κ, ζ

}
represents the variational and generative param-

eters derived from φ in the CVAE model Qφ

(
X̄|X,A

)
, whereby

ζ

(
z|Xj,Xi

)
denotes the encoder and Pκ

(
Xj|Xi, z

)
indicates the

ecoder, and DKL
(
·
⏐⏐⏐⏐·) is the KL divergence. The generated feature

atrix is final optimized with MLE by a downstream GNN model
ith respect to Eq. (44) as:

ϑ

(
yk|X̄,X,A

)
∞ − L̄

(
X̄,X,A, ϑ

)
, (47)

here, L̄
(
·
)

= −
∑

k∈T
∑C

f=1 ykf ∈
(
softmax

(
Θ

(
· · ·

))
kf

)
. In

particular, Θ
(
· · ·

)
denotes the model parameter that makes up

¯ ,X, and A.

4. Experiments

In this section, we perform an analysis on the most publicly
sed graph datasets based on the algorithms discussed for GDA.

.1. Dataset

We utilize eleven public graph datasets Cora, Citeseer, Pubmed,
gbn-products, ogbn-proteins, ogbn-arxiv, Wiki-CS Amazon-Co-
puters, Amazon-Photo, Coauthor-CS, and Coauthor-Physics.
pecifically, we used these datasets to cover all ranges of graph
atasets from small and medium to large. Table 3 shows the
tatistics of the datasets grouped in various ranges. As observed,
he ogbn products contain more than two million nodes and
ixty-one billion edges. The ogbn-proteins contain a hundred and
hirty-two thousand nodes and thirty-nine billion edges; hence,
e denote the OGB dataset as large-scale. Cora, Citeseer, and
ubmed are grouped under a small/standard dataset, and the rest
nder medium. In particular, the small- and medium-datasets
re for transductive learning, and the large-scale datasets are for
n inductive setting. The details of these datasets are described
elow.

I. Cora, Citeseer, and Pubmed [48] are standard citation
network datasets with nodes representing documents and
edges denoting citation links between documents. The
node feature corresponds to each document’s normalized
10
Table 3
Statistics of the utilized datasets.

Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7
Small Citeseer 3327 4732 3703 6

Pubmed 19717 44,338 300 3

Wiki-CS 11,701 216,123 300 10
Amazon-Comp 13,381 245,778 767 10

Medium Amazon-Photo 7487 119,043 745 8
Coauthor-CS 18,333 81,894 6805 67
Coauthor-Phy. 34,493 247,962 8415 5

ogbn-products 2,449,029 61,859,140 100 47
Large ogbn-proteins 132,534 39,561,252 8 2

ogbn-arxiv 169,343 1,166,243 128 40

bag-of-words feature vector, coordinating a node class
label to an academic topic. The direction of edges is omit-
ted since a citation is assumed to impact the predictions
of two associated documents equally. In particular, the
Cora dataset comprises seven categories of 2708 machine
learning (ML) publications, while the Citeseer dataset com-
prises 3327 scientific papers in six categories. Respective
document in Cora and Citeseer is denoted by a one-hot vec-
tor exhibiting the presence/absence of a dictionary word.
However, the Pubmed data set comprises about 19717
diabetes-related publications, where each document is de-
scribed by a term frequency-inverse document frequency
(TF-IDF) vector.

II. Wiki-CS [96] is a reference network in computer science
built from Wikipedia. The nodes represent various articles,
and the edges are links that connect the articles. The la-
beled nodes consist of ten classes, each depicting a field
branch with node features in each article computed as the
average of pre-trained GloVe [97] word embeddings.

III. Amazon-Computers and Amazon-Photo [21] are two co-
purchase network connections scraped and built from
Amazon. In this network, nodes represent items and two
frequently purchased items are linked. Each node is labeled
with a category based on a sparse bag-of-words feature
encoding of product assessments.

IV. Coauthor-CS and Coauthor-Physics [21]; these are two
academic networks that comprise co-authorship of the Mi-
crosoft Academic Graph KDD Cup 2016 challenge. In these
networks, nodes stand for authors, and edges denote co-
authorship relationships. In simple terms, two nodes are
linked if they have coauthored a paper. A sparse bag-
of-words feature represents the paper keywords of the
authors for each node, and the author’s active research field
forms the label.

