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A B S T R A C T   

Serum analysis is crucial for favourable prognosis of gastric cancer (GC) and for improving patient survival rates. 
However, it remains a challenge to develop an effective strategy to accurately identify differences in gastric 
cancer before and after treatment to guide efficacy evaluation. In this study, we combined surface-enhanced 
Raman scattering (SERS) with principal component analysis (PCA)-two-layer nearest neighbour (TLNN) to 
propose a promising serum analytical platform for label-free detection of cisplatin-treated GC mice. A microarray 
chip fabricated from Au nano-hexagon (AuNH) substrates was employed to measure the SERS spectra of the 
serum of GC mice at different treatment stages, and then a model for recognition of SERS spectra was constructed 
using a PCA-TLNN algorithm. The results revealed that the microarray chip exhibited superior portability, SERS 
activity, stability, and uniformity. Through PCA-TLNN, the GC mice at different treatment stages were suc-
cessfully segregated, and several key spectral features for distinguishing different treatment stages were 
captured. The established PCA-TLNN model achieved satisfactory results, with an accuracy of over 97.5%, a 
sensitivity of over 90%, and a specificity of over 96.7%. Label-free serum SERS in combination with multivariate 
analysis could serve as a potential technique for the clinical diagnosis and staging of treatments.   

1. Introduction 

Gastric cancer (GC) is a common malignant tumour of the digestive 
system, and approximately 738,000 people die of GC each year world-
wide, ranking second in cancer-related mortality [1–3]. The atypical 
early symptoms and high recurrence rate result in poor survival prog-
nosis from GC, with five-year survival rates of approximately 20% over 
the past few decades [4,5]. Cisplatin, a first-generation platinum drug, 
has been widely used as a first-line therapy in clinical GC treatment. It 
can significantly accelerate apoptosis and bind to double-stranded DNA 
in cells, effectively preventing cell proliferation and division [6–8]. 
Moreover, cisplatin has a strong inhibitory effect on solid tumours. In 
the process of tissue carcinogenesis and during interaction between 
cisplatin and cancer cells, biomolecules, such as proteins, lipids, car-
bohydrates, and nucleic acids, in cells or tissues may change in structure, 
conformation, and content. Blood serum, as a type of body fluid, can 
provide rich information on human health; thus, analysis of body fluids 
can identify subtle changes in the post-biochemical composition during 

cisplatin therapy, guiding the application of cisplatin in antitumour 
therapy [9,10]. However, non-invasive efficacy assessment using con-
ventional clinical techniques remains a challenge because it cannot 
provide sufficient information on changes occurring at the molecular 
level. Thus, there is an urgent requirement for fast, sensitive, and effi-
cient methods to accurately identify differences before and after treat-
ment of GC to guide efficacy assessment. 

Raman scattering is a non-destructive and non-invasive optical 
analysis method based on the inelastic scattering of light, which can 
capture the molecular “fingerprint” information of biochemical sub-
stances; thus, the structure, content, and other information of bio-
molecules can be obtained by analysing unique Raman spectral peak 
position and peak intensity information [11–15]. However, it is difficult 
to obtain a high signal-to-noise Raman signal for biomolecules in prac-
tical detection because of the small inherent Raman scattering 
cross-section of a single molecule. Surface-enhanced Raman scattering 
(SERS) is a novel optical sensing technology developed based on Raman 
scattering that can significantly amplify signal intensity compared to 
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conventional Raman scattering, with an enhancement factor (EF) of up 
to 108 [16–20]. SERS also has a strong resistance to external interfer-
ence, indicating that it is suitable for detecting biological samples con-
taining water. The electromagnetic mechanism (EM) model, which 
generally states that the SERS effect originates from an enhancement 
caused by the optical excitation of localised surface plasmon resonance 
(LSPR), has been widely accepted as the main mechanism [21–23]. 
Because the interactions of light and biomolecules with metal substrates 
directly impact the increased Raman signal, SERS-active substrates are 
crucial. Numerous efforts have been made to fabricate new SERS sub-
strates with long-term stability and high enhancement capability. Au 
nano-hexagon (AuNH) arrays, self-assembled at the liquid-air interface 
or liquid-liquid interface, are cost-effective and versatile plasmonic 
nanostructures that have been applied to improve SERS sensitivity [24, 
25]. The sharp edges and tips of the hexagons can generate an electric 
field enhancement, and a highly enhanced electric field can be obtained 
in the spaces between adjacent AuNHs, thereby achieving good SERS 
performance. 

