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Abstract—Evolutionary multitask optimization (EMTO) is an
emerging optimization approach that leverages knowledge
transfer (KT) across multiple tasks to accelerate convergence and
enhance solution quality. However, existing EMTO methods
typically focus predominantly on index-aligned learning during
self-evolution and KT, overlooking the potential of index-
unaligned dimensions. Since the index-aligned dimensions differ
in their representation or significance across tasks, strictly index-
aligned learning may not be suitable, because it may lead to
ineffective or even negative transfer. To address this and fully
harness the potential of index-unaligned learning, this paper
proposes an adaptive dimensional learning (ADL) for multitask
optimization (ADLMTO), which utilizes both index-aligned and
index-unaligned dimensional information to enhance optimization
effectiveness by implementing evolutionary learning at the
dimensional level. ADLMTO employs the adaptive feedback-
driven evolutionary strategy (AFDES) to dynamically adjust
evolutionary modes, including index-aligned and index-unaligned
learning during both self-evolution and KT. ADL strategy
performs effective dimensional-level learning based on
evolutionary modes, thereby facilitating enhanced optimization.
Experimental results demonstrate that ADLMTO outperforms
state-of-the-art EMTO algorithms on the CEC2017 and CEC2022
multitask evolution benchmarks, confirming the effectiveness of
ADLMTO.

Keywords—Evolutionary multitask optimization (EMTO),
adaptive dimensional learning (ADL), index-unaligned learning.

. INTRODUCTION

VOLUTIONARY computation (EC), inspired by natural
Eevolution, include various techniques such as genetic
algorithm (GA) [1], differential evolution (DE) [2], particle
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Fig. 1. llustration and limitation of the KT method based on index-aligned
dimensions.

swarm optimization (PSO) [3], and ant colony optimization
(ACO) [4], which have been extensively applied to solve
complex optimization problems, including multimodal
optimization [5], combinatorial optimization [6], multi-
objective optimization [7], and large-scale optimization [8]. In
recent years, with the rise of multitask optimization (MTO),
evolutionary multitask optimization (EMTO) has become a key
research focus. By facilitating knowledge transfer (KT) across
multiple related tasks, EMTO significantly enhances
convergence speed and solution quality, which demonstrates
substantial potential in numerous real-world applications,
including engineering design optimization [9] and resource
allocation problems [10] , where multiple interconnected tasks
frequently arise. As a result, EMTO not only enhances the
theoretical foundations of evolutionary computation but also
serves as a powerful instrument for tackling intricate issues in
real-world applications.

A central challenge in EMTO is enhancing the effectiveness
of KT while mitigating ineffective or negative transfer. For
instance, EMTO with adaptive intensity of KT (EMTO-AI) [11]
and multitask evolutionary algorithm based on anomaly
detection (MTEA-AD) [12] improve transfer efficiency by
adaptively adjusting transfer frequency and selecting high-
potential individuals. However, when implementing KT, these
methods usually assume that the dimensions of individuals inter-
task are strictly index-aligned, thereby only focus on the
optimization characteristics of index-aligned dimensions and
ignore the potential value of index-unaligned dimensions. When
the alignment of dimensional information between tasks varies
significantly, this assumption often breaks down, making it
difficult for the algorithm to fully exploit inter-task differences
and potentially leading to negative transfer. For example, when
the dimensions of individual a from task T1 and individual b



from task T are highly dissimilar, index-aligned dimensional
learning can only KT based on matching indices, potentially
leading to ineffective or negative transfer, as shown in Fig. 1(a).
In contrast, even when all dimensions of individual a from task
T1, except for the third dimension, are highly similar to the third
dimension of individual b from task T, traditional methods fail
to utilize this similarity for KT. Since these dimensions are not
index-aligned, the opportunity for optimization is missed, as
shown in Fig. 1(b).

To overcome this limitation, this paper proposes an adaptive
dimensional learning (ADL) for multitask optimization
(ADLMTO), which enhances EMTO through dimensional-level
evolutionary learning. ADLMTO employs two key strategies:
the adaptive feedback-driven evolutionary strategy (AFDES),
which dynamically adjusts evolutionary modes and index-
sequence based on performance feedback, and ADL strategy,
which implements effective index-aligned and index-unaligned
dimensional learning within and across tasks to facilitate
optimization. Additionally, ADLMTO leverages the success-
history based adaptive DE (SHADE) [13] operator to enhance
search efficiency. In summary, the contributions of ADLMTO
are summarized as follows:

1) AFDES dynamically adjusts evolutionary modes and
index-sequence based on performance feedback, enabling more
flexible and adaptive evolution, thereby improving optimization
efficiency and convergence stability.

2) ADL strategy performs dimensional-level evolutionary
learning by integrating index-aligned and index-unaligned
dimensional information, reducing ineffective or negative
transfer and enhancing MTO performance.

