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Abstract—Evolutionary multitask optimization (EMTO) is an 

emerging optimization approach that leverages knowledge 

transfer (KT) across multiple tasks to accelerate convergence and 

enhance solution quality. However, existing EMTO methods 

typically focus predominantly on index-aligned learning during 

self-evolution and KT, overlooking the potential of index-

unaligned dimensions. Since the index-aligned dimensions differ 

in their representation or significance across tasks, strictly index-

aligned learning may not be suitable, because it may lead to 

ineffective or even negative transfer. To address this and fully 

harness the potential of index-unaligned learning, this paper 

proposes an adaptive dimensional learning (ADL) for multitask 

optimization (ADLMTO), which utilizes both index-aligned and 

index-unaligned dimensional information to enhance optimization 

effectiveness by implementing evolutionary learning at the 

dimensional level. ADLMTO employs the adaptive feedback-

driven evolutionary strategy (AFDES) to dynamically adjust 

evolutionary modes, including index-aligned and index-unaligned 

learning during both self-evolution and KT. ADL strategy 

performs effective dimensional-level learning based on 

evolutionary modes, thereby facilitating enhanced optimization. 

Experimental results demonstrate that ADLMTO outperforms 

state-of-the-art EMTO algorithms on the CEC2017 and CEC2022 

multitask evolution benchmarks, confirming the effectiveness of 

ADLMTO. 

Keywords—Evolutionary multitask optimization (EMTO), 

adaptive dimensional learning (ADL), index-unaligned learning. 

I. INTRODUCTION 

VOLUTIONARY computation (EC), inspired by natural 
evolution, include various techniques such as genetic 
algorithm (GA) [1], differential evolution (DE) [2], particle 

swarm optimization (PSO) [3], and ant colony optimization 
(ACO) [4], which have been extensively applied to solve 
complex optimization problems, including multimodal 
optimization [5], combinatorial optimization [6], multi-
objective optimization [7], and large-scale optimization [8]. In 
recent years, with the rise of multitask optimization (MTO), 
evolutionary multitask optimization (EMTO) has become a key 
research focus. By facilitating knowledge transfer (KT) across 
multiple related tasks, EMTO significantly enhances 
convergence speed and solution quality, which demonstrates 
substantial potential in numerous real-world applications, 
including engineering design optimization [9] and resource 
allocation problems [10] , where multiple interconnected tasks 
frequently arise. As a result, EMTO not only enhances the 
theoretical foundations of evolutionary computation but also 
serves as a powerful instrument for tackling intricate issues in 
real-world applications. 

A central challenge in EMTO is enhancing the effectiveness 
of KT while mitigating ineffective or negative transfer. For 
instance, EMTO with adaptive intensity of KT (EMTO-AI) [11] 
and multitask evolutionary algorithm based on anomaly 
detection (MTEA-AD) [12] improve transfer efficiency by 
adaptively adjusting transfer frequency and selecting high-
potential individuals. However, when implementing KT, these 
methods usually assume that the dimensions of individuals inter-
task are strictly index-aligned, thereby only focus on the 
optimization characteristics of index-aligned dimensions and 
ignore the potential value of index-unaligned dimensions. When 
the alignment of dimensional information between tasks varies 
significantly, this assumption often breaks down, making it 
difficult for the algorithm to fully exploit inter-task differences 
and potentially leading to negative transfer. For example, when 
the dimensions of individual a from task T1 and individual b 
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(a) Illustration of the KT method based on index-aligned dimensions 

 

 
(b) Limitation of the KT method based on index-aligned dimensions 

Fig. 1. Illustration and limitation of the KT method based on index-aligned 

dimensions. 



from task T2 are highly dissimilar, index-aligned dimensional 
learning can only KT based on matching indices, potentially 
leading to ineffective or negative transfer, as shown in Fig. 1(a). 
In contrast, even when all dimensions of individual a from task 
T1, except for the third dimension, are highly similar to the third  
dimension of individual b from task T2, traditional methods fail 
to utilize this similarity for KT. Since these dimensions are not 
index-aligned, the opportunity for optimization is missed, as 
shown in Fig. 1(b). 