Serum samples are unique in nature and are easily affected by other 
factors in the exposed environment, thus leading to changes in peak 
positions and intensities of SERS spectra. To overcome the above 
problems in serum SERS testing and avoid contamination of serum by 
the external environment, combining SERS with a microfluidic chip may 
provide a new idea. Moreover, the interpretation of similar spectra is 
another challenge. Multivariate statistical analysis methods, such as 
principal component analysis (PCA), partial least squares (PLS), and 
PCA-k-nearest neighbours (KNN), are methods that can unlock the value 
of data, and are often used to handle large volumes of data. PCA is a 
statistical analysis method used to compress data and obtain key feature 
information. After obtaining the SERS spectra of the various groups, PCA 
generates score and loading plots that maximise the covariance of the 
spectral data to visualise the dataset and identify features [26,27]. 

Specifically, PCA is applied to compress the original SERS spectral data 
and project them onto a lower dimension generated by the principal 
components (PCs). The PCA score plots representations of the first few 
PCs, demonstrating the clustering patterns of various groups. Simulta-
neously, the PCA loading plots from a series of principal components 
(PCs) can capture valuable information to be considered during the 
differentiation of SERS spectra. Although the characteristics of the 
extracted spectra are more abundant than those of a single Raman peak 
analysis, the recognition ability of PCA is still insufficient for dis-
tinguishing the SERS spectra of different groups. Recently, K-Nearest 
Neighbor (KNN) combined with Principal Component Analysis (PCA) 
have frequently been used together with spectroscopy in disease di-
agnostics [28]. The basic idea of the traditional PCA-KNN model is to 
determine the class label of a test sample based on the nearest neighbour 
(NN) rule. However, the neighbourhood structure and the similarity 
metric of the test sample in the NN rule are too unitary, which affects the 
accurate classification of spectral data [29,30]. The accuracy, sensi-
tivity, and specificity of these traditional models for identifying similar 
SERS spectra remain insufficient. Therefore, it is necessary to adopt a 
model with better classification performance. 

Herein, we report a label-free SERS analysis platform to assess the 
efficacy of cisplatin in GC, using a PCA-two-layer nearest neighbour 
(TLNN) method to guide spectral processing. First, cleaned AuNH sub-
strates were fabricated into chip form to prepare a microarray chip, 
giving the analysis platform high throughput and portability. A poly-
dimethylsiloxane (PDMS) cover was prepared to provide an enclosed 
reaction space for isolation from the outside environment (Scheme 1A). 
Then, a GC subcutaneously xenografted growing human tumour model 
in mice treated with cisplatin was established, and SERS spectra of 
serum were obtained at different time points after treatment (Scheme 1 
B). After background removal, smoothing, baseline correction, and 
normalisation of the spectral data, PCA was applied to visualise the 

Scheme 1. Schematic illustration of the SERS analysis platform for label-free detection and identification of cisplatin-treated GC with the aid of PCA-TLNN 
modelling. (A) Design of the microarray chip and (B) detection of SERS spectra of serum from GC mice at different treatment stages. (C) PCA-TLNN model 
training and (D) analysis of SERS spectra of serum by PCA-TLNN model. 
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dataset and extract features (Scheme 1C). Finally, using the PCA-TLNN 
algorithm, a SERS spectral identification model for different treatment 
stages was constructed, followed by a comparison with traditional PCA- 
KNN (Scheme 1D). The PCA-TLNN model may be considered a good 
substitute for traditional PCA-KNN and can be used in spectral classifi-
cation for prognosis. To the best of our knowledge, this is the first report 
on label-free detection and identification of disease treatment and 
prognosis using SERS assisted by PCA-TLNN modelling. 