V. The OGB datasets [23] are large-scale, with numerous vital
graphs for ML tasks. In addition, it covers various domains,
from information and social networks to biological net-
works, molecular graphs, and knowledge graphs. Thus, it
is diverse in scale, domains, and task categories. We only
engaged ogbn-products, ogbn-proteins, and ogbn-arxiv in
the Node-ogbn category of the OGB datasets for this survey.

4.2. Parameter settings

The various parameters involved in this work are set ac-
cording to the best performance in original works. We apply
the standard fixed splits [48] for Cora, Citeseer, and Pubmed,
public splits shipped with the Wiki-CS dataset, random split
of 80%, 10%, and 10% for the training, validation, and test set,
respectively, for Amazon-Computers, Amazon-Photo, Coauthor-
CS, and Coauthor-Physics, and the rest from original work for all
algorithms.
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Table 4
GDA algorithm accuracy performance on different datasets based on the GNN variants: GCN, GAT, and GSAGE. The white background is copied from the original
works. The green background is the average accuracy after running 10 experiments on 1000 epochs. The light gray background indicates that there was no source
code availability when this experiment was performed. Bold for best accuracy performance and * for the overall best on a particular dataset.
GCN architecture

Datasets/Model Original +AdaEdge +DropEdge +GAUG-O +G-GNN +LA-GNN +NodeAug +FLAG +GCA

Cora 81.5 ± 0.7 82.3 ± 0.8 82.0 ± 0.8 83.6 ± 0.5 83.7 ± 1.8 84.1 84.3 ± 0.5 83.9 ± 0.3 85.8 ± 0.1
Citeseer 70.3 ± 0.4 72.8 ± 0.7 71.8 ± 0.2 73.3 ± 1.1 71.3 ± 1.4 72.5 74.9 ± 0.5 71.2 ± 0.2 73.6 ± 1.0
Pubmed 79.0 ± 1.3 77.4 ± 0.5 82.9 ± 0.4 OOM 80.9 ± 1.1 81.3 81.5 ± 0.5 82.6 ± 0.7 83.2 ± 0.2
ogbn-products – – 72.1 ± 0.3 71.1 ± 0.2 71.5 ± 0.3 – – – 82.1 ± 0.3∗

ogbn-proteins 72.5 ± 0.4 – 70.3 ± 1.5 71.8 ± 1.1 75.7 ± 0.2 – – 71.7 ± 0.5 76.3 ± 1.1
ogbn-arxiv 71.7 ± 0.3 – 74.3 ± 1.1 72.3 ± 0.5 73.0 ± 0.1 – – 72.0 ± 0.2 72.3 ± 1.0
Wiki-CS 77.2 ± 0.1 – 73.1 ± 0.3 74.4 ± 0.4 77.2 ± 0.0 – – 77.5 ± 1.6 78.4 ± 0.1
Amazon-Comp 81.7 ± 0.7 82.4 ± 1.1 85.4 ± 0.6 85.7 ± 0.4 86.3 ± 0.5 – – 85.8 ± 0.1 87.8 ± 0.2
Amazon-Photo 90.6 ± 0.7 91.5 ± 0.5 89.7 ± 0.1 89.4 ± 0.1 90.1 ± 0.6 – – 95.6 ± 0.7∗ 92.5 ± 0.2
Coauthor-CS 89.8 ± 0.3 90.3 ± 0.4 85.9 ± 0.3 84.6 ± 0.2 93.5 ± 0.0 – – OOM 93.1 ± 0.0
Coauthor-Phy. 92.8 ± 1.6 93.0 ± 1.1 91.2 ± 0.2 91.8 ± 0.2 94.9 ± 0.7 – – OOM 95.7 ± 0.0
GAT architecture