To overcome this limitation, this paper proposes an adaptive 
dimensional learning (ADL) for multitask optimization 
(ADLMTO), which enhances EMTO through dimensional-level 
evolutionary learning. ADLMTO employs two key strategies: 
the adaptive feedback-driven evolutionary strategy (AFDES), 
which dynamically adjusts evolutionary modes and index-
sequence based on performance feedback, and ADL strategy, 
which implements effective index-aligned and index-unaligned 
dimensional learning within and across tasks to facilitate 
optimization. Additionally, ADLMTO leverages the success-
history based adaptive DE (SHADE) [13] operator to enhance 
search efficiency. In summary, the contributions of ADLMTO 
are summarized as follows: 

1) AFDES dynamically adjusts evolutionary modes and 
index-sequence based on performance feedback, enabling more 
flexible and adaptive evolution, thereby improving optimization 
efficiency and convergence stability. 

2) ADL strategy performs dimensional-level evolutionary 
learning by integrating index-aligned and index-unaligned 
dimensional information, reducing ineffective or negative 
transfer and enhancing MTO performance. 

3) Extensive experiments on the CEC2017 and CEC2022 
multitask optimization benchmarks demonstrate the superiority 
of ADLMTO, outperforming most state-of-the-art multitask 
evolutionary algorithms in terms of convergence speed and 
solution quality. 

The rest of this paper is organized as follows. Section II 
reviews the progress of related studies in the EMTO domain; 
Section III elaborates on the design and implementation of the 
proposed ADLMTO framework. Section IV analyzes the 
experimental outcomes based on the widely adopted CEC2017 
and CEC2022 EMTO benchmarks. Section V concludes the 
paper with conclusions. 

II. PRELIMINARY 

A. Evolutionary Search Strategies 

DE is a well-established global optimization method, 
celebrated for its ease of implementation and high performance. 
However, its performance is heavily influenced by the mutation 
strategy. Traditional strategies may struggle with complex 
problems, leading to premature convergence or slow progress, 
which has led to the development of adaptive DE variants [14]. 
SHADE introduces the current-to-pbest/1 mutation operator, 
Combining the differences between the current individual and a 
subset of the best individuals with the perturbation from a pair 
of random individuals to balance convergence speed and 
population diversity. Additionally, SHADE adapts mutation 
factors and crossover probabilities, improving both performance 
and stability. The mutation formula for SHADE is: 

vi = xi + Fi × (xpbest – xi) + Fi × (xr1 – xr2) (1) 
where xi is the current individual, xpbest is selected from the top 

p% individuals, xr1 is randomly chosen distinct individuals, and 
xr2 is arbitrarily chosen from the combined set of the current 
population and the archive. The parameter p is randomized to 
balance exploration and exploitation. An external archive 
further enhances diversity. 

After the mutation vector vi is generated, binomial crossover 
is used to generate the trial vector ui, as follows: 
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where CR is the crossover rate and jrand is a random integer to 
make sure that ui differs from xi in at least one dimension. 

B. EMTO 

The EMTO algorithm is designed to address a multitask 
optimization problem (MTOP) involving K tasks. The primary 
objective of this algorithm is to find an optimal solution xt for 
each task Tt (t = 1, 2, … , K) by minimizing the objective 
function ft(xt) : 

xt = argmin(ft(Xt)) , t = 1, 2, …, K (3) 

C. Related Work 

EMTO has emerged as a noteworthy approach for 
addressing multiple tasks concurrently, attracting considerable 
interest in recent years. Its applications span diverse domains, 
such as planar kinematic arm control [15], and resource 
allocation problems [10]. A primary challenge in EMTO is to 
enhance the effectiveness of KT while mitigating the occurrence 
of ineffective or negative transfers. 