2. Results and discussion 

2.1. Characterization of microarray chip 

AuNHs were synthesised by reducing AuCl4- to Au0 using ascorbic 
acid (AA). Fig. S1 demonstrates that the prepared AuNHs had a uniform 
size of 87 nm and that their SERS enhancement was satisfactory. The 

AuNH substrate was synthesised via the self-assembly of AuNHs at a 
liquid–liquid interface (Fig. 1A). After the addition of n-hexane, a dense 
metallic lustre nanofilm is observed (Fig. 1B(i)). A glass substrate 
hydrophilised by piranha solution was used to transform the nanofilm 
(Fig. 1B(ii)). Thereafter, the AuNH substrate was embedded into a glass 
slide by laser etching, and a microarray chip was prepared (Fig. 1B(iii)) 
according to Scheme 1 and Fig. S3. After preparation of the microarray 
chip, SERS mapping measurements were performed on the AuNH sub-
strate to demonstrate the homogeneity of the SERS signal. The results 
indicate that most of the area is green (mid-scale), despite some red 
(high intensity) and blue (low intensity) regions, indicating outstanding 
signal uniformity across a large area of the AuNH array. The ten SERS 
spectra recorded via spot-to-spot scanning shown in Fig. 1D are highly 
similar, and the relative standard deviation (RSD) of the peak intensity 
at 1593 cm− 1 is 7.32% (Fig. 1E), further demonstrating outstanding 
uniformity. Sensitivity was also assessed as another critical feature, and 

Fig. 1. (A) SEM image of the prepared AuNHs array. Inset: high magnification view. (B) Actual image of (i) Au film, (ii) AuNHs array on glass and (iii) prepared 
microarray-structural chip. (C) SERS mapping of 4-MBA signal on the prepared AuNHs array and the colour scheme of the signal intensity at 1593 cm− 1 ranging from 
blue (lowest intensity) to red (highest intensity) was applied. (D) SERS spectra of 10 different spots selected randomly on the AuNHs array and the (E) corresponding 
histogram of the peak intensity at 1593 cm− 1. (F) SERS spectra of 4-MBA with different concentrations (10− 8 M, 10− 9 M, 10− 10 M, 10− 11 M, 10− 12 M and 10− 13 M) 
using the prepared AuNHs substrate. (G) Corresponding calibration curves for 4-MBA. (H) SERS spectra of 4-MBA (10− 8 M) on the AuNHs substrate (blue curve) and 
4-MBA (10− 2 M) on the glass (yellow curve). (I) SERS spectra of AuNHs substrate treated with 0.1 M KI. (J) FDTD simulation of the AuNHs substrate. 
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the SERS spectra of 4-mercaptobenzoic acid (4-MBA) at different con-
centrations were measured (Fig. 1F). The peak intensity at 1593 cm− 1 

(y) versus the logarithm of the 4-MBA concentration (x) was fitted as 
y = 13955.35x + 185811.64, with a correlation coefficient (R2) of 
0.9831 (Fig. 1G), showing a shallow limited detection of 42.1 fM. Thus, 
the proposed AuNH array presents satisfactory sensitivity, and the 
enhancement factor (EF) was calculated to be 2.3 × 108 (Fig. 1H). 
Because of surfactants and reductants remaining on the surface after 

synthesising the AuNH array, which may interfere with the SERS test 
results, cleaning with 0.1 M KI was performed [31]. As shown in Fig. 1I, 
a clean substrate was obtained with no apparent background resulting 
from iodide adsorbed on the AuNH surface via Au-I bonds and replacing 
existing impurities. Fig. 1J shows the finite-difference time-domain 
(FDTD) simulated EM field distribution of the AuNH array, indicating 
that “hot spots” are primarily distributed around the sharp edges and 
tips. More importantly, the amplified EM field extends into the junction 
between adjacent AuNHs, indicating that the preparation of AuNH 
substrates via self-assembly could offer more significant SERS 
enhancement. Fig. S4 indicates that PDMS coverage has no obvious in-
fluence on the sample signal. Thus, a microarray chip was prepared with 
excellent uniformity, sensitivity, and cleanliness. 

