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Abstract: The conditioning theory of the ℳℒ -weighted least squares and ℳℒ -weighted pseudoin-
verse problems is explored in this article. We begin by introducing three types of condition numbers
for the ℳℒ -weighted pseudoinverse problem: normwise, mixed, and componentwise, along with
their explicit expressions. Utilizing the derivative of the ℳℒ -weighted pseudoinverse problem,
we then provide explicit condition number expressions for the solution of the ℳℒ -weighted least
squares problem. To ensure reliable estimation of these condition numbers, we employ the small-
sample statistical condition estimation method for all three algorithms. The article concludes with
numerical examples that highlight the results obtained.
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1. Introduction

The study of generalized inverses of matrices has been a very important research field
since the middle of last century and remains one of the most active research branches in the
world [1–3]. Generalized inverses, including the weighted pseudoinverse, have numerous
applications in various fields, such as control, networks, statistics, and econometrics [4–7].
The ℳℒ -weighted pseudoinverse of m × n matrix 𝒦 with the entries of two weight
matrices ℳ and ℒ (with order s × m and l × n, respectively) is defined as

𝒦 †
ℳℒ =

(
In − (ℒ𝒫 )†ℒ

)
(ℳ𝒦 )†ℳ, (1)

where (ℳ𝒦 )† denotes the Moore-Penrose inverse of ℳ𝒦 and 𝒫 = In − (ℳ𝒦 )†ℳ𝒦 . The
ℳℒ -weighted pseudoinverse [3] originated from the ℳℒ -weighted least squares problem
(ℳℒ -WLS), which is stated as follows:

min
x∈S

∥x∥ℒwith S = {x : ∥𝒦 x − h∥ℳ is minimum }, (2)

where ∥ · ∥ℒ and ∥ · ∥ℳ are the ellipsoidal seminorms

∥x∥2
ℒ = xHℒHℒ x, ∥h∥2

ℳ = hHℳHℳh,

with h ∈ Rm . The ℳℒ -WLS exists and has a unique solution:

x = 𝒦+
ℳℒ h +𝒫

(
In − (ℒ𝒫 )+ℒ𝒫

)
z for some vector z, (3)

Axioms 2024, 13, 345. https://doi.org/10.3390/axioms13060345 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13060345
https://doi.org/10.3390/axioms13060345
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-6704-0301
https://doi.org/10.3390/axioms13060345
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13060345?type=check_update&version=1


Axioms 2024, 13, 345 2 of 21

if and only if rank(B) = n, with B =

(
ℳ𝒦
ℒ

)
. In this case it can be shown [3] that

𝒫
(

In − (ℒ𝒫 )+ℒ𝒫
)
= 0.

Theℳℒ -weighted pseudoinverse𝒦†
ℳℒ [8] is helpful in solvingℳℒ -WLS problems [2,9],

which is a generalization of the equality constraint least squares problem and has been
widely explored in the literature (see, e.g., [9–12]). Eldén [9] studied perturbation theory for
this problem, whereas Cox et al. [12] retrieved the upper perturbation bound and provided
the normwise condition number. Li and Wang [13] presented structured and unstructured
partial normwise condition numbers, whereas Diao [14] provided partial mixed and com-
ponentwise condition numbers for this problem. Until today, the condition numbers for
the ℳℒ -WLS problem were not yet explored. Motivated by this and considering their
significance in ELS research, we present explicit representations of the normwise, mixed,
and componentwise condition numbers for the ℳℒ -WLS problem, as well as statistical
estimation.

A large number of articles and monographs have appeared during the last two decades
in the literature dealing with the ℳℒ -weighted pseudoinverse 𝒦 †

ℳℒ [1,3,8]. The ℳℒ -
weighted pseudoinverse 𝒦 †

ℳℒ converts to the K-weighted pseudoinverse 𝒦 †
ℒ [3] when

ℳ = I, the generalized inverse 𝒞 ‡
ℒ [15] when ℒ has a full row rank and ℳ = I, and the

Moore-Penrose inverse 𝒦 † [16] when both ℳ = I, and ℒ = I. Wei and Zhang [8] dis-
cussed the structure and uniqueness of the ℳℒ -weighted pseudoinverse 𝒦 †

ℳℒ . Elden [3]
devised the algorithm for 𝒦 †

ℳℒ . Wei [17] considered the 𝒦 †
ℒ expression using GSVD.

Gulliksson et al. [18] proposed a perturbation equation for 𝒦 †
ℒ . Galba et al. [4] proposed

iterative methods for calculating 𝒦 †
ℳℒ , but they may not be appropriate for time-varying

applications. Recurrent neural networks (RNNs) [2,6,7] are commonly used to calculate
time-varying 𝒦 †

ℳℒ solutions. Recently, Mahvish et al. [19,20] presented condition num-
bers and statistical estimates for the 𝒦 -weighted pseudoinverse 𝒦 †

ℒ and the generalized
inverse 𝒞 ‡

ℒ .
A fundamental idea in numerical analysis is the condition number, which expresses

how sensitive a function’s output is to small variations in its input. It is used to predict the
worst-case sensitivity of how errors in input data can affect the results of computations.
Various condition numbers are available that consider various aspects of the input and
output data. The normwise condition number [21] disregards the scaling structure of both
the input and output data. On the other hand, the mixed and componentwise [22] condition
numbers consider the scaling structure of the data. The mixed condition numbers employ
componentwise error analysis for the input data and normwise error analysis for the output
data. This means that the errors in the input data are estimated componentwise, while the
errors in the output data are estimated using a normwise approach. The componentwise
condition numbers, on the other hand, employ componentwise error analysis for both the
input and output data. This means that the errors in both the input and output data are
estimated componentwise. The condition numbers of the matrix 𝒦 †

ℳℒ , when associated
with the two weight matrices ℳ and ℒ , and its estimation have not been investigated until
now. Nonetheless, it is crucial to delve into some generalized findings that encapsulate
other pre-existing results in the scientific literature.

The article is organized as follows: The normwise, mixed, and componentwise condi-
tion numbers for 𝒦 †

ℳℒ are discussed in Section 3, and the condition number expressions
for the ℳℒ -WLS solution are obtained in Section 4. In Section 2, preliminaries and ba-
sic properties are summarized, which help in understanding the results presented in the
paper. A highly reliable statistical estimate of the condition numbers is obtained using
the small-sample statistical condition estimation (SSCE) method [23] in Section 5. A few
numerical examples are also included in Section 5 to illustrate the results that were attained.
The efficiency of the estimators is illustrated by these examples, which also show the
distinction between the normwise condition numbers and the mixed and componentwise
condition numbers.
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Throughout this article, Rm×n denotes the set of real m × n matrices. For a matrix
X ∈ Rm×n, XT is the transpose of X, rank(X) denotes the rank of X, ∥X∥2 is the spectral
norm of X, and ∥X∥F is the Frobenius norm of X. For a vector x, ∥x∥∞ is its ∞-norm, and
∥x∥2 the 2-norm. The notation |X| is a matrix whose components are the absolute values of
the corresponding components of X.

2. Preliminaries
In this part, we will present several definitions and key findings that will be utilized

in the following sections. The entry-wise division [24] between the vectors u, v ∈ Rm is
defined as

u
v
= diag(v‡)u, (4)

where diag(v‡) is diagonal with diagonal elements v‡
1, ..., v‡

m. Here, for a number s ∈ R, s‡

is defined by

s‡ =

{
s−1, if s ̸= 0,
1, if s = 0.

It is obvious that u
v has components

( u
v
)

i = v‡
i ui. Similarly, for U = (uij) ∈ Rm×n, V =

(vij) ∈ Rm×n, U
V is defined as follows:(

U
V

)
ij
= v‡

ijuij.

We describe the relative distance between u and v using the entry-wise division as

d(u, v) =
∥∥∥∥u − v

v

∥∥∥∥
∞
= max

i=1,··· ,m

{
|v‡

i ||ui − vi|
}

.

In other words, we take into account the absolute distance at zero components and
the relative distance at nonzero components.

To establish the definitions of normwise, mixed and componentwise condition num-
bers, it is necessary to also determine the set B◦(u, ε) = {w ∈ Rm| |wi − ui| ≤ ϵ|ui|,
i = 1, · · · , m} and B(u, ε) = {w ∈ Rm | ∥w − u∥2 ⩽ ε∥u∥2}.

To define the normwise, mixed, and componentwise condition numbers, we consider
the following definitions:

Definition 1 ([24]). Assume that χ : Rp → Rq is a continuous mapping described on an open
set Dom(χ) ⊂ Rp and u ∈ Dom(χ), u ̸= 0 such that χ(u) ̸= 0.

(i) The normwise condition number of χ at u is stated as

n(χ, u) = lim
ε→0

sup
w∈B(u,ε)

w ̸=u

(
∥χ(w)− χ(u)∥2

∥χ(u)∥2

/∥w − u∥2

∥u∥2

)
.

(ii) The mixed condition number of χ at u is stated as

m(χ, u) = lim
ε→0

sup
w∈Bo(u,ε)

w ̸=u

∥χ(w)− χ(u)∥∞

∥χ(u)∥∞

1
d(w, u)

.

(iii) The componentwise condition number of χ at u is stated as
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c(χ, u) = lim
ε→0

sup
w∈Bo(u,ε)

w ̸=u

d
(
χ(w), χ(u)

)
d(w, u)

.

Using the Fréchet derivative, the next lemma provides explicit expressions for these
three condition numbers.

Lemma 1 ([24]). Assuming the same specifications as in Definition 1, if χ is Fréchet differentiable
at u, then we obtain

n(χ, u) = ∥δχ(u)∥2∥u∥2
∥χ(u)∥2

, m(χ, u) = ∥|δχ(u)||u|∥∞
∥χ(u)∥∞

, c(χ, u) =
∥∥∥ |δχ(u)||u|

|χ(u)|

∥∥∥
∞

,

Here, δχ(u) represents the Fréchet derivative of χ at point u.