Cora 83.0 ± 0.7 82.0 ± 0.6 81.9 ± 0.6 82.2 ± 0.8 84.6 ± 0.1 83.9 84.8 ± 0.2 83.7 ± 0.5 85.2 ± 0.7
Citeseer 72.5 ± 0.7 71.1 ± 0.8 71.0 ± 0.5 71.6 ± 1.1 75.0 ± 0.1 72.3 75.1 ± 0.4 74.1 ± 0.2 73.3 ± 1.2
Pubmed 79.0 ± 1.0 76.6 ± 0.2 82.6 ± 0.0 OOM 82.2 ± 0.5 OOM 81.6 ± 0.6 79.5 ± 0.9 80.2 ± 0.5
ogbn-products 79.5 ± 0.6 – 79.8 ± 0.1 75.7 ± 0.3 78.3 ± 0.0 – – 81.8 ± 0.5 80.6 ± 0.4
ogbn-proteins – – 70.3 ± 1.5 72.4 ± 0.2 75.1 ± 1.0 – – – 75.5 ± 1.4
ogbn-arxiv 73.7 ± 0.1 – 73.6 ± 0.3 70.4 ± 0.6 71.8 ± 0.0 – – 73.7 ± 0.1 74.3 ± 1.1∗

Wiki-CS 77.7 ± 0.1 – 78.3 ± 0.2 78.1 ± 0.1 77.3 ± 0.0 – – 78.6 ± 0.1∗ 78.2 ± 0.4
Amazon-Comp 86.9 ± 0.3 81.1 ± 1.6 86.7 ± 0.5 88.0 ± 1.2∗ 87.5 ± 0.1 – – 87.8 ± 0.2 87.5 ± 0.5
Amazon-Photo 92.6 ± 0.4 90.8 ± 0.9 92.2 ± 0.3 92.1 ± 0.4 91.7 ± 0.1 – – 93.5 ± 0.2 92.2 ± 0.2
Coauthor-CS 92.3 ± 0.2 86.6 ± 1.6 93.7 ± 0.1 93.3 ± 0.1 92.1 ± 0.2 – – OOM 93.0 ± 0.1
Coauthor-Phy. 95.5 ± 0.1 91.4 ± 1.0 95.5 ± 0.1 95.6 ± 0.2 95.3 ± 0.0 OOM 95.7 ± 0.1
GSAGE architecture

Cora 81.3 ± 0.5 81.5 ± 0.6 81.6 ± 0.5 82.0 ± 0.5 83.9 ± 1.1 – – 83.5 ± 0.7 85.9 ± 03∗

Citeseer 70.6 ± 0.5 71.3 ± 0.8 70.8 ± 0.5 72.7 ± 0.7 71.2 ± 1.2 – – 77.1 ± 0.2∗ 73.2 ± 0.0
Pubmed 81.3 ± 0.5 77.4 ± 0.5 82.8 ± 0.6 OOM 78.9 ± 1.6 – – 79.5 ± 0.3 83.7 ± 0.4∗

ogbn-products 70.6 ± 0.5 – 80.4 ± 0.2 OOM 79.3 ± 0.7 – – 79.4 ± 0.6 79.0 ± 0.4
ogbn-proteins 78.6 ± 0.6∗ – 71.7 ± 0.3 OOM 75.2 ± 1.3 – – 76.6 ± 0.8 77.1 ± 1.1
ogbn-arxiv 78.7 ± 0.4 – 71.4 ± 1.8 69.8 ± 0.7 71.7 ± 0.4 – – 72.2 ± 0.2 73.8 ± 1.5
Wiki-CS 76.1 ± 0.0 – 74.5 ± 0.1 73.9 ± 0.6 76.5 ± 0.3 – – 77.5 ± 0.1 75.6 ± 0.2
Amazon-Comp 80.2 ± 1.0 81.1 ± 1.0 85.6 ± 0.1 85.3 ± 0.5 87.7 ± 0.3 – – 87.5 ± 0.1 86.4 ± 0.5
Amazon-Photo 90.1 ± 1.4 90.6 ± 0.5 89.3 ± 0.1 90.1 ± 1.1 92.7 ± 0.5 – – 91.4 ± 0.7 92.2 ± 0.1
Coauthor-CS 90.1 ± 0.4 90.3 ± 0.4 84.5 ± 0.3 OOM 93.8 ± 0.3∗ – – OOM 92.3 ± 0.0
Coauthor-Phy. 93.0 ± 0.4 92.7 ± 0.2 91.7 ± 0.2 OOM 96.1 ± 0.2∗ – – OOM 94.5 ± 0.0
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4.3. Experimental results