2.2. In vivo tumour therapy 

Human gastric cancer BGC-823 cells were injected subcutaneously 
into BALB/c nude mice, and tumours were visible at the injection point 
approximately one week later. This time was set as day 0. The treatment 
group was treated with cisplatin, and a schematic illustration is shown in  
Fig. 2A. Throughout the experiment, the growth of mice and tumours 
were monitored using a small animal live imaging instrument 
throughout the experiment (Fig. S2, Supporting Information) and 
typical images at four time points are shown in Fig. 2B. The body 
weights of the mice were recorded (Fig. 2D), and the volume of the 
subcutaneous tumours was measured and calculated (Fig. 2E). On day 
21, the mice from each group were sacrificed. Tumours were harvested 
(Fig. 2F) and weighed (Fig. 2C). Transplantation tumours were 

Fig. 2. (A) Schematic illustration of cisplatin-treated GC mice model establishment. (B) Growth of cisplatin group recorded on 0, 7, 14, and 21 days after cisplatin 
treatment and the growth of control group. (C) Xenograft tumor weight. (D) Body weights of nude mice bearing BGC-823 cells. (E) Volume of the xenograft tumours. 
(F) Appearance of the xenograft tumours. (G) Hematoxylin and eosin (H&E) staining. 

Fig. 3. Mean normalised spectra of serum from GC mice treated with cisplatin 
for 0, 7, 14, and 21 d. 
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embedded in paraffin and sectioned continuously for hematoxylin and 
eosin (H&E) staining (Fig. 2G). Under the microscope, the tumour cells 
were disarranged and disordered, with the nucleus enlarged and deeply 
stained, matching the characteristics of tumour cells. Compared to the 
control group, cisplatin treatment significantly inhibited xenograft 
tumour growth. 

2.3. Comparison of SERS spectra of the serum GC mice at different 
treatment stages 

As a direct detection method, serum samples were dropped onto the 
prepared microarray chip and measured using a confocal Raman spec-
trometer. The raw SERS spectra were preceded by smoothing and sub-
tracting background normalisation to obtain the spectra of serum from 
GC mice treated with cisplatin for 0, 7, 14, and 21 d (Fig. S5–S8, Sup-
porting Information). Thereafter, for a direct comparison of the SERS 
spectra at different treatment stages, the intensity of the serum spectra 
was normalised to obtain a relative intensity between 0 and 1. Fig. 3 
illustrates a stack of the mean normalised spectra of the different 
treatment stages. These spectra are the average normalised SERS spectra 
of the mice. The GC mice before treatment clearly show spectral features 
that are different from those after treatment, whereas the GC mice 
during cisplatin treatment show similar spectral features. The most 
outstanding characteristic peaks of the differences are marked in the 
mean normalised SERS spectra by dotted lines. Detailed assignment of 
the characteristic peaks is shown in Table S1. 

As shown in Fig. 3, the relative intensity of the characteristic peaks at 
522 cm− 1 (S–S disulphide stretching in proteins, phosphatidylserine), 
571 cm− 1 (tryptophan/cytosine), 638 cm− 1 ((C–S) gauche (amino acid 
methionine)), 751 cm− 1 (symmetric breathing of tryptophan (protein 
assignment)), 846 cm− 1 (monosaccharides (α-glucose), (C–O–C) skeletal 
mode, disaccharide (maltose), (C–O–C) skeletal mode), 920 cm− 1 (C–C 

stretch of proline ring/glucose/lactic acid, C–C, praline ring (collagen 
assignment)), 1134 cm− 1 (fatty acid, (C–C) skeletal of acyl backbone in 
lipid), 1537 cm− 1 (amide carbonyl group vibrations and aromatic hy-
drogens), and 1574 cm− 1 (ring breathing modes in the DNA bases G and 
A) show a reverse decreasing trend during cisplatin treatment. However, 
the peaks at 997 cm− 1 ((CH deformation) carbohydrates), 1361 cm− 1 