In order to derive explicit formulas for the previously mentioned condition numbers,
we require certain properties of the Kronecker product, denoted as [25], between matrices
A and B. Here, the operator ’vec’ is defined as

vec(A) =
[

aT
1 , . . . , aT

n

]T
∈ Rmn,

for A = [a1, . . . , an] ∈ Rm×n with ai ∈ Rm and the Kronecker product between A =(
aij

)
∈ Rm×n and B ∈ Rp×q defined as A ⊗ B =

[
aijB

]
∈ Rmp×nq.

vec(AXB) =
(

BT ⊗ A
)

vec(X), (5)

vec
(

AT
)

= Πmnvec(A), (6)

∥A ⊗ B∥2 = ∥A∥2∥B∥2, (7)

(A ⊗ B)T = (AT ⊗ BT), (8)

Here, the matrix X should have an appropriate dimension. Moreover, Πmn ∈ Rmn×mn

is the vec-permutation matrix, and its definition is based on the dimensions m and n.
Moving forward, we provide two useful lemmas. These will help in the calculation of

condition numbers as well as in determining their upper bounds.

Lemma 2 ([26], P. 174, Theorem 5). Let S be an open subset of Rn×q , and let χ : S −→ Rm×p

be a matrix function defined and k ≥ 1 times (continuously) differentiable on S. If rank(χ(X)) is
constant on S, then χ† : S −→ Rp×m is k times (continuously) differentiable on S, and

δχ† = −χ†δχχ† + χ†χ†T
δχT(Im − χχ†) + (Ip − χ†χ)δχTχ†T

χ†. (9)

Lemma 3 ([16]). For any matrices W, B, C, G, Z and S that have dimensions such that

[W ⊗ B + (C ⊗ G)Π]vec(Z),

[W ⊗ B + (C ⊗ G)Π]vec(Z)
S

,

BZWTand GZTCT ,

are well-defined, we have

∥|[W ⊗ B + (C ⊗ G)Π]|vec(|Z|)∥∞ ≤
∥∥∥vec(|B||Z||W|T + |G||Z|T |C|T)

∥∥∥
∞
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and ∥∥∥∥ |[W ⊗ B + (C ⊗ G)Π]|vec(|Z|)
|S|

∥∥∥∥
∞
≤

∥∥∥∥vec(|B||Z||W|T + |G||Z|T |C|T)
|S|

∥∥∥∥
∞

.

3. Condition Numbers for ℳℒ -Weighted Pseudoinverse

To derive the explicit expression of the condition numbers of 𝒦 †
ℳℒ , we define the

mapping ϕ : Rmn+sm+ln → Rnm by

ϕ(w) = vec(𝒦 †
ℳℒ ). (10)

Here, w = (vec(ℳ)T, vec(ℒ )T, vec(𝒦 )T)T, δw = (vec(δℳ)T, vec(δℒ )T, vec(δ𝒦 )T)T,
and for a matrix A = (aij), ∥A∥max = ∥vec(A)∥∞ = max

i,j
|aij|.

The definitions of the normwise, mixed, and componentwise condition numbers for
𝒦 †

ℳℒ are given below, following [27] and using Definition 1.

n†(ℳ,ℒ ,𝒦 ) := lim
ε→0

sup
∥[δℳ,δℒ δ𝒦 ]∥F≤ε∥[ℳ,ℒ , 𝒦 ]∥F

∥(𝒦 + δ𝒦 )†
ℳℒ −𝒦 †

ℳℒ ∥F/∥𝒦 †
ℳℒ ∥F

∥[δℳ, δℒ δ𝒦 ]∥F/∥[ℳ, ℒ , 𝒦 ]∥F
, (11)

m†(ℳ,ℒ ,𝒦 ) := lim
ε→0

sup
∥δℳ/ℳ∥max≤ε
∥δℒ/ℒ∥max≤ε
∥δ𝒦/𝒦∥max≤ε

∥(𝒦 + δ𝒦 )†
ℳℒ −𝒦 †

ℳℒ ∥max

∥𝒦 †
ℳℒ ∥max

1
d(w + δw, w)

, (12)

c†(ℳ,ℒ ,𝒦 ) := lim
ε→0

sup
∥δℳ/ℳ∥max≤ε
∥δℒ/ℒ∥max≤ε
∥δ𝒦/𝒦∥max≤ε

1
d(w + δw, w)

∥∥∥∥∥ (𝒦 + δ𝒦 )†
ℳℒ −𝒦 †

ℳℒ

𝒦 †
ℳℒ

∥∥∥∥∥
max

. (13)

By applying the operator vec and the spectral, Frobenius, and Max norms, we redefine
the previously mentioned definitions accordingly.

n†(ℳ,ℒ ,𝒦 ) := lim
ε→0

sup∥∥∥∥∥∥∥∥


vec(δℳ)
vec(δℒ )
vec(δ𝒦 )


∥∥∥∥∥∥∥∥

2

≤ε

∥∥∥∥∥∥∥∥


vec(ℳ)
vec(ℒ )
vec(𝒦 )


∥∥∥∥∥∥∥∥

2

∥vec((𝒦 + δ𝒦 )†
ℳℒ −𝒦 †

ℳℒ )∥2

∥vec(𝒦 †
ℳℒ )∥2

/
∥∥∥∥∥∥
 vec(δℳ)

vec(δℒ )
vec(δ𝒦 )

∥∥∥∥∥∥
2∥∥∥∥∥∥

 vec(ℳ)
vec(ℒ )
vec(𝒦 )

∥∥∥∥∥∥
2

, (14)

m†(ℳ,ℒ ,𝒦 ) := lim
ε→0

sup
∥vec(δℳ)/vec(ℳ)∥∞≤ε
∥vec(δℒ )/vec(ℒ )∥∞≤ε
∥vec(δ𝒦 )/vec(𝒦 )∥∞≤ε

∥vec((𝒦 + δ𝒦 )†
ℳℒ −𝒦 †

ℳℒ ) ∥∞

∥vec(𝒦 †
ℳℒ )∥∞

1
d(w + δw, w)

, (15)

c†(ℳ,ℒ ,𝒦 ) := lim
ε→0

sup
∥vec(δℳ)/vec(ℳ)∥∞≤ε
∥vec(δℒ )/vec(ℒ )∥∞≤ε
∥vec(δ𝒦 )/vec(𝒦 )∥∞≤ε

1
d(w + δw, w)

∥∥∥∥∥vec((𝒦 + δ𝒦 )†
ℳℒ −𝒦 †

ℳℒ )

vec(𝒦 †
ℳℒ )

∥∥∥∥∥
∞

. (16)

The expression for the Fréchet derivative of ϕ at w is given below.

Lemma 4. Suppose that ϕ is a continous mapping. Then it is Fréchet differentiable at w and its
Fréchet derivative is:

δϕ(w) = [Z(ℳ), Z(ℒ ), Z(𝒦 )],
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where

Z(ℳ) = ((I −𝒦 (ℳ𝒦 )†ℳ)T ⊗ℛ†) + (((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)Πsm

Z(ℒ ) = −((𝒦 †
ℳℒ )T ⊗ (ℒ𝒫 )†)− ((ℒ𝒦 †

ℳℒ )T ⊗𝒬†)Πln

Z(𝒦 ) = −((𝒦 †
ℳℒ )T ⊗𝒦 †

ℳℒ ) + (((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†)Πmn (17)

with

𝒬† = (ℒ𝒫 )†(ℒ𝒫 )†T
= ((ℒ𝒫 )T(ℒ𝒫 ))†, ℛ† = (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†. (18)

Proof. By differentiating both sides of (1), we acquire

δ(𝒦 †
ℳℒ ) = δ[(I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳ]. (19)

Considering the facts

(ℒ𝒫 )† = 𝒫 (ℒ𝒫 )†, (20)

and

𝒫 (I − (ℒ𝒫 )†ℒ𝒫 ) = 0, (21)

which are from [9] Theorem 2.1, Lemma 2, and

𝒦𝒫 (ℒ𝒫 )† = 𝒦 (ℒ𝒫 )† = 0. (22)

From (19) and using (9) and (20), we have

δ(𝒦 †
ℳℒ ) = δ[(I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳ] = δ(ℳ𝒦 )†ℳ + (ℳ𝒦 )†δℳ − δ(𝒫 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳ) by (20)

= (I −𝒫 (ℒ𝒫 )†ℒ )δ(ℳ𝒦 )†ℳ + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳ − δ𝒫 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳ

−𝒫 δ(ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳ −𝒫 (ℒ𝒫 )†δℒ (ℳ𝒦 )†ℳ

= (I −𝒫 (ℒ𝒫 )†ℒ )[−(ℳ𝒦 )†δ(ℳ𝒦 )(ℳ𝒦 )† + (ℳ𝒦 )†(ℳ𝒦 )†T
δ(ℳ𝒦 )T(I − (ℳ𝒦 )(ℳ𝒦 )†)

+ (I − (ℳ𝒦 )†(ℳ𝒦 ))δ(ℳ𝒦 )T(ℳ𝒦 )†T
(ℳ𝒦 )†]ℳ + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳ

− δ𝒫 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳ +𝒫 [(ℒ𝒫 )†δ(ℒ𝒫 )(ℒ𝒫 )† − (ℒ𝒫 )†(ℒ𝒫 )†T
δ(ℒ𝒫 )T(I − (ℒ𝒫 )(ℒ𝒫 )†)

−(I − (ℒ𝒫 )†(ℒ𝒫 ))δ(ℒ𝒫 )T(ℒ𝒫 )†T
(ℒ𝒫 )†]ℒ (ℳ𝒦 )†ℳ −𝒫 (ℒ𝒫 )†δℒ (ℳ𝒦 )†ℳ by (9)

Using (20) and the result
(

I −𝒫 (ℒ𝒫 )†ℒ
)(

I − (ℳ𝒦 )†(ℳ𝒦 )
)
= 𝒫

(
I − (ℒ𝒫 )†ℒ𝒫

)
,

the above equation can be rewritten as

δ(𝒦 †
ℳℒ ) = −(I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δ(ℳ𝒦 )(ℳ𝒦 )†ℳ +𝒫 (I − (ℒ𝒫 )†ℒ𝒫 )δ(ℳ𝒦 )T(ℳ𝒦 )†T

(ℳ𝒦 )†ℳ

+ (I − (ℒ𝒫 )†(ℒ𝒫 ))(ℳ𝒦 )†(ℳ𝒦 )†T
δ(ℳ𝒦 )T(I − (ℳ𝒦 )(ℳ𝒦 )†)ℳ − (ℒ𝒫 )†δℒ (ℳ𝒦 )†ℳ

− (I − (ℒ𝒫 )†ℒ )δ(I − (ℳ𝒦 )†ℳ𝒦 )(ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳ + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳ

+ (ℒ𝒫 )†δℒ (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳ − (ℒ𝒫 )†(ℒ𝒫 )†T
δ(ℒ𝒫 )T(I − (ℒ𝒫 )(ℒ𝒫 )†)ℒ (ℳ𝒦 )†ℳ

−𝒫 (I − (ℒ𝒫 )†ℒ𝒫 )δ(ℒ𝒫 )T(ℒ𝒫 )†T
(ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳ. by (20)

Furthermore, given that (ℳ𝒦 )(ℳ𝒦 )† = I, (20), and

𝒦𝒫 (ℒ𝒫 )† = 𝒦 (ℒ𝒫 )† = 0,

we can simplify the above equation as considering (21) and (22), we have
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= −(I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳ𝒦 (ℳ𝒦 )†ℳ − (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳδ𝒦 (ℳ𝒦 )†ℳ + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳ

− (ℒ𝒫 )†δℒ (ℳ𝒦 )†ℳ + (ℒ𝒫 )†δℒ𝒫 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳ + (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳδ𝒦 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳ

− (ℒ𝒫 )†(ℒ𝒫 )†T
𝒫 Tδℒ T(I − (ℒ𝒫 )(ℒ𝒫 )†)ℒ (ℳ𝒦 )†ℳ − (ℒ𝒫 )†(ℒ𝒫 )†T

δ𝒫 Tℒ T(I − (ℒ𝒫 )(ℒ𝒫 )†)ℒ (ℳ𝒦 )†ℳ. (23)

Using (18) and (1) in (23), we obtain

= ℛ†δℳ(I −𝒦 (ℳ𝒦 )†ℳ)−ℛ†ℳδ𝒦 (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳ

− (ℒ𝒫 )†δℒℛ†ℳ − (ℒ𝒫 )†(𝒫 (ℒ𝒫 )†)Tδℒ Tℒ (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳ

+ (ℒ𝒫 )†(ℒ𝒫 )†T
δ𝒦 TℳT(ℳ𝒦 )†T

ℒ Tℒ (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳ

+ (ℒ𝒫 )†(ℒ𝒫 )†T
𝒦 TδℳT(ℳ𝒦 )†T

ℒ Tℒ (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳ

= ℛ†δℳ(I −𝒦 (ℳ𝒦 )†ℳ)−𝒦 †
ℳℒ δ𝒦𝒦 †

ℳℒ − (ℒ𝒫 )†δℒ𝒦 †
ℳℒ −𝒬†δℒ Tℒ𝒦 †

ℳℒ

+𝒬†δ𝒦 TℳT(ℒ (ℳ𝒦 )†)Tℒ𝒦 †
ℳℒ +𝒬†𝒦 TδℳT(ℒ (ℳ𝒦 )†)Tℒ𝒦 †

ℳℒ . (24)

Employing the ’vec’ operation on both sides of (24) and taking into account (5) and
(6), we obtain

vec(δ𝒦 †
ℳℒ ) = ((I −𝒦 (ℳ𝒦 )†ℳ)T ⊗ℛ†)vec(δℳ) + (((ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)vec(δℳT)

− ((𝒦 †
ℳℒ )T ⊗ (ℒ𝒫 )†)vec(δℒ )− ((ℒ𝒦 †

ℳℒ )T ⊗𝒬†)vec(δℒ T)− ((𝒦 †
ℳℒ )T ⊗𝒦 †

ℳℒ )vec(δ𝒦 )

+ (((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†)vec(δ𝒦 T) by (5)

= [((I −𝒦 (ℳ𝒦 )†ℳ)T ⊗ℛ†) + (((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)Πsm]vec(δℳ)

− [((𝒦 †
ℳℒ )T ⊗ (ℒ𝒫 )†) + ((ℒ𝒦 †

ℳ𝒦 )T ⊗𝒬†)Πln]vec(δℒ )

− [((𝒦 †
ℳℒ )T ⊗𝒦 †

ℳℒ )− (((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†)Πmn]vec(δ𝒦 ) by (6)

=

[
((I −𝒦 (ℳ𝒦 )†ℳ)T ⊗ℛ†) + (((ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)Πsm,

− ((𝒦 †
ℳℒ )T ⊗ (ℒ𝒫 )†)−((ℒ𝒦 †

ℳℒ )T ⊗𝒬†)Πln,−((𝒦 †
ℳℒ )T ⊗𝒦 †

ℳℒ )

+(((ℒ𝒦 †
ℳ𝒦 )Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†)Πmn

]

×

vec(δℳ)
vec(δℒ )
vec(δ𝒦 )

.

That is,
δ(vec(𝒦 †

ℳℒ )) = [Z(ℳ), Z(ℒ ), Z(𝒦 )]δw.

The definition of Fréchet derivative yields the expected results.

Remark 1. Assuming ℳ = I and the Fréchet derivative of ϕ at w might be described as follows:

δϕ(w) = [Z̃(ℒ ), Z̃(𝒦 )],

where

Z̃(ℳ) = 0

Z̃(ℒ ) = −((𝒦 †
ℒ )T ⊗ (ℒ𝒫 )†)− ((ℒ𝒦 †

ℒ )T ⊗𝒬†)Πln

Z̃(𝒦 ) = −((𝒦 †
ℒ )T ⊗𝒦 †

ℒ ) + (((ℒ𝒦 †
ℒ )Tℒ𝒦 †)⊗𝒬†)Πmn
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whereas the latter is simply the results of ([19], Lemma 4), which allows us to retrieve the K-
weighted pseudoinverse ℒ †

𝒦 [19] condition numbers. The K-weighted pseudoinverse ℒ †
𝒦 of [19]

uses a notation different from this paper (𝒦 and ℒ are interchanged).

Remark 2. Considering ℳ and ℒ as identity matrices, we obtain

Z(ℳ) = 0, Z(ℒ ) = 0, Z(𝒦 ) = [−(𝒦 †)T ⊗𝒦 †) + ((𝒦𝒦 T)−1 ⊗ (I −𝒦 †𝒦 ))Πmn],

which yields the outcome in [16], Lemma 10, from which the condition numbers for the Moore-
Penrose inverse [16] can be obtained.

Next, we provide the normwise, mixed, and componentwise condition numbers for
𝒦 †

ℳℒ , which belong to the direct outcomes of Lemmas 1 and 4.

Theorem 1. The normwise, mixed and componentwise condition numbers for 𝒦 †
ℳℒ defined in

(11)–(13) are

n†(ℳ,ℒ ,𝒦 ) =

∥[Z(ℳ), Z(ℒ ), Z(𝒦 )]∥2

∥∥∥∥∥∥
vec(ℳ)

vec(ℒ )
vec(𝒦 )

∥∥∥∥∥∥
2

∥vec(𝒦 †
ℳℒ )∥2

, (25)

m†(ℳ,ℒ ,𝒦 ) =
∥|Z(ℳ)|vec(|ℳ|) + |Z(ℒ )|vec(|ℒ |) + Z(𝒦 )vec(|𝒦 |)∥∞

∥vec(𝒦 †
ℳℒ )∥∞

, (26)

c†(ℳ,ℒ ,𝒦 ) =

∥∥∥∥∥ |Z(ℳ)|vec(|ℳ|) + |Z(ℒ )|vec(|ℒ |) + Z(𝒦 )vec(|𝒦 |)
vec(𝒦 †

ℳℒ )

∥∥∥∥∥
∞

. (27)

In the following corollary, we propose simply computable upper bounds to decrease
the cost of determining these condition numbers. Numerical investigations in Section 5
illustrate the reliability of these bounds.

Corollary 1. The upper bounds for the normwise, mixed and componentwise condition numbers
for 𝒦 †

ℳℒ are

n†(ℳ,ℒ ,𝒦 ) ≤ n†
u(ℳ,ℒ ,𝒦 )

=

[
∥I −𝒦 (ℳ𝒦 )†ℳ∥2∥ℛ†∥2 + ∥(ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†∥2∥𝒬†𝒦 T∥2

+ ∥𝒦 †
ℳℒ ∥2∥(ℒ𝒫 )†∥2 + ∥ℒ𝒦 †

ℳℒ ∥2∥𝒬†∥2

+ ∥𝒦 †
ℳℒ ∥2∥𝒦 †

ℳℒ ∥2 + ∥(ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†ℳ∥2∥𝒬†∥2

]
∥[ℳ, ℒ , 𝒦 ]∥F

∥𝒦 †
ℳℒ ∥F

,

m†(ℳ,ℒ ,𝒦 ) ≤ m†
u(ℳ,ℒ ,𝒦 )

=

∥∥∥∥∥∥
|ℛ†||ℳ||(I −𝒦 (ℳ𝒦 )†ℳ)T |+ |𝒬†𝒦 T ||ℳT ||((ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†)|
+|(ℒ𝒫 )†||ℒ ||𝒦 †

ℳℒ |+ |𝒬†||ℒ T ||ℒ𝒦 †
ℳℒ |

+|𝒦 †
ℳℒ ||𝒦 ||𝒦 †

ℳℒ |+ |𝒬†||𝒦 T ||(ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†ℳ|

∥∥∥∥∥∥
max

∥𝒦 †
ℳℒ ∥max

,

c†(ℳ,ℒ ,𝒦 ) ≤ c†
u(ℳ,ℒ ,𝒦 )

=

∥∥∥∥∥∥∥∥∥∥∥∥∥

|ℛ†||ℳ||(I −𝒦 (ℳ𝒦 )†ℳ)T |+ |𝒬†𝒦 T ||ℳT ||((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†)|

+|(ℒ𝒫 )†||ℒ ||𝒦 †
ℳℒ |+ |𝒬†||ℒ T ||ℒ𝒦 †

ℳℒ |
+|𝒦 †

ℳℒ ||𝒦 ||𝒦 †
ℳℒ |+ |𝒬†||𝒦 T ||(ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†ℳ|
|𝒦 †

ℳℒ |

∥∥∥∥∥∥∥∥∥∥∥∥∥
max

.
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Proof. Considering the known property ∥[U, V]∥2 ≤ ∥U∥2 + ∥V∥2 for a pair of matrices,
U and V, and the Theorem 1, and (7), we obtain

n†(ℳ,ℒ ,𝒦 ) ≤
[
∥((I −𝒦 (ℳ𝒦 )†ℳ)T ⊗ℛ†) + (((ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)Πsm∥2