Gupta et al. [16] introduced the first EMTO algorithm, 
known as the multifactorial evolutionary algorithm (MFEA). In 
MFEA, individuals associated with different skill factors engage 
in crossover at a random mating probability (rmp), enabling 
implicit KT. Following this work, extensive research has 
extended the MFEA framework, categorizing these approaches 
as single-population EMTO algorithms. For example, Zhou et 
al. [11] proposed EMTO-AI, an EMTO algorithm featuring an 
adaptive transfer intensity adjustment (ATIA) mechanism, 
which quantifies task relatedness using a similarity matrix and 
dynamically adjusts transfer frequency based on fitness-based 
population comparisons, while incorporating a knowledge 
archive to store successfully transferred individuals to enhance 
the effectiveness of KT. Liu et al. [17] proposed a new MFEA 
based on diffusion gradient descent (MFEA-DGD), integrating 
DGD into complementary crossover/mutation operators and a 
hyperrectangular search strategy to ensure population 
convergence and theoretically explain KT benefits through local 
task convexity analysis, thereby accelerating optimization in 
less-explored regions. 

Additionally, several studies [18][19] adopt a multiple-
population approach in EMTO, where each task is assigned a 
distinct population, and inter-task information exchange is 
achieved through explicit KT. For example, Li et al. [20] 
introduced a meta-knowledge transfer (MKT)-based DE 
(MKTDE), an algorithm that employs a generalized MKT 
strategy to dynamically evolve task-specific knowledge, 
augmented by a multiple-population framework within a unified 
search space and an elite solution transfer technique, to facilitate 
effective KT in multitask optimization. Wei et al. [21] proposed 
an adaptive transfer strategy based on the decision tree (EMT-
ADT), leveraging a method that quantifies transfer ability to 



evaluate individuals and utilizes a decision tree to predict 
transferred individuals, thereby enhancing algorithm 
performance. Li et al. [22] proposed the knowledge-guided 
external sampling (KGxS) algorithm, which enhances KT in 
multitask evolution strategies (MTESs). By guiding distribution 
evolution through adaptive external samples, KGxS combines 
domain and shape knowledge with a universal boundary 
constraint handling method to address multitask optimization 
problems (MTOPs), effectively reducing negative transfer 
effects. 

However, existing methods predominantly rely on strict 
index-aligned dimensional assumptions and overlook the 
potential of index-unaligned dimensions. To address these 
limitations, ADLMTO introduces AFDES for dynamically 
adjusting evolutionary modes and ADL strategy for adaptive 
dimensional-level knowledge learning, effectively enhancing 
KT while mitigating negative transfer. 

III. ADLMTO 

This section provides a comprehensive overview of the 
proposed ADLMTO. First, the motivation behind ADLMTO is 
presented. Next, we outline the ADL strategy and AFDES, while 
providing a detailed description of the search operators 
employed, respectively. Finally, we present the complete 
ADLMTO algorithm.  

A. Motivation 

A key challenge in EMTO is designing an effective KT 
mechanism for information exchange across tasks. Traditional 
methods often rely on index-aligned dimensions, which can lead 
to issues. For example, when dimensions from different tasks, 
like “joint torque” in robot control and “logistics cost” in supply 
chain optimization, are forcibly index-aligned, irrelevant 
knowledge is transferred, causing optimization bias. 
Additionally, when tasks evolve, such as a supply chain problem 
transitioning from static cost to dynamic pricing, index-aligned 
methods fail to adapt to changing dimensional semantics, 
hindering their ability to handle dynamic tasks. In contrast, 
index-unaligned dimensional learning can uncover hidden 
connections. For instance, even if the task dimensions have 
different indices, like “obstacle distance” in robot path planning 
and “battery consumption rate” in drone endurance optimization, 
both reflect “resource constraints” Such index-unaligned 
dimensions can share energy-saving strategies, enabling KT that 
traditional methods may overlook. However, reliance on index-
aligned dimensional learning limits the ability to recognize these 
semantic relationships, leading to missed opportunities and 
reduced KT efficiency. 

B. Adaptive Feedback-Driven Evolutionary Strategy 

Conventional EMTO methods often rely on fixed index-
aligned learning and manually tuned parameters (e.g., rmp) to 
control KT intensity, which struggle to handle inter-task 
heterogeneity and semantic dimensional discrepancies 
dynamically. Such static strategies may cause ineffective 
transfer or convergence stagnation. To establish a dynamically 
adjustable optimization mechanism, we formalize four key 
concepts.  