This section emphasizes the precise performance of the al-
orithms on 11 publicly available datasets. At the same time,
e consider conducting experiments on datasets not used in the
riginal papers. For instance, FLAG only engaged ogbn-products,
gbn-proteins, and ogbn-arxiv of the Open Graph Benchmark
OGB) datasets. However, we engaged different 9 datasets to
est the algorithm’s effectiveness by applying the proposed GDA
ethods (for instance, FLAG) to GCN, GAT, and GSAGE models in a
lug-and-play manner. Therefore, to distinguish the performance
ivergence between them, we detail the accuracy based on the
verage precision (AP), mean values (%) and standard deviation
alues in Table 4. The results in white background are directly
opied from the original work, while those in green background
re after performing experiments on the different datasets. The
odes for the implementations were taken from the original work
nd the Deep Graph Library (DGL)2 repository. Areas marked gray
re papers without codes; however, their practical, theoretical
otivations and results are vital for this work. For example,
daEdge adds some edges and makes node connections sparse,
voiding over-smoothing to some extent when GCN goes deeper.
odeAug took advantage of the attention mechanism in GAT to
erform remarkably on the Citeseer dataset in the inductive set-
ing. A critical challenge in GDA is the lack of sufficient theoretical
oundation. Unlike other works, LA-GNN provided enough theo-
etical information to capture its achievement, but the approach

2 https://github.com/dmlc/dgl/.
11
lacks sufficient experimental evidence. We report accuracy based
on three GNN architectures: GCN, GAT, and GSAGE. The primary
objectives to engage these most widely used GNN variants are
clearly stated previously in Section (Section 2).

Observing Table 4, we can draw the following conclusions.
First, the GDA models have increased the accuracy of the state-
of-the-art test by absolute values of 4.20%, 5.50%, and 4.40% on
Cora, Citeseer, and PubMed, respectively. On the basis of the
results, we can see that GCA performs well across the vari-
ous datasets when paired with the GNN architectures. Although
originally designed for Wiki-CS, Amazon-Computers, Amazon-
Photo, Coauthor-CS, and Coauthor-Physics datasets, GCA recorded
the highest accuracy on the Cora dataset across various archi-
tectures. GCN+GCA is also leading in the accuracy of Pubmed,
ogbn-products, ogbn-proteins, Wiki-CS, and Amazon-Computers
dataset. +NodeAug leads the accuracies in Citeseer and +G-
NN in ogbn-arxiv. FLAG, originally designed for OGB to address
he significant issue of limited data sizes of traditional graph
atasets, [23] recorded the highest accuracy on the Amazon-
hoto dataset when manipulated with GCN.
In the GAT architecture; ogbn-products, Wiki-CS, and Amazon-

hoto benefit from +FLAG as shown in Table 4. The method
teratively increases the features of the nodes with gradient-
ased adversarial perturbations during training. GAT is unique
n automatically learning the importance of each neighbor based
n the attention mechanism. Thus, an attention layer helps to
ransfer the hidden node representations at a layer to new node
epresentations, which estimate the attention coefficients for
ny pair of nodes. Therefore, it is beneficial for the features

https://github.com/dmlc/dgl/
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Fig. 4. Runtime of different GDA algorithms with GCN as plug-and-play on all
datasets.

of the augmented nodes with adversarial perturbations such as
+FLAG. Ogbn-proteins, ogbn-arxiv, and Coauthor-Physics benefit
from +GCA while +GAUG-O leads the scoreboard on Amazon-
Computers. Finally, the DROPEDGE technique, which randomly
removes a substantial proportion of edges of the input graph,
benefits the Pubmed dataset.