(guanine (N7, B, Z-marker), 1656 cm− 1 ((C––C)cis (phospholipids), and 
Amide I (collagen assignment)), found to initially decrease in relative 
intensity, gradually increased with extension of the treatment time. 
Furthermore, new characteristic peaks at 1042 cm− 1 (proline (collagen 
assignment)) and 1204 cm− 1 (amide III and CH2 wagging vibrations 
from glycine backbone and proline side chain collagen) were SERS 
spectral features that were found in the mean normalised spectrum after 
21 days of treatment with cisplatin samples, but not at the other treat-
ment stages. The increase or decrease in the intensity of these charac-
teristic peaks reflects the variation in relative concentration of 
biochemical components in the serum, and are closely related to the 
treatment stage of gastric cancer. The fingerprint characteristics of SERS 
spectra have important clinical significance in the treatment and prog-
nosis of gastric cancer. This summarises our preliminarily exploration of 
the differences in the spectra of serum from GC mice before and after 
treatment. 

2.4. Multivariate analysis 

The SERS spectra of serum contain multi-dimensional data with rich 
information, and many irrelevant characteristic peaks could affect 
discrimination. To further distinguish the SERS spectra of the different 
treatment stages, this study used the multivariate analysis method PCA- 
TLNN. PCA is a statistical method that was used to capture key features 
from SERS spectra. Key eigenvectors of the SERS spectra were selected 
after dimension reduction. PC1 is the largest eigenvector and shows the 

Fig. 4. (A) The PCA score plot for the SERS spectra of the serum from GC mice at different treatment stages. (B) Scree plot of the variation of component number with 
the calculated eigenvalues for SERS spectra of the serum. (C) Loadings plot of PC1. (D) Loadings plot of PC2. (D) Loadings plot of PC3. 
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direction of the largest differences between the SERS spectra. PC2 is the 
second-largest eigenvector, which is orthogonal to PC1 [32,33]. The 
PCA score plot, composed of two or three PCs, can easily identify key 
changes in the SERS spectra. As shown in Fig. 4A, the SERS spectral data 
of the serum from GC mice at different treatment stages were used to 
create a score plot of the first three PCs. It can be seen that most of the 
presented variance is accounted for by PC1, PC2 and PC3 (39.8%, 19.5% 
and 12.1%, respectively), accounting for a total of 71.4% of the total 
variance [34]. Most of the projection points in each stage can be sur-
rounded by an obvious 95%-confidence ellipsoid. In the PCA score plot, 
each point represents a mouse at each stage. The SERS spectra at 0 and 
21 d are distinguishable, and they are well divided into two distinct 
groups. This is primarily attributed to differences in the biochemical 
composition of the serum. After 7 d of cisplatin treatment, the 7-d group 
is closer to the 0-d group. When the GC mice were treated for 14 d, their 
group is far from the 0-d group and partially overlaps the 7-d and 21-d 
groups. These results are consistent with the spectral analysis of the four 
treatment stages. The scree plot in Fig. 4B shows the variation of the 
component number with the calculated eigenvalues for the SERS spectra 
of the serum. This clearly shows the proportion of the total variance 
accounted for by each principal component, with PC1 accounting for the 
highest proportion. The first 15 principal components accounting for 
95% of the variance were selected to replace the original characteristic 
spectrum to reduce the number of variables input into the TLNN. 

The key spectral features for distinguishing GC mice at different 
treatment stages were captured by evaluating PC1, PC2, and PC3 
loading plots. The high and low load values corresponded to each 

Raman shift in PC loading, which was the key to determining the di-
rection of maximum variance among the SERS spectra of different 
treatment stages. The corresponding PC1 scores mainly originated from 
the positive peaks at approximately 998 cm− 1 and 1536 cm− 1 (Fig. 4C). 
Other prominent spectroscopic features were located at 754, 1135, 641, 
and 920 cm− 1, which can be observed in PC2 loading (Fig. 4D) and PC3 
loading (Fig. 4E). The characteristic peak at 998 cm− 1 is assigned to (CH 
deformation) carbohydrates. The characteristic peaks at 641, 754, 920, 
1135, and 1536 cm− 1 are related to vibrations in nucleic acids, proteins, 
and lipids. The vibration peaks of these substances decreased after 
cisplatin treatment, indicating a decrease in their concentration in the 
serum. We speculate that this is due to apoptosis or necrosis of a large 
number of cells during the treatment, resulting in nucleoplasm 
condensation, chromatin degradation, and proteolytic enzyme activa-
tion. These results indicate that PCA-assisted SERS can effectively 
identify and distinguish between GC mice before and after treatment. 