3) Extensive experiments on the CEC2017 and CEC2022
multitask optimization benchmarks demonstrate the superiority
of ADLMTO, outperforming most state-of-the-art multitask
evolutionary algorithms in terms of convergence speed and
solution quality.

The rest of this paper is organized as follows. Section 1l
reviews the progress of related studies in the EMTO domain;
Section |11 elaborates on the design and implementation of the
proposed ADLMTO framework. Section IV analyzes the
experimental outcomes based on the widely adopted CEC2017
and CEC2022 EMTO benchmarks. Section V concludes the
paper with conclusions.

Il.  PRELIMINARY

A. Evolutionary Search Strategies

DE is a well-established global optimization method,
celebrated for its ease of implementation and high performance.
However, its performance is heavily influenced by the mutation
strategy. Traditional strategies may struggle with complex
problems, leading to premature convergence or slow progress,
which has led to the development of adaptive DE variants [14].
SHADE introduces the current-to-pbest/1 mutation operator,
Combining the differences between the current individual and a
subset of the best individuals with the perturbation from a pair
of random individuals to balance convergence speed and
population diversity. Additionally, SHADE adapts mutation
factors and crossover probabilities, improving both performance
and stability. The mutation formula for SHADE is:

Vi = Xi + Fi X (Xppesr — X)) + Fi X (X1 — Xi2) €))
where X; is the current individual, Xpeest is selected from the top

p% individuals, X1 is randomly chosen distinct individuals, and
Xr2 is arbitrarily chosen from the combined set of the current
population and the archive. The parameter p is randomized to
balance exploration and exploitation. An external archive
further enhances diversity.
After the mutation vector v; is generated, binomial crossover
is used to generate the trial vector ui, as follows:
v j, if rand(0,1) <CRoOr j== j. .,
{xi,,-, otherwise
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where CR is the crossover rate and jrand is @ random integer to
make sure that u; differs from x; in at least one dimension.

B. EMTO

The EMTO algorithm is designed to address a multitask
optimization problem (MTOP) involving K tasks. The primary
objective of this algorithm is to find an optimal solution x; for

Ui ;

each task T; (t = 1, 2, ... , K) by minimizing the objective
function fi(x) :
x; = argmin(f(X,),t=1,2, ..., K 3)

C. Related Work

EMTO has emerged as a noteworthy approach for
addressing multiple tasks concurrently, attracting considerable
interest in recent years. Its applications span diverse domains,
such as planar kinematic arm control [15], and resource
allocation problems [10]. A primary challenge in EMTO is to
enhance the effectiveness of KT while mitigating the occurrence
of ineffective or negative transfers.

Gupta et al. [16] introduced the first EMTO algorithm,
known as the multifactorial evolutionary algorithm (MFEA). In
MFEA, individuals associated with different skill factors engage
in crossover at a random mating probability (rmp), enabling
implicit KT. Following this work, extensive research has
extended the MFEA framework, categorizing these approaches
as single-population EMTO algorithms. For example, Zhou et
al. [11] proposed EMTO-AI, an EMTO algorithm featuring an
adaptive transfer intensity adjustment (ATIA) mechanism,
which quantifies task relatedness using a similarity matrix and
dynamically adjusts transfer frequency based on fitness-based
population comparisons, while incorporating a knowledge
archive to store successfully transferred individuals to enhance
the effectiveness of KT. Liu et al. [17] proposed a new MFEA
based on diffusion gradient descent (MFEA-DGD), integrating
DGD into complementary crossover/mutation operators and a
hyperrectangular search strategy to ensure population
convergence and theoretically explain KT benefits through local
task convexity analysis, thereby accelerating optimization in
less-explored regions.

Additionally, several studies [18][19] adopt a multiple-
population approach in EMTO, where each task is assigned a
distinct population, and inter-task information exchange is
achieved through explicit KT. For example, Li et al. [20]
introduced a meta-knowledge transfer (MKT)-based DE
(MKTDE), an algorithm that employs a generalized MKT
strategy to dynamically evolve task-specific knowledge,
augmented by a multiple-population framework within a unified
search space and an elite solution transfer technique, to facilitate
effective KT in multitask optimization. Wei et al. [21] proposed
an adaptive transfer strategy based on the decision tree (EMT-
ADT), leveraging a method that quantifies transfer ability to



evaluate individuals and utilizes a decision tree to predict
transferred  individuals, thereby enhancing algorithm
performance. Li et al. [22] proposed the knowledge-guided
external sampling (KGxS) algorithm, which enhances KT in
multitask evolution strategies (MTESS). By guiding distribution
evolution through adaptive external samples, KGxS combines
domain and shape knowledge with a universal boundary
constraint handling method to address multitask optimization
problems (MTOPs), effectively reducing negative transfer
effects.