+ ∥(𝒦 †
ℳℒ )T ⊗ (ℒ𝒫 )† − ((ℒ𝒦 †)T ⊗𝒬†)Πln∥2

+ ∥(𝒦 †
ℳℒ )T ⊗𝒦 †

ℳℒ − (((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†)Πmn∥2

]
× ∥[ℳ, ℒ , 𝒦 ]∥F

∥𝒦 †
ℳℒ ∥F

≤
[
∥((I −𝒦 (ℳ𝒦 )†ℳ)T ⊗ℛ†)∥2 + ∥((ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T∥2

+ ∥(𝒦 †
ℳℒ )T ⊗ (ℒ𝒫 )†∥2 + ∥(ℒ𝒦 †

ℳℒ )T ⊗𝒬†∥2

+ ∥(𝒦 †
ℳℒ )T ⊗𝒦 †

ℳℒ ∥2 + ∥((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†∥2

]
× ∥[ℳ, ℒ , 𝒦 ]∥F

∥𝒦 †
ℳℒ ∥F

=

[
∥I −𝒦 (ℳ𝒦 )†ℳ∥2∥ℛ†∥2 + ∥(ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†∥2∥𝒬†𝒦 T∥2

+ ∥𝒦 †
ℳℒ ∥2∥(ℒ𝒫 )†∥2 + ∥ℒ𝒦 †

ℳℒ ∥2∥𝒬†∥2

+ ∥𝒦 †
ℳℒ ∥2∥𝒦 †

ℳℒ ∥2 + ∥(ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†ℳ∥2∥𝒬†∥2

]
∥[ℳ, ℒ , 𝒦 ]∥F

∥𝒦 †
ℳℒ ∥F

.

Again using Theorem 1, and Lemma 3, we have

m†(ℳ,ℒ ,𝒦 ) = ∥|((I −𝒦 (ℳ𝒦 )†ℳ)T ⊗ℛ†) + (((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)Πsm|vec(|ℳ|)

+ |(𝒦 †
ℳℒ )T ⊗ (ℒ𝒫 )† − (ℒ𝒦 †

ℳℒ )T ⊗ (𝒬†)Πln|vec(|ℒ |)
+ |(𝒦 †

ℳℒ )T ⊗𝒦 †
ℳℒ − ((ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†Πmn|vec(|𝒦 |)∥∞/∥vec(𝒦 †
ℳℒ )∥∞

≤

∥∥∥∥∥∥
|ℛ†||ℳ||(I −𝒦 (ℳ𝒦 )†ℳ)T |+ |𝒬†𝒦 T ||ℳT ||((ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†)|
+|(ℒ𝒫 )†||ℒ ||𝒦 †

ℳℒ |+ |𝒬†||ℒ T ||ℒ𝒦 †
ℳℒ |

+|𝒦 †
ℳℒ ||𝒦 ||𝒦 †

ℳℒ |+ |𝒬†||𝒦 T ||(ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†ℳ|

∥∥∥∥∥∥
max

∥𝒦 †
ℳℒ ∥max

,

and

c†(ℳ,ℒ ,𝒦 ) = ∥|((I −𝒦 (ℳ𝒦 )†ℳ)T ⊗ℛ†) + (((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)Πsm|vec(|ℳ|)

+ |(𝒦 †
ℳℒ )T ⊗ (ℒ𝒫 )† − (ℒ𝒦 †

ℳℒ )T ⊗𝒬†Πln|vec(|ℒ |)
+ |(𝒦 †

ℳℒ )T ⊗𝒦 †
ℳℒ − ((ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†Πmn|vec(|𝒦 |)/|vec(𝒦 †
ℳℒ )|∥∞

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥

|ℛ†||ℳ||(I −𝒦 (ℳ𝒦 )†ℳ)T |+ |𝒬†𝒦 T ||ℳT ||((ℒ𝒦 †
ℳℒ )Tℒ (ℳ𝒦 )†)|

+|(ℒ𝒫 )†||ℒ ||𝒦 †
ℳℒ |+ |𝒬†||ℒ T ||ℒ𝒦 †

ℳℒ |
+|𝒦 †

ℳℒ ||𝒦 ||𝒦 †
ℳℒ |+ |𝒬†||𝒦 T ||(ℒ𝒦 †

ℳℒ )Tℒ (ℳ𝒦 )†ℳ|
|𝒦 †

ℳℒ |

∥∥∥∥∥∥∥∥∥∥∥∥∥
max

.

4. Condition Numbers for ℳℒ -Weighted Least Squares Problem

First we define the ℳℒ -WLS problem mapping ψ([ℳ,ℒ ,𝒦 , h]) : Rmn+sm+ln+m →
Rn by

ψ([ℳ,ℒ ,𝒦 , h]) = x = (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳh. (28)

Then, using Definition 1 , we denote the normwise, mixed and componentwise condi-
tion numbers for the ℳℒ -WLS problem as follows:
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nℳℒ−WLS(ℳ,ℒ ,𝒦 , h) = nℳℒ−WLS(ϕ, [ℳ,ℒ ,𝒦 , h]) = lim
ε→0

sup
∥[δℳ,δℒ ,δ𝒦 ,δh]∥F⩽ε∥[ℳ,ℒ ,𝒦 ,h]∥F

∥δx∥2

ε∥x∥2
,

mℳℒ−WLS(ℳ,ℒ ,𝒦 , h) = mℳℒ−WLS(ϕ, [ℳ,ℒ ,𝒦 , h]) = lim
ε→0

sup
|δℳ|⩽ε|ℳ|
|δℒ |⩽ε|ℒ |
|δ𝒦 |⩽ε|𝒦 |
|δh|⩽ε|h|

∥δx∥∞

ε∥x∥∞
,

cℳℒ−WLS(ℳ,ℒ ,𝒦 , h) = cℳℒ−WLS(ϕ, [ℳ,ℒ ,𝒦 , h]) = lim
ε→0

sup
|δℳ|⩽ε|ℳ|
|δℒ |⩽ε|ℒ |
|δ𝒦 |⩽ε|𝒦 |
|δh|⩽ε|h|

1
ε

∥∥∥∥ δx
x

∥∥∥∥
∞

.

Lemma 5. The mapping ψ is continuous, Fréchet differentiable at [ℳ,ℒ ,𝒦 , h], and

δψ([ℳ,ℒ ,𝒦 , h]) = [S(ℳ), S(ℒ ), S(𝒦 ), h],

where

S(ℳ) = (rT ⊗ℛ† + ((xTℒ Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)Πsm,

S(ℒ ) = −(xT ⊗ (ℒ𝒫 )†)− (xTℒ T ⊗𝒬†)Πln,

S(𝒦 ) = −(xT ⊗𝒦 †
ℳℒ ) + ((xTℒ Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†)Πmn, (29)

with r = (I −𝒦 (ℳ𝒦 )†ℳ)h, 𝒬† = (ℒ𝒫 )†(ℒ𝒫 )†T
= ((ℒ𝒫 )T(ℒ𝒫 ))†.

Proof. Differentiating both sides of (28), we obtain

δx = δψ([ℳ,ℒ ,𝒦 , h]) = δ[(I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳh]

From (20) and using (9), we obtain

δx = δ(ℳ𝒦 )†ℳh + (ℳ𝒦 )†δℳh + (ℳ𝒦 )†ℳδh − δ(𝒫 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳh) by (20)

= (I −𝒫 (ℒ𝒫 )†ℒ )δ(ℳ𝒦 )†ℳh + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳh − δ𝒫 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳh

−𝒫 δ(ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳh −𝒫 (ℒ𝒫 )†δℒ (ℳ𝒦 )†ℳh −𝒫 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳδh

= (I −𝒫 (ℒ𝒫 )†ℒ )[−(ℳ𝒦 )†δ(ℳ𝒦 )(ℳ𝒦 )† + (ℳ𝒦 )†(ℳ𝒦 )†T
δ(ℳ𝒦 )T(I − (ℳ𝒦 )(ℳ𝒦 )†)

+ (I − (ℳ𝒦 )†(ℳ𝒦 ))δ(ℳ𝒦 )T(ℳ𝒦 )†T
(ℳ𝒦 )†]ℳh + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳh

− δ𝒫 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳh +𝒫 [(ℒ𝒫 )†δ(ℒ𝒫 )(ℒ𝒫 )† − (ℒ𝒫 )†(ℒ𝒫 )†T
δ(ℒ𝒫 )T(I − (ℒ𝒫 )(ℒ𝒫 )†)

−(I − (ℒ𝒫 )†(ℒ𝒫 ))δ(ℒ𝒫 )T(ℒ𝒫 )†T
(ℒ𝒫 )†]ℒ (ℳ𝒦 )†ℳh −𝒫 (ℒ𝒫 )†δℒ (ℳ𝒦 )†ℳh + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳδh.

Using (20), (28) and the result
(
I −𝒫 (ℒ𝒫 )†ℒ

)(
I − (ℳ𝒦)†(ℳ𝒦)

)
= 𝒫

(
I − (ℒ𝒫 )†ℒ𝒫

)
,

the above equation can be rewritten as

δx = −(I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δ(ℳ𝒦 )(ℳ𝒦 )†ℳh +𝒫 (I − (ℒ𝒫 )†ℒ𝒫 )δ(ℳ𝒦 )T(ℳ𝒦 )†T
(ℳ𝒦 )†ℳh

+ (I − (ℒ𝒫 )†(ℒ𝒫 ))(ℳ𝒦 )†(ℳ𝒦 )†T
δ(ℳ𝒦 )T(I − (ℳ𝒦 )(ℳ𝒦 )†)ℳh + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳh

− (I − (ℒ𝒫 )†ℒ )δ(I − (ℳ𝒦 )†ℳ𝒦 )(ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳh + (ℒ𝒫 )†δℒ (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳh

− (ℒ𝒫 )†δℒ (ℳ𝒦 )†ℳh − (ℒ𝒫 )†(ℒ𝒫 )†T
δ(ℒ𝒫 )T(I − (ℒ𝒫 )(ℒ𝒫 )†)ℒ (ℳ𝒦 )†ℳh

+𝒫 (I − (ℒ𝒫 )†ℒ𝒫 )δ(ℒ𝒫 )T(ℒ𝒫 )†T
(ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳh + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳδh.