Given the GSAGE architecture, +GCA performs remarkably
n Pubmed and ogbn-arxiv datasets, while +G-GNN lifted the
ccuracies on Amazon-Computers, Amazon-Photo, Coauthor-CS,
nd Coauthor-Physics datasets. Ultimately, global information ex-
raction to serve as structure and attribute features for each node
enefits the Amazon and Coauthor dataset when G-GNN is engi-
eered with GSAGE. Therefore, more scalable to inductive settings
s GSAGE is node-wise sampling-based, which constructs sub-
raphs for the model inference. +DROPEDGE leads the GSAGE
roup with remarkable performance on ogbn-products, and fi-
ally +FLAG leads the Citeseer and Wiki-CS datasets. Indeed,
ome algorithms do not achieve better results on some datasets.
or instance, +DROPEDGE, +GAUG-O, +G-GNN pried with GCN
rchitecture with +GAUG-O running out of memory (OOM) on
ubmed dataset as shown in the Tables.
As stated, the GAUG framework engages a dual-step, which is

o obtain edge probabilities for all potential and existing edges via
dge predictor function followed by adding/removing new or ex-
sting edges utilizing the predicted edge probabilities to construct
modified graph to serve as an input to a GNN node classifier.
ence, presumably, the reason for OOM on some datasets. Also,
hile the DropEdge technique randomly removes a substantial
roportion of edges of the input graph, AdaEdge adjusts the graph
opology adaptively by iteratively adding the intra-class edges
nd removing the inter-class edges during training. Although LA-
NN, NodeAug, and AdaEdge were proposed recently, the source
ode was not available online when this survey was conducted.
Figs. 4, 5 and 6 depict the running time of the algorithms

iscussed on all data sets. Although it took some time since the
esult is based on the average value of 10 experiments with 1000
pochs, it is clear that feature-level augmentation algorithms
re far ahead in terms of operational efficiency. However, it
s easy to understand the reason for this difference. Topology-
evel augmentation algorithms need to consider effective prob-
bility actions sensitive to the different levels to add/remove
inkages built by edges. Intuitively, GCA uses adaptive measures
o perturb the edges on the topology level by assigning large
rop probabilities to trivial edges to emphasize influential linked
tructures. Additionally, the attribute masking level enforces the
odel to corrupt node attributes by employing additional noise

o trivial feature dimensions to identify the underlying context
12
Fig. 5. Runtime of different GDA algorithms with GAT as plug-and-play on all
datasets.

Fig. 6. Runtime of different GDA algorithms with GSAGE as plug-and-play on
all datasets.

information. Hence, presumably, the upsurge in computational
complexity. Nevertheless, it is worth mentioning that the running
time of GAUG-O is comparable to G-GNN and FLAG on GSAGE
architecture across various datasets.

Also, GAT and GCN are ineffective on large-scale graphs. For a
node in the graph, computing its embedding requires aggregate
embeddings of its neighbors by the aggregator established by
the model. Therefore, the number of nodes needed to embed
this node increases exponentially with the number of layers. In
this case, an attention model like GAT is introduced to another
complexity due to the computation of pairwise attention weights
between connected nodes, which involves the softmax operator.
These two operations increase the computation when the degree
(the number of neighbors of each node) is high. This problem
is even more alarming after data augmentation and when per-
forming backpropagation on the GNN during training. Therefore,
training the GDA algorithms with GAT and GCN architectures
takes more time compared to GSAGE.

5. Current challenges and future direction

This section comprehensively investigates the challenges and
future direction for GDA by identifying several open conceivable
issues that may require further study based on the interpretation
of the vast literature and empirical results.

I. Theoretical interpretability: Regardless of GDA improving
the generalization of graph learning, and combatting over-

smoothing, there is little information to apprehending its
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achievement. Therefore, there is a lack of sufficient proof
or theoretical foundation for GDA compared to several
works [98–100] that provided theoretical insights into data
augmentation in CV. For example, DropEdge draws ad-
ditional virtual examples from neighborhood information
for each node by randomly removing edges to increase
the support of the training distribution. It is based on the
assumption that the node’s class labels are unchanged after
dropping the edge. However, such a hypothesis is depen-
dent on the dataset and thus requires proficient knowl-
edge. Again, although DropEdge aggregates neighborhood
information for each node to share the same class, it does
not describe the neighborhood relation across samples of
different classes. Likewise, there are no theoretical guar-
antees for the sampling quality in subgraph mini-batch
training in NodeAug.