However, existing methods predominantly rely on strict
index-aligned dimensional assumptions and overlook the
potential of index-unaligned dimensions. To address these
limitations, ADLMTO introduces AFDES for dynamically
adjusting evolutionary modes and ADL strategy for adaptive
dimensional-level knowledge learning, effectively enhancing
KT while mitigating negative transfer.

I1.  ADLMTO

This section provides a comprehensive overview of the
proposed ADLMTO. First, the motivation behind ADLMTO is
presented. Next, we outline the ADL strategy and AFDES, while
providing a detailed description of the search operators
employed, respectively. Finally, we present the complete
ADLMTO algorithm.

A. Motivation

A key challenge in EMTO is designing an effective KT
mechanism for information exchange across tasks. Traditional
methods often rely on index-aligned dimensions, which can lead
to issues. For example, when dimensions from different tasks,
like “joint torque” in robot control and “logistics cost” in supply
chain optimization, are forcibly index-aligned, irrelevant
knowledge is transferred, causing optimization bias.
Additionally, when tasks evolve, such as a supply chain problem
transitioning from static cost to dynamic pricing, index-aligned
methods fail to adapt to changing dimensional semantics,
hindering their ability to handle dynamic tasks. In contrast,
index-unaligned dimensional learning can uncover hidden
connections. For instance, even if the task dimensions have
different indices, like “obstacle distance” in robot path planning
and “battery consumption rate” in drone endurance optimization,
both reflect “resource constraints” Such index-unaligned
dimensions can share energy-saving strategies, enabling KT that
traditional methods may overlook. However, reliance on index-
aligned dimensional learning limits the ability to recognize these
semantic relationships, leading to missed opportunities and
reduced KT efficiency.

B. Adaptive Feedback-Driven Evolutionary Strategy

Conventional EMTO methods often rely on fixed index-
aligned learning and manually tuned parameters (e.g., rmp) to
control KT intensity, which struggle to handle inter-task
heterogeneity and semantic dimensional discrepancies
dynamically. Such static strategies may cause ineffective
transfer or convergence stagnation. To establish a dynamically
adjustable optimization mechanism, we formalize four key
concepts.

Definition 1 (Evolutionary Model): The evolutionary model
M is formulated as the Cartesian product of task-mode and
dimensional-mode. Specifically, M={(self-evolution, index-

Algorithm 1: AFDES

Input: The offspring population.

Output: Offspring with updated evolutionary mode and index sequence.
Begin

1: For each offspring c in offspring population:

2:  Getthe Immediate Parent p of c.

3:  Calculate the IR of c according to Eq. (3).

4: IfIR<O:

5: Inherit the evolutionary model and index sequence of p for c.

6:  Else:

7: Generate a new other evolutionary model and corresponding
index sequence for c.

8: EndlIf

9: End For

End

aligned), (self-evolution, index-unaligned), (KT, index-aligned),
(KT, index-unaligned)}. Herein, task modes encompass self-
evolution and KT. Meanwhile, dimensional modes are
composed of index-aligned learning and index-unaligned
learning.

Definition 2 (Index Sequence): The index sequence is used
as the operation carrier of dimensional learning, and its
generation rules change dynamically with the alighment mode.
In index-aligned learning, the sequence is strictly constrained to
be a monotonically increasing arrangement of dimension indices.
For example, when the total number of dimensions D=5, the
sequence is constant to [1,2,3,4,5] to ensure the consistency of
physical meaning between dimensions. In index-unaligned
learning, the sequence is generated through repeatable random
sampling, which is expressed as an unordered or repeated index
combination, such as [1,54,3,2] or [1,5,5,3,3], so that the
algorithm can capture the potential semantic associations
between dimensions across tasks.

Definition 3 (Immediate Parent): In the SHADE mutation
operator, the direct parent refers to the base individual xi.
Definition 4 (Improvement Rate (IR)): The IR quantifies the
performance improvement of an offspring compared to its
immediate parent, calculated as follows:
f,- 1, A
] @

where f, refers to the fitness of the offspring generated and f,
refers to the fitness of its immediate parent.

Based on this, this paper proposes AFDES, which
dynamically adjusts the evolution mode and index sequence
through real-time feedback of offspring fitness, thereby
adaptively controlling the evolutionary modes.