Noting, by the fact (ℳ𝒦 )(ℳ𝒦 )† = I, (20), and

𝒦𝒫 (ℒ𝒫 )† = 𝒦 (ℒ𝒫 )† = 0,
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we can simplify the above equation by considering (21) and (22)

= −(I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳ𝒦 (ℳ𝒦 )†ℳh − (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳδ𝒦 (ℳ𝒦 )†ℳh

+ (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†δℳh − (ℒ𝒫 )†δℒ (ℳ𝒦 )†ℳh + (ℒ𝒫 )†δℒ𝒫 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳh

+ (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳδ𝒦 (ℒ𝒫 )†ℒ (ℳ𝒦 )†ℳh − (ℒ𝒫 )†(ℒ𝒫 )†T
𝒫 Tδℒ T(I − (ℒ𝒫 )(ℒ𝒫 )†)ℒ (ℳ𝒦 )†ℳh

− (ℒ𝒫 )†(ℒ𝒫 )†T
δ𝒫 Tℒ T(I − (ℒ𝒫 )(ℒ𝒫 )†)ℒ (ℳ𝒦 )†ℳh + (I −𝒫 (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳδh. (30)

Considering (ℒ𝒫 )†(ℒ𝒫 )†T
= ((ℒ𝒫 )T(ℒ𝒫 ))† in (30), we obtain

= ℛ†δℳ(I −𝒦 (ℳ𝒦 )†ℳ)h −ℛ†ℳδ𝒦 (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳh

− (ℒ𝒫 )†δℒℛ†ℳh − (ℒ𝒫 )†(𝒫 (ℒ𝒫 )†)Tδℒ Tℒ (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳh

+ (ℒ𝒫 )†(ℒ𝒫 )†T
δ𝒦 TℳT(ℳ𝒦 )†T

ℒ Tℒ (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳh

+ (ℒ𝒫 )†(ℒ𝒫 )†T
𝒦 TδℳT(ℳ𝒦 )†T

ℒ Tℒ (I − (ℒ𝒫 )†ℒ )(ℳ𝒦 )†ℳh +ℛ†ℳδh.

= ℛ†δℳr −𝒦 †
ℳℒ δ𝒦 x − (ℒ𝒫 )†δℒ x −𝒬†δℒ Tℒ x

+𝒬†δ𝒦 TℳT(ℒ (ℳ𝒦 )†)Tℒ x +𝒬†𝒦 TδℳT(ℒ (ℳ𝒦 )†)Tℒ x +𝒦 †
ℳℒ δh. (31)

After considering (5) and (6) and using the ’vec’ operation on both sides of (31),
we obtain

vec(δx) = (rT ⊗ℛ†)vec(δℳ) + ((xTℒ Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)vec(δℳT)

− (xT ⊗ (ℒ𝒫 )†)vec(δℒ )− (xTℒ T ⊗𝒬†)vec(δℒ T)− (xT ⊗𝒦 †
ℳℒ )vec(δ𝒦 )

+ ((xTℒ Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†)vec(δ𝒦 T) +𝒦 †
ℳℒ δh by (5)

= [(rT ⊗ℛ†) + ((xTℒ Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)Πsm]vec(δℳ)

− [(xT ⊗ (ℒ𝒫 )†) + (xTℒ T ⊗𝒬†)Πln]vec(δℒ )

− [(xT ⊗𝒦 †
ℳℒ )− ((xTℒ Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†)Πmn]vec(δ𝒦 ) +𝒦 †

ℳℒ δh by (6)

=

[
((rT ⊗ℛ†) + ((xTℒ Tℒ (ℳ𝒦 )†)⊗𝒬†𝒦 T)Πsm),

− ((xT ⊗ (ℒ𝒫 )†) + (xTℒ T ⊗𝒬†)Πln),

− ((xT ⊗𝒦 †
ℳℒ )− ((xTℒ Tℒ (ℳ𝒦 )†ℳ)⊗𝒬†)Πmn),𝒦 †

ℳℒ

]
vec(δℳ)
vec(δℒ )
vec(δ𝒦 )

δh

. (32)

That is,
δx = [S(ℳ), S(ℒ ), S(𝒦 ),𝒦 †

ℳℒ ]δw.

Hence, the required results can be obtained by using the definition of Fréchet
derivative.

Remark 3. Assuming ℳ and ℒ as identity matrices and using (32), we obtain

δx′ =
[
− ((xT ⊗𝒦 †)− (xT𝒦 † ⊗ (I −𝒦 †𝒦 ))Πmn),𝒦 †

][
vec(δ𝒦 )

δh

]
.

It accomplishes the result stated in ([16] Lemma 11), from which the condition numbers of the
linear least squares solution [16] can be acquired.

Now, we give the normwise, mixed, and componentwise condition numbers for
ℳℒ -WLS solution which are the immediate results of Lemma 1 and Lemma 4.
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Theorem 2. The normwise, mixed and componentwise condition numbers for ℳℒ -WLS problem
defined in (11)–(13) are

nℳℒ−WLS(ℳ,ℒ ,𝒦 , h) =

∥[S(ℳ), S(ℒ ), S(𝒦 ),𝒦 †
ℳℒ ]∥2

∥∥∥∥∥∥∥∥


vec(ℳ)
vec(ℒ )
vec(𝒦 )

h


∥∥∥∥∥∥∥∥

2
∥x∥2

, (33)

mℳℒ−WLS(ℳ,ℒ ,𝒦 , h) =

∥∥|S(ℳ)|vec(|ℳ|) + |S(ℒ )|vec(|ℒ |) + S(𝒦 )vec(|𝒦 |) + |𝒦 †
ℳℒ ||h|

∥∥
∞

∥x∥∞
, (34)

cℳℒ−WLS(ℳ,ℒ ,𝒦 , h) =

∥∥∥∥∥ |S(ℳ)|vec(|ℳ|) + |S(ℒ )|vec(|ℒ |) + S(𝒦 )vec(|𝒦 |) + |𝒦 †
ℳℒ ||h|

x

∥∥∥∥∥
∞

. (35)

The next corollary yields effortlessly computable bounds for ℳℒ -WLS solution.
Numerical investigations in Section 5 confirm the reliability of these bounds.

Corollary 2. The upper bounds for the normwise, mixed and componentwise condition numbers
for ℳℒ -WLS solution are

nℳℒ−WLS(ℳ,ℒ ,𝒦 , h) ≤ nupper(ℳ,ℒ ,𝒦 , h)

=

[
∥r∥2∥ℛ†∥2 + ∥(ℒ (ℳ𝒦 )†)Tℒ x∥2∥𝒬†𝒦 T∥2

+ ∥x∥2∥(ℒ𝒫 )†∥2 + ∥ℒ x∥2∥𝒬†∥2

+ ∥x∥2∥𝒦 †
ℳℒ ∥2 + ∥ℳT(ℒ (ℳ𝒦 )†)Tℒ x∥2∥𝒬†∥2 + ∥𝒦 †

ℳℒ ∥2

]
∥[ℳ, ℒ , 𝒦 , h]∥F

∥x∥F
,

mℳℒ−WLS(ℳ,ℒ ,𝒦 , h) ≤ mupper(ℳ,ℒ ,𝒦 , h)

=

∥∥∥∥∥∥
|ℛ†||ℳ||r|+ |𝒬†𝒦 T ||ℳT ||(ℒ (ℳ𝒦 )†)Tℒ x|

+|(ℒ𝒫 )†||ℒ ||x|+ |𝒬†||ℒ T ||ℒ x|
+|𝒦 †

ℳℒ ||𝒦 ||x|+ |𝒬†||𝒦 T ||ℳT(ℒ (ℳ𝒦 )†)Tℒ x|+ |𝒦 †
ℳℒ ||h|

∥∥∥∥∥∥
∞

∥x∥∞
,

cℳℒ−WLS(ℳ,ℒ ,𝒦 , h) ≤ cupper(ℳ,ℒ ,𝒦 , h)

=

∥∥∥∥∥∥∥∥∥∥∥∥∥

|ℛ†||ℳ||r|+ |𝒬†𝒦 T ||ℳT ||(ℒ (ℳ𝒦 )†)Tℒ x|
+|(ℒ𝒫 )†||ℒ ||x|+ |𝒬†||ℒ T ||ℒ x|

+|𝒦 †
ℳℒ ||𝒦 ||x|+ |𝒬†||𝒦 T ||ℳT(ℒ (ℳ𝒦 )†)Tℒ x|+ |𝒦 †

ℳℒ ||h|
|x|

∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

.

Here, we have a different version of the normwise condition number that does not
include the Kronecker products.

Theorem 3. The normwise condition number nℳℒ−WLS(ℳ,ℒ ,𝒦 , h) of the ℳℒ -WLS solution
is given by

nℳℒ−WLS(ℳ,ℒ ,𝒦 , h) =
∥𝒲 ∥1/2

2 ∥[ℳ,ℒ ,𝒦 , h]∥F

∥x∥2
, (36)
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where

𝒲 =
(

1 + ∥x∥2
2

)
(𝒦 †

ℳℒ )T𝒦 †
ℳℒ + (∥ℒ x∥2

2 + ∥xTℒ Tℒ (ℳ𝒦 )†ℳ∥2
2)𝒬

†2
+∥r∥2

2ℛ
†ℛ†T

+ ∥x∥2
2𝒬

† + ∥xTℒ Tℒ (ℳ𝒦 )†∥2
2𝒬

†T
𝒦 T𝒦𝒬† − 2ℛ†(ℳ𝒦 )†T

ℒ Tℒ xrT𝒦𝒬†T

+ 2𝒬†xxTℒ T(ℒ𝒫 )†T − 2𝒬†xxTℒ Tℒ (ℳ𝒦 )†ℳ𝒦 †T
ℳℒ .