Definition 1 (Evolutionary Model): The evolutionary model 
M is formulated as the Cartesian product of task-mode and 
dimensional-mode. Specifically, M={(self-evolution, index-

aligned), (self-evolution, index-unaligned), (KT, index-aligned), 
(KT, index-unaligned)}. Herein, task modes encompass self- 
evolution and KT. Meanwhile, dimensional modes are 
composed of index-aligned learning and index-unaligned 
learning.  

Definition 2 (Index Sequence): The index sequence is used 
as the operation carrier of dimensional learning, and its 
generation rules change dynamically with the alignment mode. 
In index-aligned learning, the sequence is strictly constrained to 
be a monotonically increasing arrangement of dimension indices. 
For example, when the total number of dimensions D=5, the 
sequence is constant to [1,2,3,4,5] to ensure the consistency of 
physical meaning between dimensions. In index-unaligned 
learning, the sequence is generated through repeatable random 
sampling, which is expressed as an unordered or repeated index 
combination, such as [1,5,4,3,2] or [1,5,5,3,3], so that the 
algorithm can capture the potential semantic associations 
between dimensions across tasks. 

Definition 3 (Immediate Parent): In the SHADE mutation 
operator, the direct parent refers to the base individual xi.  

Definition 4 (Improvement Rate (IR)): The IR quantifies the 

performance improvement of an offspring compared to its 

immediate parent, calculated as follows: 
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where fo refers to the fitness of the offspring generated and fp 

refers to the fitness of its immediate parent. 
Based on this, this paper proposes AFDES, which 

dynamically adjusts the evolution mode and index sequence 
through real-time feedback of offspring fitness, thereby 
adaptively controlling the evolutionary modes. 

The core mechanism of AFDES is based on the IR, which 
dynamically adjusts the evolutionary mode and index sequence. 
For minimization problems, IR is calculated using Eq. (3). If IR 
< 0, it indicates that the offspring outperforms the parent, so the 
current evolutionary model and index sequence should be 
retained to continue searching in the promising direction. 

Conversely, if IR ≥ 0, it suggests that the current strategy is 

ineffective, prompting the offspring to regenerate using a 
different evolutionary model and index sequence from the 
parent to enhance search exploration. For example, in a human 
hand control task, if the KT (index-aligned) mode adopts the 
index sequence [1,2,3,4,5], and the offspring’s IR is -0.2 
(indicating a 20% improvement), the offspring inherits the mode 
and sequence, maintaining the KT effect. However, if IR is 0.2 
(indicating a 20% decline), the algorithm may switch to the self-

Algorithm 1: AFDES 

Input: The offspring population. 
Output: Offspring with updated evolutionary mode and index sequence. 

Begin 

1: For each offspring c in offspring population: 
2:     Get the Immediate Parent p of c. 

3:     Calculate the IR of c according to Eq. (3). 

4:     If IR < 0: 
5:         Inherit the evolutionary model and index sequence of p for c. 

6:     Else: 

7:         Generate a new other evolutionary model and corresponding 
        index sequence for c. 

8:     End If 

9: End For 

End 



evolution (index-unaligned) mode, generating a new sequence 
[3,1,5,2,4] to explore a more diverse search path through 
perturbation in high-degree dimensions.  

The pseudocode of AFDES is shown in Algorithm 1. First, 
for every individual c within the offspring population, its 
immediate parent p is identified (lines 1-2). Second, the IR of c 
is calculated according to Eq. (3) (line 3). Finally, if IR < 0, 
indicating that c outperforms p, it inherits the evolutionary 
model and index sequence from p to maintain a promising 

search direction (lines 4-5). Otherwise, if IR ≥ 0, meaning the 

current strategy is ineffective, a new evolutionary model and 
corresponding index sequence are generated to enhance search 
exploration (lines 6-7).  