The core mechanism of AFDES is based on the IR, which
dynamically adjusts the evolutionary mode and index sequence.
For minimization problems, IR is calculated using Eqg. (3). If IR
<0, it indicates that the offspring outperforms the parent, so the
current evolutionary model and index sequence should be
retained to continue searching in the promising direction.
Conversely, if IR = 0, it suggests that the current strategy is
ineffective, prompting the offspring to regenerate using a
different evolutionary model and index sequence from the
parent to enhance search exploration. For example, in a human
hand control task, if the KT (index-aligned) mode adopts the
index sequence [1,2,3,4,5], and the offspring’s IR is -0.2
(indicating a 20% improvement), the offspring inherits the mode
and sequence, maintaining the KT effect. However, if IR is 0.2
(indicating a 20% decline), the algorithm may switch to the self-

IR=




a: Individual in the T; ¢: Individual in the 7

| dy | ay | as as | ay | | 4] I €2 I €2 | Cy | ca |
I 1 1 11 [ T 1 11
|bo | b | by | by | b4| |f)o | by | by | bs | b4|

b: Individual in the T} b: Individual in the T}
(a) self-evolution index-aligned learning (b) self-evolution index-unaligned learning
a: Individual in the T
oDoooo | |
oloelole]  [alslolnle]
b: Individual in the 75 b: Individual in the 75
(¢) KT index-aligned learning (d) KT index-unaligned learning
Fig. 2. lllustration of four evolutionary models.

¢: Individual in the 7}

evolution (index-unaligned) mode, generating a new sequence
[3,1,5,2,4] to explore a more diverse search path through
perturbation in high-degree dimensions.

The pseudocode of AFDES is shown in Algorithm 1. First,
for every individual ¢ within the offspring population, its
immediate parent p is identified (lines 1-2). Second, the IR of ¢
is calculated according to Eq. (3) (line 3). Finally, if IR <0,
indicating that c¢ outperforms p, it inherits the evolutionary
model and index sequence from p to maintain a promising
search direction (lines 4-5). Otherwise, if IR = 0, meaning the
current strategy is ineffective, a new evolutionary model and
corresponding index sequence are generated to enhance search
exploration (lines 6-7).

C. Adaptive Dimensional Learning Strategy

Following the adaptive adjustment of the evolutionary
model and index sequence by the AFDES, ADL strategy
implements dimension-level learning through four distinct
modes: index-aligned and index-unaligned learning for self-
evolution, as well as index-aligned and index-unaligned learning
for KT, as illustrated in Fig. 2. This dual-mode approach not
only facilitates efficient intra-task evolution but also enhances
inter-task KT, ultimately enhancing the overall efficacy of
evolutionary algorithms within the EMTO framework.

For self-evolution, within the same task, the index-aligned
of different individuals usually share the same semantics, as
shown in Fig. 2(a). Using index-aligned learning can ensure that
these dimensions evolve along a consistent optimization
direction, thereby maintaining the stability of the evolutionary
process. However, in practical problems, even if the dimension
indexes are different (for example, the 1" dimension and the 21"
dimension), they may contain similar semantic information.
Imagine that in a certain evolutionary process, the 2" dimension
of individual c first obtains a better fitness value, while the 1™
dimension of individual b performs poorly due to the poor initial
search direction. In this case, the index-unaligned learning
strategy shown in Fig. 2(b) can flexibly match the potential
semantic similarity between the two dimensions, and pass the
high-quality optimization information in the 2™ dimension to the
poorly performing 1th dimension, thereby accelerating its
performance improvement, and ultimately enhancing the overall
convergence speed and solution accuracy. For KT, which main
goal is to accelerate convergence and improve optimization
quality by sharing useful knowledge across tasks. Tasks may

Algorithm 2: ADLMTO
Input: NP: The population size.

p: Greedy coefficient.
Output: The optimal solution of each task.
Begin
1: Randomly initialize k populations for k tasks.
Randomly initialize the evolution model and corresponding index
sequence of each individual.
3: FEs=0.g=0.
4: Evaluate each individual of k populations and update FEs.
5: While FEs < MaxFEs:
6: Formin{1,2,...,k}:
7:
8
9

N

For each individual i in popm:
If Evolutionary model is self-evolution:
Randomly select an individual from the top p% of the
target population based on fitness as Xpbest.

10: Else:
11: Randomly select an individual from the top p% of the
auxiliary population based on fitness as Xppest.

12: End If

13: Generate offspring c according to Eq. (5) and Eq. (2).

14: Evaluate ¢, FEs += 1.

15: End For

16: Update the offspring evolution model and index sequence
according to Algorithm 1.

17: Execute elite selection strategy.

18: End For

19: g+=1

20: End While

21: Return the optimal solution of each task.

End

have highly similar dimensions, whether or not they are index-
aligned. For instance, Task T1’s 2" dimension is highly similar
to Task T»’s 1" and 2™ dimensions. Index-aligned KT (as shown
in Fig. 2(c)) ensures stable KT for the 2™ dimension, enhancing
the optimization. However, for the 1% and 2™ dimensions across
tasks, index-unaligned KT (as shown in Fig. 2(d)) can capture
the semantic similarity and further improve knowledge sharing
and optimization. In summary, ADL allows the algorithm to
adaptively switch between index-aligned and index-unaligned
learning, fully exploiting the potential of both intra-task and
inter-task KT to accelerate convergence and improve solution
quality.