Proof. We find it difficult to simplify δψ directly. Therefore, from (29), we consider 𝒲 and
using ∥𝒲 ∥2 =

∥∥𝒲 T
∥∥2

2 = max
∥y∥2=1

∥∥𝒲 Ty
∥∥2

2. If y is a unit vector in Rn, then

𝒲 Ty =


ΠT(r ⊗ℛ†T

)− ((ℳ𝒦 )†T
ℒ Tℒ x ⊗𝒦𝒬†T

)

−ΠT(ℒ x ⊗𝒬†T
)− (x ⊗ (ℒ𝒫 )†T

)

ΠT((ℳT(ℳ𝒦 )†T
ℒ Tℒ x)⊗𝒬†T

)− (x ⊗ (𝒦 †
ℳℒ )T)

(𝒦 †
ℳℒ )T

y ( by (8))

=


ΠT(r ⊗ℛ†T

)vec(y)− ((ℳ𝒦 )†T
ℒ Tℒ x ⊗ (𝒬†𝒦 T)T)vec(y)

−ΠT(ℒ x ⊗𝒬†T
)vec(y)− (x ⊗ (ℒ𝒫 )†T

)vec(y)
ΠT((ℳT(ℳ𝒦 )†T

ℒ Tℒ x)⊗𝒬†T
)vec(y)− (x ⊗ (𝒦 †

ℳℒ )T)vec(y)
(𝒦 †

ℳℒ )Ty



=


Π−1vec(ℛ†TyrT)− Πvec((𝒬†𝒦 T)Ty((ℳ𝒦 )†T

ℒ Tℒ x)T)

−Π−1vec(𝒬†Ty(ℒ x)T)− Πvec((ℒ𝒫 )†TyxT)

Π−1vec(𝒬†Ty(ℳT(ℳ𝒦 )†T
ℒ Tℒ x)T)− Πvec((𝒦 †

ℳℒ )TyxT)
(𝒦 †

ℳℒ )Ty

 ( by (5))

=


Π(vec(ℛ†TyrT)− vec(((𝒬†𝒦 T)TyxTℒ Tℒ (ℳ𝒦 )†)T))

−Π(vec(𝒬†Ty(ℒ x)T) + vec(((ℒ𝒫 )†TyxT)T))

Π(vec(𝒬†Ty(ℳT(ℳ𝒦 )†T
ℒ Tℒ x)T)− vec(((𝒦 †

ℳℒ )TyxT)T))
(𝒦 †

ℳℒ )Ty

 ( by (6))

=


Π−1vec(ℛ†TyrT − ((ℳ𝒦 )†T

ℒ Tℒ xyT𝒬†𝒦 T))

−Π−1vec(𝒬†Ty(ℒ x)T + xyT(ℒ𝒫 )†)

Π−1vec(𝒬†Ty(ℳT(ℳ𝒦 )†T
ℒ Tℒ x)T − xyT𝒦 †

ℳℒ )
(𝒦 †

ℳℒ )Ty



=


vec(ryTℛ† − (𝒦𝒬†TyxTℒ Tℒ (ℳ𝒦 )†))

−vec(ℒ xyT𝒬† + (ℒ𝒫 )†TyxT)
vec(xTℒ Tℒ (ℳ𝒦 )†ℳyT𝒬† − (𝒦 †

ℳℒ )TyxT)
(𝒦 †

ℳℒ )Ty

. ( by (6) and Π−1 = ΠT) (37)

Then, we obtain
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∥𝒲 Ty∥2
2 = ∥vec(ryTℛ† − (𝒦𝒬†T

yxTℒ Tℒ (ℳ𝒦 )†))∥2
2 + ∥vec(ℒ xyT𝒬† + (ℒ𝒫 )†T

yxT)∥2
2

+ ∥vec(xTℒ Tℒ (ℳ𝒦 )†ℳyT𝒬† − (𝒦 †
ℳℒ )TyxT)∥2

2 + ∥(𝒦 †
ℳℒ )Ty∥2

2

= ∥ryT(ℛ† − (𝒦𝒬†T
yxTℒ Tℒ (ℳ𝒦 )†)∥2

F + ∥ℒ xyT𝒬† + (ℒ𝒫 )†T
yxT∥2

F

+ ∥xTℒ Tℒ (ℳ𝒦 )†ℳyT𝒬† − (𝒦 †
ℳℒ )TyxT∥2

F + ∥(𝒦 †
ℳℒ )Ty∥2

2

= ∥ryTℛ†∥2
F + ∥𝒦𝒬†T

yxTℒ Tℒ (ℳ𝒦 )†∥2
F + ∥ℒ xyT𝒬†∥2

F + ∥(ℒ𝒫 )†T
yxT∥2

F

+ ∥xTℒ Tℒ (ℳ𝒦 )†ℳyT𝒬†∥2
F + ∥(𝒦 †

ℳℒ )TyxT∥2
F + ∥(𝒦 †

ℳℒ )Ty∥2
2

− 2tr((ℳ𝒦 )†T
ℒ Tℒ xyT𝒬†𝒦 TryTℛ†) + 2tr(xyT(ℒ𝒫 )†ℒ xyT𝒬†)

− 2tr(xyT𝒦 †
ℳℒ xTℒ Tℒ (ℳ𝒦 )†ℳyT𝒬†)

= ∥xTℒ Tℒ (ℳ𝒦 )†∥2
2∥𝒦𝒬†T

y∥2
2 + ∥r∥2

2∥ℛ†T
y∥2

2 + ∥ℒ x∥2
2∥𝒬†T

y∥2
2

+ ∥x∥2
2∥(ℒ𝒫 )†T

y∥2
2 + ∥xTℒ Tℒ (ℳ𝒦 )†ℳ∥2

2∥𝒬†T
y∥2

2 + ∥x∥2
2∥(𝒦 †

ℳℒ )Ty∥2
2 + ∥(𝒦 †

ℳℒ )Ty∥2
2

− 2yTℛ†(ℳ𝒦 )†T
ℒ Tℒ xrT𝒦𝒬†T

y + 2yT𝒬†xxTℒ T(ℒ𝒫 )†T
y

− 2yT𝒬†xxTℒ Tℒ (ℳ𝒦 )†ℳ𝒦 †T
ℳℒ y

=
(

1 + ∥x∥2
2

)
yT(𝒦 †

ℳℒ )T𝒦 †
ℳℒ y + (∥ℒ x∥2

2 + ∥xTℒ Tℒ (ℳ𝒦 )†ℳ∥2
2)y

T𝒬†2
y + ∥x∥2

2yT𝒬†y

+ ∥r∥2
2yTℛ†ℛ†T

y + ∥xTℒ Tℒ (ℳ𝒦 )†∥2
2yT𝒬†T

𝒦 T𝒦𝒬†y

− 2yTℛ†(ℳ𝒦 )†T
ℒ Tℒ xrT𝒦𝒬†T

y + 2yT𝒬†xxTℒ T(ℒ𝒫 )†T
y

− 2yT𝒬†xxTℒ Tℒ (ℳ𝒦 )†ℳ𝒦 †T
ℳℒ y

= yT
((

1 + ∥x∥2
2

)
(𝒦 †

ℳℒ )T𝒦 †
ℳℒ + (∥ℒ x∥2

2 + ∥xTℒ Tℒ (ℳ𝒦 )†ℳ∥2
2)𝒬

†2

+ ∥r∥2
2ℛ

†ℛ†T
+ ∥x∥2

2𝒬
† + ∥xTℒ Tℒ (ℳ𝒦 )†∥2

2𝒬
†T

𝒦 T𝒦𝒬†

− 2ℛ†(ℳ𝒦 )†T
ℒ Tℒ xrT𝒦𝒬†T

+ 2𝒬†xxTℒ T(ℒ𝒫 )†T

− 2𝒬†xxTℒ Tℒ (ℳ𝒦 )†ℳ𝒦 †T
ℳℒ

)
y.

Therefore, we have the desired result (36).

5. Numerical Experiments

In this section, first we present reliable condition estimation algorithms for normwise,
mixed, and componentwise condition numbers using small sample statistical condition
estimation (SCE) method then we show the accuracy of the propose condition estimation
algorithms by numerical experiments. Kenny and Laub [23] provided small sample sta-
tistical condition estimation (SCE) as a reliable method to estimate condition numbers for
linear least squares problems [13,28,29], indefinite least squares problems [20,30] and total
least squares problems [31–33]. We proposed Algorithms A, B and C based on the SSCE
method [23] to estimate the normwise, mixed, and componentwise condition numbers of
𝒦 †

ℳℒ and for the ℳℒ -WLS solution.

Algorithm A (Small-sample statistical condition estimation method for the normwise
condition number of ℳℒ -weighted pseudoinverse)

1. Generate matrices [δℳ1, δℒ1, δ𝒦1], [δℳ2, δℒ2, δ𝒦2], . . . ,
[
δℳq, δℒq, δ𝒦q

]
with each

entry in N (0, 1) and orthonormalize the following matrix vec(δℳ1) vec(δℳ2) · · · vec
(
δℳq

)
vec(δℒ1) vec(δℒ2) · · · vec

(
δℒq

)
vec(δ𝒦1) vec(δ𝒦2) · · · vec

(
δ𝒦q

)
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to obtain
[
τ1, τ2, . . . , τq

]
by modified Gram-Schmidt orthogonalization process. Each

τi can be converted into the corresponding matrices [δℳi, δℒi, δ𝒦i] by applying the
unvec operation.

2. Let p = mn + sm + ln. The Wallis factor approximate ωp and ωq by

ωp ≈
√

2
π(p − 1

2 )
(38)

3. For i = 1, 2, . . . , q, compute λi from (24)

λi = ℛ†δℳi(I −𝒦 (ℳ𝒦 )†ℳ)−𝒦 †
ℳℒ δ𝒦i𝒦

†
ℳℒ − (ℒ𝒫 )†δℒi𝒦

†
ℳℒ −𝒬†δℒ T

i ℒ𝒦 †
ℳℒ

+𝒬†δ𝒦 T
i ℳT(ℒ (ℳ𝒦 )†)Tℒ𝒦 †

ℳℒ +𝒬†𝒦 TδℳT
i (ℒ (ℳ𝒦 )†)Tℒ𝒦 †

ℳℒ , (39)

where 𝒬† and ℛ† are given in (18). Estimate the absolute condition vector by

n†
abs :=

ωq

ωp

√
|λ1|2 + |λ2|2 + · · ·+

∣∣λq
∣∣2,

Here, for any vector λ = [λ1, . . . , λn]
T ∈ Rn, |λ|2 =

[
|λ1|2, . . . , |λn|2

]⊤
and

√
|λ| =[√

|λ1|, . . . ,
√
|λn|

]T
. Where the power operation is applied at each entry of yi, i =

1, 2, . . . , k and
√
|A| =

(√∣∣aij
∣∣) with A =

(
aij

)
. Where the square operation is

applied to each entry of λi, i = 1, 2, . . . , q and the square root is also applied compo-
nentwise.