After PCA processing, we selected the first 15 PCs which accounted 
for 95% of the total variance, and used them as features for the PCA- 
TLNN. The TLNN is a neighbourhood selection method based on two- 
level neighbourhood information [35]. The classification principle of 
TLNN is illustrated in Fig. S9. To analyse the performance of the 
PCA-TLNN model, it was compared with traditional PCA-KNN model-
ling. Using LOOCV (leave one out cross-validation), the accuracy of 
PCA-TLNN and PCA-KNN based on different PCs and K values was 
determined, as shown in Fig. 5A and Fig. 5B. It is clear that the overall 
accuracy of PCA-TLNN is higher than that of PCA-KNN and is not sen-
sitive to the selection of the K value [36,37]. The discrimination 

Fig. 5. (A) Accuracy of PCA-TLNN using different PCs and different K values. (B) Accuracy of PCA-KNN using different PCs and different K values. (C) PCA-TLNN 
confusion matrix. (D) PCA-KNN confusion matrix. 
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accuracy was the highest when the K and PC values were 3 and 7, 
respectively. These two values were input into PCA-TLNN and PCA-KNN 
to calculate the confusion matrix. An accuracy of 97.5% (39/40) was 
achieved in the PCA-TLNN confusion matrix (Fig. 5C), and an accuracy 
of 92.5% (37/40) was achieved in the PCA-KNN confusion matrix 
(Fig. 5D). Here, only one SERS spectrum (from the 14-d group) was 
incorrectly classified as a 7-d group in the PCA-TLNN. The SERS spectra 
of one 21-d group and two 14-d groups were incorrectly classified as 7-d 
and 14-d groups in the PCA-KNN, respectively. This result demonstrates 
the good recognition ability of the TLNN method for the SERS spectra at 
0, 7, 14, and 21 d. We also analysed the accuracy, sensitivity, and 
specificity of PCA-TLNN and PCA-KNN at 0 d and other groups, 7 d and 
other groups, 14 d and other groups, and 21 d and other groups (Ta-
ble S2, Supporting Information). Compared with PCA-KNN, PCA-TLNN 
has significant advantages in the analysis of SERS spectral data. It is 
concluded that PCA-TLNN can help reveal important spectral informa-
tion and assist in the staging of GC treatment. 

3. Conclusions 

In conclusion, we developed a novel strategy combining SERS tech-
nology and PCA-TLNN to rapidly detect cisplatin-treated GC mice 
without labelling. This approach relied on a microarray chip fabricated 
from AuNH substrates, which exhibited superior portability and SERS 
activity, stability, and uniformity. Using a microarray chip as the sensing 
platform, high-quality SERS signals of the serum of GC mice at different 
treatment stages were acquired, and a series of characteristic peaks 
representative of various biomolecules were detected. The PCA-TLNN 
SERS spectra successfully differentiated GC mice at different treatment 
stages. The most prominent spectral features for distinguishing different 
treatment stages were observed for PC loading, including those at 641, 
754, 998, 920, 1135, and 1536 cm-1. Compared with traditional PCA- 
KNN, the PCA-TLNN model based on principal component variables 
had better accuracy, sensitivity, and specificity for spectral classifica-
tion. The PCA-TLNN can be considered a good alternative to the well- 
established discriminant model. The proposed method combining 
SERS with PCA-TLNN is a powerful and promising tool for label-free 
serum detection in a liquid environment and indicates promising po-
tential for application in cancer treatment, specific disease diagnosis, 
and the development of individual therapeutic strategies. 
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