In addition, in order to use dimension-level knowledge
learning in the EMTO problem, we improve the mutation
operator in SHADE, and is redefined as follows:

Vi=Xit+ I:i X (prest[l] _xi) + I:i X (xrl _xr2) (5)
where | represents the index sequence of Xphest individuals, when
the evolutionary model is self-evolution, Xpwest iS randomly
selected from the top p% individuals in the target population
based on fitness. When the evolutionary model is KT, Xppest iS
randomly selected from the top p% individuals in the auxiliary
population based on fitness. Xpwest[I] — Xi accelerates local
exploitation via elite individuals and fosters dimensional
learning, while X1 — X» boosts global search diversity.

D. Framework of ADLMTO

The overall framework of ADLMTO is outlined in
Algorithm 2. Specifically:

Step 1: Initialize populations for all tasks with random
evolutionary models and index sequences, evaluate initial
fitness, and set parameters , as shown in lines 1-4 of Algorithm
2.

Step 2: Select Xppest according to the evolutionary model, as
shown in lines 8-12 of Algorithm 2.



TABLE | EXPERIMENTAL RESULTS ON CEC2017 BENCHMARK BETWEEN ADLMTO AND OTHER EMTO ALGORITHMS

Problem ADLMTO MFEA MFDE MFEA-AKT MKTDE AEMTO RLMFEA BLKT-DE MMLMTO
CIHS-T1 0 2.68E-3(+) 6.53E—4(+) 9.80E—2(+) 2.47E-4(+) 8.93E-11(+) 7.45E-9(+) 6.53E—6(+) 2.47E-4(=)
CIHS-T2 0 9.17E+1(+) 2.77E+0(+) 1.78E+2(+) 1.46E+0(+) 1.60E-7(+) 1.06E=5(+) 8.55E+1(+) 8.29E-1(»)
CIMS-T1 4.44E-16 1.12E+0(+) 1.44E-2(+) 4.85E+0(+) 1.77E-8(+) 8.24E—8(+) 2.02E-6(+) 4.93E-4(+) 2.27E-12(+)
CIMS-T2 1.26E+0 6.41E+1(+) 1.25E-1(+) 2.30E+2(+) 8.37E-13(+) | 4.75E-12(+) 4.71E-9(+) 9.17E+1(+) 0
CILS-T1 1.18E—4 2.00E+1(+) 2.12E+1(+) 2.01E+1(+) 2.12E+1(+) 2.12E+1(+) 2.00E+1(+) 2.07E+1(+) 2.01E+1(+)
CILS-T2 6.36E—4 2.78E+3(+) 1.35E+4(+) 3.46E+3(+) 1.18E+4(+) 1.02E+4(+) 2.53E+3(+) 3.21E+3(+) 4.40E+3(+)
PIHS-T1 3.91E+1 2.35E+2(+) 7.32E+1(+) 5.08E+2(+) 341E+2(4) 3.87E+2(+) 1.23E+2(+) 8.40E+1(+) 3.52E-12(-)
PIHS-T2 1.63E-27 1.19E-3(+) 1.72E-3(+) 8.59E—1(+) 4.12E-2(+) 5.00E—6(+) 1.14E—8(+) 6.48E—6(+) 7.40E—-12(+)
PIMS-T1 3.85E—2 4.76E-1(+) 2.23E-2(+) 2.95E+0(+) 8.61E—4(+) 1.96E—4(+) 4.70E-2(+) 5.26E—4(+) 2.44E-7(+)
PIMS-T2 4.05E+1 9.50E+1(+) 5.08E+1(+) 2.28E+2(+) 5.77E+1(+) 8.41E+1(+) 8.16E+1(+) 4.83E+1(+) 4.80E+1(+)
PILS-T1 4.44E-16 1.57E+1(+) 5.64E-1(+H) 5.28E+0(+) 1.69E+0(+) 4.20E-2(+) 2.57E-1(+) 1.04E-2(+) 3.64E-15(=)
PILS-T2 0 LA7E+1(+) SATE-1(+H) 5.62E+0(+) 3.56E-1(+) 2.35E-1(+) 3.24E-1(+) 2.14E+0(+) 0(=)
NIHS-T1 4.07E+1 1.18E+2(+) 4.77E+1(+) 3.03E+2(+) 4.69E+1(+) 4.59E+1(+) 8.20E+1(+) 5.00E+1(+) 4.63E+1(+)
NIHS-T2 6.87E+0 1.16E+2(+) 1.03E+0(+) 2.34E+2(+) 6.75E—2(+) 7.88E=5(+) 5.64E+1(+) 9.06E+1(+) 1.43E+0(+)
NIMS-T1 0 4.60E-3(+) 1.61E-3(+) 1.32E-1(+) 1.09E-5(+) 2.87E-5(1) 6.35E—4(+) 2.26E—4(+) 7.18E—9(+)
NIMS-T2 0 1.92E+1(+) 1.06E+0(+) 2.06E+1(+) 1.87E-1(+) 5A40E-1(+) 6.36E+0(+) 5.61E-1(+) 1.35E+0(+)
NILS-T1 4.05E+1 2.39E+2(+) 4.00E+2(+) 6.75E+2(+) 3.73E+2(4) 3.91E+2(+) 1.50E+2(+) 1.10E+2(+) 8.15E+1(+)
NILS-T2 6.36E—4 2.82E+3(+) 2.64E+3(+) 3.46E+3(+) 6.54E+2(+) 1.45E+4(+) 2.25E+3(+) 9.40E+2(+) 4.32E+3(+)
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Fig. 3. Convergence curves of the average fitness on several tasks from the CEC2017 benchmark.