4. Estimate the normwise condition number (33) by

n†
SCE(ℳ,ℒ ,𝒦 ) =

N†
SCE∥[ℳ,ℒ ,𝒦 ]∥F∥∥𝒦 †

ℳℒ

∥∥
F

, (40)

where N†
SCE := ωq

ωp

√
∥λ1∥2

2 + ∥λ2∥2
2 + · · ·+

∥∥λq
∥∥2

2 =
∥∥n†

abs

∥∥
F.

The corresponding SSCE method, which is from [23] and has been used in numerous
problems (see, for example, [27,32–34]), is required in order to estimate the mixed and
componentwise condition numbers for 𝒦 †

ℳℒ .

Algorithm B (Small-sample statistical condition estimation method for the mixed and
componentwise condition numbers of ℳℒ -weighted pseudoinverse)

1. Generate matrices [δℳ1, δℒ1, δ𝒦1], [δℳ2, δℒ2, δ𝒦2], . . . ,
[
δℳq, δℒq, δ𝒦q

]
with each

entry in N (0, 1) and orthonormalize the following matrix vec(δℳ1) vec(δℳ2) · · · vec
(
δℳq

)
vec(δℒ1) vec(δℒ2) · · · vec

(
δℒq

)
vec(δ𝒦1) vec(δ𝒦2) · · · vec

(
δ𝒦q

)


to obtain
[
τ1, τ2, . . . , τq

]
by modified Gram-Schmidt orthogonalization process. Each

τi can be converted into the corresponding matrices [δℳi, δℒi, δ𝒦i] by applying the
unvec operation. Let [δℳi, δℒi, δ𝒦i] be the matrix

[
δ̃ℳi, δ̃ℒi, δ̃𝒦i

]
multiplied by

[ℳ,ℒ ,𝒦 ] componentwise.
2. Let p = mn + ms + ln. Approximate ωp and ωq by (38).
3. For α = 1, 2, . . . , q, calculate λα by (39). Compute the absolute condition vector

n†
SCE =

ωq

ωp

√
|λ1|2 + |λ2|2 + · · ·+

∣∣λq
∣∣2
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4. Estimate the mixed and componentwise condition estimations m†
sce(ℳ,ℒ ,𝒦 ) and

c†
sce(ℳ,ℒ ,𝒦 ) as follows:

m†
SCE(ℳ,ℒ ,𝒦 ) =

∥n†
SCE∥∞

∥vec(𝒦 †
ℳℒ )∥∞

, c†
SCE(ℳ,ℒ ,𝒦 ) =

∥∥∥∥∥ n†
SCE

vec(𝒦 †
ℳℒ )

∥∥∥∥∥
∞

.

In order to estimate the normwise, mixed, and componentwise condition numbers of the
ℳℒ -WLS problem, we provide Algorithm C based on the SSCE approach [23].

Algorithm C (Small-sample statistical condition estimation method for the condition num-
bers of ℳℒ -weighted least squares problem)

1. Generate matrices [δℳ1, δℒ1, δ𝒦1, δh1], [δℳ2, δℒ2, δ𝒦2, δh2], . . . , [δℳt, δℒt, δ𝒦t, δht]
with entries in N (0, 1), where hi ∈ Rm. To orthonormalize the below matrix

vec(δℳ1) vec(δℳ2) · · · vec(δℳt)
vec(δℒ1) vec(δℒ2) · · · vec(δℒt)
vec(δ𝒦1) vec(δ𝒦2) · · · vec(δ𝒦t)

δh1 δh2 · · · δht


to obtain an orthonormal matrix [ξ1, ξ2, . . . , ξt], by using modified Gram-Schmidt
orthogonalization technique. Where ξi can be converted into the corresponding
matrices [δℳi, δℒi, δ𝒦i, δhi] by applying the unvec operation.

2. Let α = mn + sm + ln + m. Approximate ωp and ωt by using (38).
3. For j = 1, 2, . . . , t, compute yj from (31)

yj = ℛ†δℳjr −𝒦 †
ℳℒ δ𝒦jx − (ℒ𝒫 )†δℒjx −𝒬†δℒ T

j ℒ x

+𝒬†δ𝒦 T
j ℳ

T(ℒ (ℳ𝒦 )†)Tℒ x +𝒬†𝒦 TδℳT
j (ℒ (ℳ𝒦 )†)Tℒ x +𝒦 †

ℳℒ δhj.

Using the approximations for ωp and ωt, estimate the absolute condition vector

κℳℒ−WLS
abs =

ωt

ωp

√
|y1|2 + |y2|2 + · · ·+ |yt|2.

4. Estimate the normwise condition estimation as follows:

nℳℒ−WLS
SCE =

∥∥∥κℳℒ−WLS
abs

∥∥∥
2

∥∥∥[ℳT ,ℒ T ,𝒦 T , hT]T
∥∥∥

2
∥x∥2

.

5. Compute the mixed condition estimation mSCE and componentwise condition estima-
tion cSCE as follows:

mSCE :=

∥∥∥κℳℒ−WLS
abs

∥∥∥
∞

∥x∥∞
, cSCE :=

∥∥∥∥∥κℳℒ−WLS
abs

x

∥∥∥∥∥
∞

.

Next, we provide three individual examples. In the first, we compare our SCE-based es-
timates with the condition numbers of 𝒦 †

ℳℒ . It also concludes how well Algorithms
A and B perform while developing very high estimations. The second one helps to
show the accuracy of statistical condition estimators of normwise, mixed, and compo-
nentwise condition numbers for the ℳℒ -WLS solution. The third one verifies the effec-
tiveness of over-estimation ratios by Algorithm C related to the condition numbers of the
ℳℒ -WLS solution.

Example 1. We constructed 200 matrices by repeatedly applying the data matrices 𝒦 ,ℳ, and ℒ
below and varying the value of θ.
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𝒦 =


sin θ 0 . . . 0

0 θ . . . 0
...

...
. . .

...
0 0 . . . θ − 3
0 0 . . . cos θ

 ∈ Rm×n, ℳ =


2 0 0 . . . 0
0 cos θ 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . θ

 ∈ Rs×m, ℒ =


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . θ2 − 10−4

 ∈ Rl×n,

The results in Table 1 show that Algorithms A and B can reliably estimate the condition
numbers in the majority of instances. As stated in ([35], Chapter 15), an estimate of the condition
number that is correct to within a factor of 10 is usually suitable because it is the magnitude of an
error bound that is of interest rather than its precise value.

Table 1. The efficiency of statistical condition estimates by Algorithms A and B.

m, n, s, l θ n†
SCE n† n†

u m†
SCE m† m†

u c†
SCE c† c†

u

20, 10, 5, 15

π
3 1.1022e+01 2.7522e+01 5.7654e+02 3.1027e+00 5.3832e+00 5.2416e+01 4.2054e+00 5.4372e+00 6.2721e+01
π
4 2.2053e+01 3.2618e+01 7.1865e+02 2.3128e+00 3.4752e+00 2.3096e+01 2.5062e+00 3.6543e+00 3.6092e+01
π
5 3.1054e+01 4.2065e+01 2.6211.e+03 2.5201e+00 3.7032e+00 3.1965e+02 2.7084e+00 3.8033e+00 4.0544e+02
π
6 3.1054e+01 4.2065e+01 2.6211.e+03 2.5201e+00 3.7032e+00 3.1965e+02 2.7084e+00 3.8033e+00 4.0544e+02

m, n, s, l θ n†
SCE n† n†

u m†
SCE m† m†

u c†
SCE c† c†

u

60, 40, 30, 50

π
3 4.4034e+01 5.6652e+01 5.1977e+03 3.8402e+00 6.0328e+00 8.6047e+01 5.1054e+00 7.3590e+00 8.9076e+01
π
4 4.7901e+01 5.9084e+01 7.4710e+03 2.8033e+00 3.2228e+00 6.3722e+01 3.1560e+00 4.3805e+00 7.6943e+01
π
5 2.1642e+02 3.7611e+02 1.3179e+04 2.8764e+00 4.3502e+00 4.0644e+02 4.1232e+00 5.4653e+00 5.3772e+02
π
6 2.1642e+02 3.7611e+02 1.3179e+04 2.8764e+00 4.3502e+00 4.0644e+02 4.1232e+00 5.4653e+00 5.3772e+02

m, n, s, l θ n†
SCE n† n†

u m†
SCE m† m†

u c†
SCE c† c†

u

100, 60, 40, 80

π
3 1.6543e+02 2.4638e+02 3.0643e+04 4.3222e+00 6.1108e+00 4.0644e+02 5.7642e+00 7.4544e+00 5.3632e+02
π
4 1.2324e+02 2.3207e+02 4.2501e+04 3.6233e+00 5.2326e+00 2.5489e+02 5.3562e+00 6.6533e+00 3.6471e+02
π
5 2.5434e+02 3.2455e+02 6.5731e+04 3.2064e+00 4.5211e+00 5.7654e+02 4.8659e+00 5.7532e+00 6.5703e+02
π
6 2.5434e+02 3.2455e+02 6.5731e+04 3.2064e+00 4.5211e+00 5.7654e+02 4.8659e+00 5.7532e+00 6.5703e+02

m, n, s, l θ n†
SCE n† n†

u m†
SCE m† m†

u c†
SCE c† c†

u

200, 100, 50, 150

π
3 2.0331e+02 4.2224e+02 7.1023e+04 4.7532e+00 7.0665e+00 3.2052e+03 6.7051e+00 7.8066e+00 4.6281e+03
π
4 2.2053e+02 3.2618e+02 7.4533e+04 4.1054e+00 6.2350e+00 1.2411e+03 6.0462e+00 7.1102e+00 2.7403e+03
π
5 4.1326e+02 6.7651e+02 9.2016e+04 3.6325e+00 5.3824e+00 4.5341e+03 5.1632e+00 6.5032e+00 7.2305e+03
π
6 4.1326e+02 6.7651e+02 9.2016e+04 3.6325e+00 5.3824e+00 4.53414e+035.1632e+00 6.5032e+00 7.2305e+03

Figure 1 demonstrates that Algorithms A and B are very efficient in estimating condition
numbers of 𝒦 †

ℳℒ . To evaluate the efficiency of the Algorithms A and B, we created 500 matrix
pairings and set m = 300, n = 150, s = 100, l = 200 and q = 3 with fixed θ = π