C. Adaptive Dimensional Learning Strategy 

Following the adaptive adjustment of the evolutionary 
model and index sequence by the AFDES, ADL strategy 
implements dimension-level learning through four distinct 
modes: index-aligned and index-unaligned learning for self-
evolution, as well as index-aligned and index-unaligned learning 
for KT, as illustrated in Fig. 2. This dual-mode approach not 
only facilitates efficient intra-task evolution but also enhances 
inter-task KT, ultimately enhancing the overall efficacy of 
evolutionary algorithms within the EMTO framework. 

For self-evolution, within the same task, the index-aligned 
of different individuals usually share the same semantics, as 
shown in Fig. 2(a). Using index-aligned learning can ensure that 
these dimensions evolve along a consistent optimization 
direction, thereby maintaining the stability of the evolutionary 
process. However, in practical problems, even if the dimension 
indexes are different (for example, the 1th dimension and the 2th 
dimension), they may contain similar semantic information. 
Imagine that in a certain evolutionary process, the 2th dimension 
of individual c first obtains a better fitness value, while the 1th 
dimension of individual b performs poorly due to the poor initial 
search direction. In this case, the index-unaligned learning 
strategy shown in Fig. 2(b) can flexibly match the potential 
semantic similarity between the two dimensions, and pass the 
high-quality optimization information in the 2th dimension to the 
poorly performing 1th dimension, thereby accelerating its 
performance improvement, and ultimately enhancing the overall 
convergence speed and solution accuracy. For KT, which main 
goal is to accelerate convergence and improve optimization 
quality by sharing useful knowledge across tasks. Tasks may 

have highly similar dimensions, whether or not they are index- 
aligned. For instance, Task T1’s 2th dimension is highly similar 
to Task T2’s 1th and 2th dimensions. Index-aligned KT (as shown 
in Fig. 2(c)) ensures stable KT for the 2th dimension, enhancing 
the optimization. However, for the 1th and 2th dimensions across 
tasks, index-unaligned KT (as shown in Fig. 2(d)) can capture 
the semantic similarity and further improve knowledge sharing 
and optimization. In summary, ADL allows the algorithm to 
adaptively switch between index-aligned and index-unaligned 
learning, fully exploiting the potential of both intra-task and 
inter-task KT to accelerate convergence and improve solution 
quality. 

In addition, in order to use dimension-level knowledge 
learning in the EMTO problem, we improve the mutation 
operator in SHADE, and is redefined as follows: 

vi = xi + Fi × (xpbest[I] – xi) + Fi × (xr1 – xr2) (5) 
where I represents the index sequence of xpbest individuals, when 
the evolutionary model is self-evolution, xpbest is randomly 
selected from the top p% individuals in the target population 
based on fitness. When the evolutionary model is KT, xpbest is 
randomly selected from the top p% individuals in the auxiliary 
population based on fitness. xpbest[I] – xi accelerates local 
exploitation via elite individuals and fosters dimensional 
learning, while xr1 – xr2 boosts global search diversity. 

D. Framework of ADLMTO 

The overall framework of ADLMTO is outlined in 
Algorithm 2. Specifically: 

Step 1: Initialize populations for all tasks with random 
evolutionary models and index sequences, evaluate initial 
fitness, and set parameters , as shown in lines 1-4 of Algorithm 
2. 

Step 2: Select xpbest according to the evolutionary model, as 
shown in lines 8-12 of Algorithm 2. 

Algorithm 2: ADLMTO 

Input: NP: The population size. 
p: Greedy coefficient. 

Output: The optimal solution of each task. 

Begin 

1:  Randomly initialize k populations for k tasks. 

2: Randomly initialize the evolution model and corresponding index 

sequence of each individual. 
3: FEs = 0. g = 0. 
4: Evaluate each individual of k populations and update FEs. 

5: While FEs ≤ MaxFEs: 
6:     For m in {1, 2, …, k}: 

7:         For each individual im in popm: 

8:             If Evolutionary model is self-evolution: 
9:                 Randomly select an individual from the top p% of the  

                target population based on fitness as xpbest. 

10:             Else: 

11:                 Randomly select an individual from the top p% of the  

                auxiliary population based on fitness as xpbest. 

12:             End If 
13:             Generate offspring c according to Eq. (5) and Eq. (2). 