Step 3: Generate offspring based on ADL strategy, as shown
in line 13 of Algorithm 2.

Step 4: Evaluate offspring fitness and update the function
evaluation counter, as shown in line 14 of Algorithm 2.

Step 5: Update the offspring evolution model and index
sequence based on AFDES, and update the population through
elite selection, as shown in lines 16-17 of Algorithm 2.

The whole process repeats until the maximum number of
function evaluations (MaxFEs) is used up.

IV. EXPERIMENTAL STUDIES

In this study, the performance of ADLMTO is evaluated on
two widely recognized EMTO benchmarks, CEC2017 [23] and
CEC2022 [24]. To ensure a comprehensive and rigorous
comparison, eight state-of-the-art EMTO algorithms are
selected: MFEA [16] (2016), MFDE [25] (2017), MFEA-AKT
[26] (2021), MKTDE [27] (2022), AEMTO [28] (2022),

RLMFEA [29] (2024), BLKT-DE [29] (2024), and MMLMTO
[30] (2024). Covering a span from 2016 to 2024, these
algorithms provide a solid foundation for assessing the
effectiveness and competitiveness of ADLMTO.

A. Parameter Settings

The parameter settings for the ADLMTO are shown as
follows:

1) Population size in ADLMTO: NP =100 for each task.

2) Greedy coefficient in SHADE: p = 0.2 for each task.

To ensure a fair evaluation, the MaxFEs is uniformly set to
200,000 for all algorithms, while other parameters follow their
original configurations. Every algorithm is run separately 30
times, with the average outcomes documented. The Wilcoxon
rank-sum test (oo = 0.05) is applied to evaluate the statistical
significance of the results. The symbols “+ / = / = indicate
whether ADLMTO outperforms, performs comparably to, or