6 . In order to
determine the effectiveness of Algorithms A and B, we specify the following ratios:

r
′
s =

n†
SCE
n† , r

′
m =

m†
SCE

m† , r
′
c =

c†
SCE
c† .
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Figure 1. Efficiency of condition eliminators of Algorithms A and B.
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Example 2. The nonsymmetric Gaussian random Toeplitz matrix ℒ1 is constructed using the
Matlab function toeplitz(c, r) using c = randn(s, 1) and r = randn(s, 1), where ℒ = [ℒ1, 0].
Assume that Y ∈ Rm×n and U ∈ Rm×n are the random orthogonal matrices, and Γ is the diagonal
matrix with a certain condition number and positive elements on its diagonal. Following that, we
are given the matrices 𝒦 and ℳ as

𝒦 = ℳ
1
2 Z

[
Υ
0

]
YT , Z = UΓ− 1

2 , ℳ = UΓUT ,

where Υ = n−1diag(nl , (n − 1)l, ..., 1). The residual vector r = h −𝒦 x = ℳ
1
2 Z

[
0
υ

]
and the

solution x = (1, 22, ..., n2)T with υ ∈ Rm−n indicating any random vector with a certain norm

and h = ℳ− 1
2 Z

[
0
υ

]
+ℳ

1
2 Z

[
ΥYTx
0

]
. Here, we construct 200 random ℳℒ -WLS problems

for each specified cond(𝒦 ) = nl to check the performance of Algorithm C.
The mixed and componentwise condition numbers, rather than the normwise condition num-

ber, are more appropriate for describing the underlying conditioning of this ℳℒ -WLS problem,
considering the facts given in Table 2. Furthermore, we observed that condition estimates based on
SSCE may yield accurate results when executed by Algorithm C.

Table 2. The efficiency of statistical condition estimates by Algorithm C.

m, n, s, l nl nℳℒ−WLS
SCE nℳℒ−WLS nupper mℳℒ−WLS

SCE mℳℒ−WLS mupper cℳℒ−WLS
SCE cℳℒ−WLS cupper

30, 20, 10, 15

100 1.5301e+01 3.3711e+01 4.3502e+03 3.1081e+00 4.5121e+00 1.7609e+02 4.1428e+00 5.1213e+00 2.3461e+02
10−1 3.7103e+03 4.1046e+03 1.2353e+05 4.1311e+00 5.4115e+00 3.0554e+02 5.4401e+00 6.5041e+00 4.5530e+02
10−2 4.0511e+03 5.6105e+03 1.8619e+05 4.1781e+00 5.5733e+00 3.6102e+02 5.6505e+00 6.7504e+00 4.7082e+02
10−4 5.0171e+03 6.4115e+03 5.4632e+05 5.3161e+00 6.4132e+00 4.3011e+02 6.1865e+00 7.1805e+00 5.0122e+02
10−7 6.3304e+04 7.8651e+04 5.7011e+05 6.6701e+00 7.3101e+00 4.6750e+02 7.5311e+00 7.6541e+00 5.3443e+02

m, n, s, l nl nℳℒ−WLS
SCE nℳℒ−WLS nupper mℳℒ−WLS

SCE mℳℒ−WLS mupper cℳℒ−WLS
SCE cℳℒ−WLS cupper

90, 60, 30, 45

100 4.0314e+01 5.1011e+01 5.0754e+03 3.1011e+00 4.1041e+00 6.3560e+02 4.1566e+00 5.1108e+00 9.8642e+02
10−1 1.1135e+03 3.1103e+03 3.1398e+05 3.3671e+00 4.5781e+00 1.4567e+03 4.1401e+00 5.0713e+00 3.5567e+03
10−2 4.5311e+03 5.7611e+03 3.5743e+05 3.4122e+00 4.7551e+00 1.6091e+03 4.4311e+00 5.7141e+00 3.8110e+03
10−4 6.1351e+03 7.3450e+03 6.5865e+05 4.0167e+00 5.3502e+00 2.4113e+03 5.1104e+00 6.0511e+00 4.5225e+03
10−7 3.6111e+04 4.7661e+04 6.8952e+05 4.6311e+00 5.6215e+00 2.7840e+03 5.3054e+00 6.4403e+00 4.8203e+03

m, n, s, l nl nℳℒ−WLS
SCE nℳℒ−WLS nupper mℳℒ−WLS

SCE mℳℒ−WLS mupper cℳℒ−WLS
SCE cℳℒ−WLS cupper

120, 80, 40, 60

100 3.3401e+01 4.5611e+01 7.1209e+03 1.7101e+00 3.8115e+00 8.3411e+02 3.6411e+00 4.7110e+00 9.7438e+03
10−1 1.7611e+03 1.1403e+03 6.3689e+05 1.4471e+00 1.5171e+00 3.4229e+03 1.3544e+00 3.4811e+00 6.0431e+03
10−2 3.4511e+03 5.0411e+03 6.7754e+05 1.6331e+00 1.7813e+00 3.9810e+03 3.5886e+00 4.7805e+00 6.4332e+03
10−4 5.1014e+03 6.1331e+03 8.2306e+05 1.8041e+00 1.8866e+00 5.4240e+03 4.0113e+00 5.1531e+00 7.3552e+03
10−7 1.7411e+04 3.3811e+04 8.6435e+05 3.7316e+00 4.8031e+00 5.6708e+03 4.1108e+00 5.8611e+00 7.6622e+03

m, n, s, l nl nℳℒ−WLS
SCE nℳℒ−WLS nupper mℳℒ−WLS

SCE mℳℒ−WLS mupper cℳℒ−WLS
SCE cℳℒ−WLS cupper

150, 100, 50, 75

100 3.1517e+01 4.3401e+01 9.0654e+03 1.5113e+00 3.6305e+00 4.7622e+03 3.1077e+00 4.1765e+00 5.1108e+03
10−1 1.6311e+03 1.1451e+03 8.6422e+05 1.1411e+00 1.4134e+00 6.3005e+03 1.1711e+00 3.3086e+00 8.5994e+03
10−2 3.0558e+03 4.7550e+03 8.8043e+05 1.4770e+00 1.6511e+00 6.9021e+03 3.1341e+00 4.5311e+00 8.7043e+03
10−4 5.0141e+03 5.8301e+03 9.4660e+05 1.0111e+00 1.7001e+00 8.2765e+03 3.7661e+00 5.0111e+00 9.0492e+03
10−7 1.5431e+04 3.0801e+04 9.7034e+05 3.1314e+00 4.6441e+00 8.8211e+03 4.1055e+00 5.7101e+00 9.8955e+03

The ratios between the exact condition numbers and their estimated values are listed here.

rs =
nℳℒ−WLS

SCE
nℳℒ−WLS , rm =

mℳℒ−WLS
SCE

mℳℒ−WLS , rc =
cℳℒ−WLS

SCE
cℳℒ−WLS .

In order to determine the effectiveness of Algorithm C, generate 500 random ℳℒ -WLS
problems with the assumptions that m = 200, n = 100, l = 150, and s = 50 and we used the
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parameter t = 2. Therefore, as seen in Figure 2, normwise condition estimation, rn, is not as
effective as mixed condition estimation, rm, and componentwise condition estimation, rc.
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Figure 2. Efficiency of condition eliminators of Algorithm C.

Example 3. Consider the random orthogonal matrices: U ∈ Rs×s, V ∈ Rl×l , Y ∈ Rm×m,
Z ∈ Rn×n then the matrices 𝒦 , ℳ, and ℒ are provided by

𝒦 = Y−1Λ𝒦 ZT , ℒ = VΛ− 1
2

ℒ ZT , ℳ = UΛℳYT ,

with appropriate sizes, where Λ𝒦 ∈ Rm×n, Λℳ ∈ Rs×m and Λℒ ∈ Rl×n are diagonal matrices
with diagonal elements distributed exponentially from κ−1

𝒦 to 1. Furthermore, we define x =(
1, 22, . . . , n2)T as the solution x and h = r +𝒦 †

ℳℒ x, where r is the random vector of the 2-norm.
For the perturbations, we generate them as

∆𝒦 = ε1 × (E ⊙𝒦 ), ∆ℳ = ε1 × (F ⊙ℳ), ∆ℒ = ε1 × (G ⊙ℒ ), ∆h = ε1 × (g ⊙ h),

In this example, the componentwise product of two matrices is indicated by ⊙, and the random
matrices E, F, G, and g have uniformly distributed components in the open interval (−1, 1) and
ε1 = 10−7.

To evaluate the accuracy of the estimators, we define the overestimation ratios.

rover
s :=

nℳℒ−WLS
SCE · ε1

∥δx∥2/∥x∥2
, rover

m :=
mℳℒ−WLS

SCE · ε1

∥δx∥∞/∥x∥∞
, rover

c :=
cℳℒ−WLS

SCE · ε1

∥δx/x∥∞
.

To check the performance of Algorithm C, we constructed 500 random ℳℒ -WLS problems
with m = 350, s = 50, l = 250, and n = 150, and we used the parameter t = 3 and outputs
nℳℒ−WLS

SCE , mℳℒ−WLS
SCE , and cℳℒ−WLS

SCE of Algorithm C. Figure 3 illustrates that the mixed condi-
tion estimation, rover

m , and the componentwise condition estimation, rover
c , are more efficient when

compared to the normwise condition estimation, rover
n . However, it is important to note that the

latter tends to significantly overestimate the true relative normwise error.
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Figure 3. Efficiency of over-estimation ratios of Algorithm C.

6. Conclusions

This article presents explicit expressions and upper bounds for the normwise, mixed,
and componentwise condition numbers of the ℳℒ -weighted pseudoinverse 𝒦 †

ℳℒ . In a



Axioms 2024, 13, 345 20 of 21

specific situation, the results for the K-weighted pseudoinverse and Moore-Penrose inverse
are also recovered. Additionally, we provide the process of deriving the ℳℒ -weighted
least squares solution’s condition numbers from the ℳℒ -weighted pseudoinverse condi-
tion numbers and 𝒦 †

ℳℒ condition numbers. We proposed three algorithms to efficiently
estimate the normwise, mixed, and componentwise conditions for the ℳℒ -weighted
pseudoinverse 𝒦 †

ℳℒ and ℳℒ -weighted least squares solutions using the small-sample
statistical condition estimation method. Finally, numerical results confirmed the effi-
cacy and accuracy of the algorithms. In the future, we will continue our study on the
ℳℒ -weighted pseudoinverse.
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