14:             Evaluate c, FEs += 1. 

15:         End For 
16:         Update the offspring evolution model and index sequence 

        according to Algorithm 1. 

17:         Execute elite selection strategy. 
18:     End For 

19:      g += 1. 

20: End While 

21: Return the optimal solution of each task. 

End 

 
Fig. 2. Illustration of four evolutionary models. 

 



Step 3: Generate offspring based on ADL strategy, as shown 
in line 13 of Algorithm 2. 

Step 4: Evaluate offspring fitness and update the function 
evaluation counter, as shown in line 14 of Algorithm 2.  

Step 5: Update the offspring evolution model and index 
sequence based on AFDES, and update the population through 
elite selection, as shown in lines 16-17 of Algorithm 2. 

The whole process repeats until the maximum number of 
function evaluations (MaxFEs) is used up. 

IV. EXPERIMENTAL STUDIES 

In this study, the performance of ADLMTO is evaluated on 
two widely recognized EMTO benchmarks, CEC2017 [23] and 
CEC2022 [24]. To ensure a comprehensive and rigorous 
comparison, eight state-of-the-art EMTO algorithms are 
selected: MFEA [16] (2016), MFDE [25] (2017), MFEA-AKT 
[26] (2021), MKTDE [27] (2022), AEMTO [28] (2022), 

RLMFEA [29] (2024), BLKT-DE [29] (2024), and MMLMTO 
[30] (2024). Covering a span from 2016 to 2024, these 
algorithms provide a solid foundation for assessing the 
effectiveness and competitiveness of ADLMTO. 

A. Parameter Settings 

The parameter settings for the ADLMTO are shown as 
follows: 

1) Population size in ADLMTO: NP = 100 for each task. 
2) Greedy coefficient in SHADE: p = 0.2 for each task. 
To ensure a fair evaluation, the MaxFEs is uniformly set to 

200,000 for all algorithms, while other parameters follow their 
original configurations. Every algorithm is run separately 30 
times, with the average outcomes documented. The Wilcoxon 
rank-sum test (α = 0.05) is applied to evaluate the statistical 

significance of the results. The symbols “+ / ≈ / −” indicate 

whether ADLMTO outperforms, performs comparably to, or 

TABLE I EXPERIMENTAL RESULTS ON CEC2017 BENCHMARK BETWEEN ADLMTO AND OTHER EMTO ALGORITHMS 

Problem ADLMTO MFEA MFDE MFEA-AKT MKTDE AEMTO RLMFEA BLKT-DE MMLMTO 

CIHS-T1 0 2.68E−3(+) 6.53E−4(+) 9.80E−2(+) 2.47E−4(+) 8.93E−11(+) 7.45E−9(+) 6.53E−6(+) 2.47E−4(≈) 

CIHS-T2 0 9.17E+1(+) 2.77E+0(+) 1.78E+2(+) 1.46E+0(+) 1.60E−7(+) 1.06E−5(+) 8.55E+1(+) 8.29E−1(≈) 

CIMS-T1 4.44E−16 1.12E+0(+) 1.44E−2(+) 4.85E+0(+) 1.77E−8(+) 8.24E−8(+) 2.02E−6(+) 4.93E−4(+) 2.27E−12(+) 

CIMS-T2 1.26E+0 6.41E+1(+) 1.25E−1(+) 2.30E+2(+) 8.37E−13(+) 4.75E−12(+) 4.71E−9(+) 9.17E+1(+) 0(≈) 

CILS-T1 1.18E−4 2.00E+1(+) 2.12E+1(+) 2.01E+1(+) 2.12E+1(+) 2.12E+1(+) 2.00E+1(+) 2.07E+1(+) 2.01E+1(+) 

CILS-T2 6.36E−4 2.78E+3(+) 1.35E+4(+) 3.46E+3(+) 1.18E+4(+) 1.02E+4(+) 2.53E+3(+) 3.21E+3(+) 4.40E+3(+) 

PIHS-T1 3.91E+1 2.35E+2(+) 7.32E+1(+) 5.08E+2(+) 3.41E+2(+) 3.87E+2(+) 1.23E+2(+) 8.40E+1(+) 3.52E−12(−) 