II. Scalability: GDA and datasets such as OGB have addressed
the significant issue related to unrealistic and arbitrary
data splits and the common neglect of the validation set
of traditional graph datasets. However, they have revealed
more practical challenges in the GNN research society. As
the graph dataset increases exponentially, the question
remains as to how to properly extend the scalability. Most
importantly, how to design GDA techniques to produce
more significant performance improvements in accuracy
and time complexity. Observably, some algorithm takes too
much time to train, with some out-of-memory on the OGB
datasets as it is large-scale. For example, GAUG-O required
backpropagating on the entire adjacency matrix for end-
to-end training, therefore presenting a space complexity
O(N2). DropEdge required pre-calculation of a score for
each edge in the graph before training, demanding extra
memory on GPU. Hence, the introduction of a subgraph
mini-batch training for creative execution in the NodeAug
model is a keen interest to focus. Notably, Graph mini-
batch algorithms are critical to training GNNs on large-
scale datasets. In GAUG-O, the authors engaged in graph
mini-batch training [29] to achieve a satisfactory space
complexity of O(M2), where M is the batch size. Hence, it
is necessary to explore the compatibility of different GDA
algorithms with a mini-batch model.

III. Information-to-noise ratio: The standard GCN for node
classification reveals that they are usually shallow. There-
fore, an attempt to go deeper is entrenched with over-
smoothing. From the point of view of Chen et al. [24],
an increase in the network layer, where there is a small
information-to-noise ratio, causes an interaction between
high-order neighbors to bring too much noise and vice
versa. Hence, it weakens the valuable information, which
is why the issue of over-smoothing. Balancing such phe-
nomena is relatively underexplored due to the challenges
brought by the complex and non-Euclidean structure of
graph data. A GDA framework to de-noise the small
information-to-noise ratio in high-order neighbors and in-
crease the noise in a high information-to-noise ratio in
low-order neighbors still remains an open question.

IV. Efficiency: Given a small proportion of node labels, a semi-
supervised approach to graph data aims at recovering
labels for all nodes. This practice is widespread in various
real-world applications, as numerous labels are always
costly and difficult to assemble. Moreover, various GNNs
have significantly influenced semi-supervised learning on
attributed graphs. GNN usually comprises multiple layers.
Training such layers requires recursively updating each
node in the graph, which becomes infeasible and ineffec-
tive. The nodes iteratively accumulate information from
13
the neighborhood layer to the next layer. G-GNN con-
structs the global information as a global structure with
global attribute features to each node and pre-training
them for a parallel GNN. However, learning global in-
formation often requires learning from the entire graph.
Consequently, inefficient in each training iteration. LA-
GNN, on the other hand, engages the central node’s feature
to learn the conditional distribution of its neighbors’ fea-
tures for a new optimal feature, which is said to have
improved the training efficiency. However, the approach
lacks enough experimental evidence based on applicability
to real-world datasets.

V. Domain Adaptation: The involvement of various pairs of
augmentation of a graph relative to the graph and its
augmentation has been established to further improve the
performance. GCA composed an edge perturbation and ap-
plied attribute masking to achieve adequate performance
in denser graphs. The authors hypothesize that masking
patterns matter, and masking more central nodes with
high degrees benefits denser graphs because GNNs can-
not reconstruct the missing information of isolated nodes,
according to the message passing mechanism [42]. It is
also established that edge perturbation benefits social net-
works; however, it damages some biochemical molecules.
Therefore, a GDA pair that can adapt to datasets of different
domains and sizes is feasible for further research. More im-
portantly, automated data augmentation [49], since most
algorithm manually picks data augmentations per dataset
by tedious trial and error, significantly limits generality and
practicality.

6. Conclusion

In this work, we comprehensively evaluated eight GDA al-
gorithms and tested them on additional educational datasets
(eleven in total) different from the datasets used in the original
works. We offer to group the state-of-the-art GDA algorithms into
two broad categories: topology-level and feature-level augmenta-
tion to comprehend the similarity and difference between various
works. Along with the grouping described above, we interpret the
algorithms proposed for each category to improve understand-
ing for each category. While paying attention to the accuracy
performance, we consider the running time of these algorithms,
which has an important guiding influence for unraveling practical
and real-world problems. In summary, our work is beneficial
for researchers in the GNN community to grasp the advantages
and weaknesses of these described algorithms. Furthermore, the
unification of the mathematical formulation surrounding these
algorithms would guide researchers on what to look for in a
GNN augmentation work with relations to feature and topology
perturbation.
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