TABLE II EXPERIMENTAL RESULTS ON CEC2022 BENCHMARK BETWEEN ADLMTO AND OTHER EMTO ALGORITHMS

Problem | ADLMTO MFEA MFDE MFEA-AKT MKTDE AEMTO RLMFEA BLKT-DE MMLMTO
PL-TL 6.05E+2 | 645E+2(+) | 6.10E+2(+) | 6.26E+2(+) | 6.02E+2(-) | 6.02E+2(-) | 6.15E+2(+) | 6.07E+2(+) | 6.01E+2()
P1-T2 6.05E+2 6.45E+2(+) 6.10E+2(+) 6.27E+2(+) 6.02E+2(-) 6.02E+2(-) 6.15E+2(+) 6.09E+2(+) 6.02E+2(-)
P2T1 | 7.00E+2 | 7.00E+2(+) | 7.00E+2(+) | 7.01E+2(+) | 7.00E+2(=) | 7.00E+2(~) | 7.00E+2(=) | 7.00E+2(=) | 7.00E+2(3)
P2-T2 700E+2 | 7.00E+2(=) | 7.00E+2(+) | 7.01E+2(+) | 7.00E+2(=) | 7.00E+2(=) | 7.00E+2(=) | 7.00E+2(=) | 7.00E+2()
P3-TL T46E+4 | 2.12E+6(r) | L23E+7(+) | 5.A48E+5(+) | B.24E+6(+) | 8.A42E+6(+) | LIIE+6(+) | L32E+6(+) | 3.15E+5(%)
P3-T2 1.61E+4 1.93E+6(+) 1.40E+7(+) 6.18E+5(+) 8.45E+6(+) 8.07E+6(+) 9.94E+5(+) 1.39E+6(+) 2.64E+5(+)
P4-T1 1.30E+3 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+)
P4-T2 130E+3 | 1.30E+3(+) | L30E+3(+) | 1.30E+3(+) | L1.30E+3(+) | L30E+3(+) | 1.30E+3(+) | L30E+3(+) | 1.30E+3(*)
P5-T1 1.51E+3 1.53E+3(+) 1.53E+3(+) 1.55E+3(+) 1.53E+3(+) 1.53E+3(+) 1.51E+3(+) 1.53E+3(+) 1.51E+3()
P5-T2 151E+3 | 153E+3(f) | L53E+3(+) | 156E+3(+) | 153E+3(+) | L53E+3(+) | 151E+3(+) | L53E+3(+) | 151E+3(%)
P6-T1 1.39E+4 1.19E+6(+) 4.86E+6(+) 1.36E+6(+) 2.08E+7(+) 3.79E+6(+) 7.65E+5(+) 9.60E+5(+) 1.81E+5(+)
P6-T2 1.01E+4 9.78E+5(+) 4.98E+6(+) 6.57E+5(+) 1.86E+7(+) 3.82E+6(+) 4.25E+5(+) 6.60E+5(+) 1.17E+5(+)
P7-TL 261E+3 | 3.19E+3(f) | B.90E+3(+) | 3.12E+3(+) | 4.32E+3(+) | 3.86E+3(+) | 2.99E+3(+) | 2.87E+3(+) | 2.82E+3(%)
P7-T2 263E+3 | 3.44E+3(+) | 3.94E+3(+) | 3.18E+3(+) | 4.38E+3(+) | 3.83E+3(+) | 2.99E+3(+) | 2.92E+3(¥) | 2.79E+3(+)
P8-TL 520E+2 | 520E+2(-) | 5.21E+2(+) | 520E+2(-) | 5.21E+2(+) | 521E+2(+) | 5.21E+2(+) | 5.21E+2(+) | 5.20E+2()
P8T2 | 520E+2 | 520E+2(-) | 5.21E+2(+) | 520E+2(0) | 5.21E+2(+) | 5.21E+2(+) | 5.21E+2(+) | 5.21E+2(+) | 5.20E+2()
P9-TL 735E+3 | 8.27E+3(+) | LATE+A(+) | B.09E+3(+) | LATE+A(+) | LATE+A(r) | 7.24E+3(%) | 7.95E+3(1) | 7.92E+3(+)
P9-T2 160E+3 | 162E+3(1) | L62E+3(+) | 162E+3(r) | L62E+3(+) | L62E+3(+) | 162E+3(+) | L62E+3(+) | L62E+3(%)
PIO-TL | 2.34E+3 | 3.73E+4(+) | B3.65E+4(t) | 2.88E+4(+) | G.0LE+4(¥) | 2.71E+A(+) | 2.33E+4(¥) | 2.29E+4(+) | 5.75E+3(+)
PI0-T2 | 121E+4 | 1.38E+6(+) | 593E+6(+) | L154E+6(+) | 2.38E+7(+) | 4.85E+6(+) | L32E+6(+) | LIOE+6(+) | 2.38E+5(+)
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Fig. 4. Convergence curves of the average fitness on several tasks from CEC2022 benchmark.

underperforms compared algorithms, respectively. The optimal
outcome for each task is emphasized in bold text.

B. Experimental Results on CEC2017 EMTO Benchmark

Table | presents the experimental results of ADLMTO
alongside state-of-the-art EMTO algorithms on the CEC2017
benchmark suite. ADLMTO achieves the best performance in
16 out of 18 tasks, underscoring its exceptional efficacy.
Notably, it consistently outperforms MFEA, MFDE, MFEA-
AKT, MKTDE, AEMTO, and RLMFEA. These competing
algorithms predominantly rely on index-aligned dimension
learning, ADLMTO harnesses index-unaligned dimension
learning to fully exploit the diverse dimensional information
within and across tasks, thereby ensuring the full utilization of
high-quality dimensional information. Furthermore, when
compared to BLKT-DE and MMLMTO, which also leverage

index-unaligned dimension learning, ADLMTO consistently
outperforms BLKT-DE across all 18 tasks and surpasses
MMLMTO in 12 tasks. In five tasks—namely, CIHS-T1, CIHS-
T2, CIMS-T2, PILS-T1, and PILS-T2—ADLMTO and
MMLMTO exhibit comparable performance, both approaching
the global optimum, with ADLMTO showing only a marginal
underperformance on the PIHS-T1 problem. This pronounced
advantage is attributed to ADLMTO’s AFDES and ADL
strategy, further enhanced by the exceptional capability of the
SHADE operator, which optimizes search trajectories using
historical success experiences, enabling efficient balancing of
exploration and exploitation in complex task scenarios.

To gain deeper insights into the evolutionary dynamics of
ADLMTO and other EMTO algorithms on the CEC2017
benchmark, their convergence trajectories are visualized in Fig.
3. Firstly, as illustrated in Figs. 3(a), 3(f), and 3(g), ADLMTO



is the only algorithm that attains the global optimum (i.e., 0) in
the CIHS-T1, NIMS-T1, and NIMS-T2 tasks. Moreover,
ADLMTO demonstrates remarkably fast convergence,
requiring approximately 30% of the MaxFEs in CIHS-T1, 40%
in NIMS-T1, and 50% in NIMS-T2, substantially outperforming
other algorithms. Secondly, Figs 3(b), 3(c), and 3(h) present the
convergence curves for the CILS-T1, CILS-T2, and NIHS-T2
tasks. As observed, during the early optimization phase,
ADLMTO performs comparably to other algorithms (e.g.,
MFEA, MFDE), exhibiting a similar convergence trend.
However, in the later phase, ADLMTO demonstrates a clear
advantage by successfully escaping local optima and achieving
superior results, whereas other algorithms remain trapped in
local optima, resulting in suboptimal convergence. Finally, on
the PIHS-T2 and PILS-T2 tasks, as shown in Figs. 3(d) and (e),
ADLMTO demonstrates significantly superior solution quality
compared to other algorithms, ultimately achieving satisfactory
results. Specifically, in the PILS-T2 task, although MMLMTO
also attains the global optimum (i.e., 0), ADLMTO exhibits a
faster convergence rate, approaching the optimal solution
noticeably earlier, while other algorithms perform relatively
poorly.

In summary, ADLMTO outperforms other leading EMTO
algorithms on the CEC2017 benchmark, exhibiting superior
performance and highlighting the effectiveness of dimension
learning with index-unaligned.

C. Experimental Results on CEC2022 EMTO Benchmark

Table Il presents the results of ADLMTO and other EMTO
algorithms on the CEC2022 benchmark. From Table I,
ADLMTO achieves the best results on 13 out of 20 tasks, while
other algorithms can only achieve the best results in a maximum
of 6 tasks, which demonstrates the superiority of ADLMTO.
Compared to the EMTO algorithms that use KT methods based
on index-aligned dimensions (including MFEA, MFDE,
MFEA-AKT, MKTDE, AEMTO, and RLMFEA), ADLMTO
outperforms them on 17, 20, 18, 16, 16, and 17 tasks,
respectively, and only underperforms them on 2, 0, 2, 2, 2, and
0 tasks. Although BLKT-DE and MMLMTO utilize index-
unaligned dimensional learning, ADLMTO consistently
demonstrates superior performance. Specifically, it outperforms
BLKT-DE on 18 tasks, matches performance on 2 tasks, and
underperforms on none. Similarly, it surpasses MMLMTO on
12 tasks, achieves comparable results on 4 tasks, and
underperforms on only 4 tasks. These results further highlight
the effectiveness of AFDES in adaptively adjusting evolutionary
modes and the ADL strategy in efficiently leveraging index-
unaligned dimensional information, ensuring more effective KT
and improved optimization performance.

To gain deeper insights into the evolutionary dynamics of
ADLMTO and other EMTO algorithms on the CEC2022
benchmark, their convergence trajectories are visualized in Fig.
4. Firstly, as shown in Figs. 4(a) and (b), although ADLMTO
exhibits a slightly slower convergence rate than MFEA-AKT in
the early stages, it progressively demonstrates a substantial
advantage in the mid-to-late evolutionary phases, ultimately
achieving superior results compared to MFEA-AKT and other
algorithms. Secondly, the P6-T1, P6-T2, P10-T1 and P10-T2
tasks, as shown in Figs. 4(c), (d), (g), and (h), ADLMTO
consistently outperforms other algorithms throughout the
optimization process, with its convergence curve steadily

declining, reflecting superior optimization capability, and
ultimately achieving satisfactory results across these tasks.
Finally, on the P7-T1 and P7-T2 tasks, as shown in Figs. 3(d)
and (e), while the performance of most algorithms remains
similar, ADLMTO reliably delivers more precise results
compared to other EMTO algorithms.

In summary, ADLMTO outperforms other leading EMTO
algorithms on the CEC2022 benchmark, exhibiting superior
performance and highlighting the effectiveness of dimension
learning with index-unaligned.

V. CONCLUSION

Existing EMTO methods focus on index-aligned
dimensional learning, assuming shared semantic meanings
across tasks, which overlooks index-unaligned dimensions,
leading to ineffective or negative transfer when task semantics
vary. To address this and fully harness the potential of index-
unaligned learning, we propose ADLMTO, which incorporates
two key strategies. AFDES adaptively adjusts evolutionary
modes based on performance feedback, enhancing flexibility
and stability in the optimization process. ADL strategy performs
dimensional-level learning by integrating both index-aligned
and index-unaligned dimensions, effectively reducing negative
transfer and improving overall optimization performance.
Extensive experiments on the CEC2017 and CEC2022 multitask
optimization benchmarks demonstrate the superiority of
ADLMTO, outperforming most state-of-the-art multitask
evolutionary algorithms in terms of convergence speed and
solution quality.

ADLMTO shows promising results, but it may face
challenges in large-scale problems where the ADL strategy may
not perform as effectively. Future research could focus on
improving the strategy's scalability in high-dimensional spaces,
such as in large-scale feature selection [31]. Additionally,
enhancing computational efficiency for larger task sets, like in
multi-objective optimization [32], could further optimize its
practical applications.
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