PIHS-T2 1.63E−27 1.19E−3(+) 1.72E−3(+) 8.59E−1(+) 4.12E−2(+) 5.00E−6(+) 1.14E−8(+) 6.48E−6(+) 7.40E−12(+) 

PIMS-T1 3.85E−2 4.76E−1(+) 2.23E−2(+) 2.95E+0(+) 8.61E−4(+) 1.96E−4(+) 4.70E−2(+) 5.26E−4(+) 2.44E−7(+) 

PIMS-T2 4.05E+1 9.50E+1(+) 5.08E+1(+) 2.28E+2(+) 5.77E+1(+) 8.41E+1(+) 8.16E+1(+) 4.83E+1(+) 4.80E+1(+) 

PILS-T1 4.44E−16 1.57E+1(+) 5.64E−1(+) 5.28E+0(+) 1.69E+0(+) 4.20E−2(+) 2.57E−1(+) 1.04E−2(+) 3.64E−15(≈) 

PILS-T2 0 1.47E+1(+) 5.47E−1(+) 5.62E+0(+) 3.56E−1(+) 2.35E−1(+) 3.24E−1(+) 2.14E+0(+) 0(≈) 

NIHS-T1 4.07E+1 1.18E+2(+) 4.77E+1(+) 3.03E+2(+) 4.69E+1(+) 4.59E+1(+) 8.29E+1(+) 5.00E+1(+) 4.63E+1(+) 

NIHS-T2 6.87E+0 1.16E+2(+) 1.03E+0(+) 2.34E+2(+) 6.75E−2(+) 7.88E−5(+) 5.64E+1(+) 9.06E+1(+) 1.43E+0(+) 

NIMS-T1 0 4.60E−3(+) 1.61E−3(+) 1.32E−1(+) 1.09E−5(+) 2.87E−5(+) 6.35E−4(+) 2.26E−4(+) 7.18E−9(+) 

NIMS-T2 0 1.92E+1(+) 1.06E+0(+) 2.06E+1(+) 1.87E−1(+) 5.40E−1(+) 6.36E+0(+) 5.61E−1(+) 1.35E+0(+) 

NILS-T1 4.05E+1 2.39E+2(+) 4.00E+2(+) 6.75E+2(+) 3.73E+2(+) 3.91E+2(+) 1.50E+2(+) 1.10E+2(+) 8.15E+1(+) 

NILS-T2 6.36E−4 2.82E+3(+) 2.64E+3(+) 3.46E+3(+) 6.54E+2(+) 1.45E+4(+) 2.25E+3(+) 9.40E+2(+) 4.32E+3(+) 

Number of + / ≈ / − 18 / 0 / 0 18 / 0 / 0 18 / 0 / 0 18 / 0 / 0 18 / 0 / 0 18 / 0 / 0 18 / 0 / 0 12 / 5 / 1 

 

 
(a) CIHS-T1                                             (b) CILS-T1                                              (c) CILS-T2                                              (d) PIHS-T2 

 

 
(e) PILS-T2                                              (f) NIMS-T1                                              (g) NIMS-T2                                            (h) NILS-T2 

Fig. 3. Convergence curves of the average fitness on several tasks from the CEC2017 benchmark. 



underperforms compared algorithms, respectively. The optimal 
outcome for each task is emphasized in bold text.  

B. Experimental Results on CEC2017 EMTO Benchmark 

Table I presents the experimental results of ADLMTO 
alongside state-of-the-art EMTO algorithms on the CEC2017 
benchmark suite. ADLMTO achieves the best performance in 
16 out of 18 tasks, underscoring its exceptional efficacy. 
Notably, it consistently outperforms MFEA, MFDE, MFEA-
AKT, MKTDE, AEMTO, and RLMFEA. These competing 
algorithms predominantly rely on index-aligned dimension 
learning, ADLMTO harnesses index-unaligned dimension 
learning to fully exploit the diverse dimensional information 
within and across tasks, thereby ensuring the full utilization of 
high-quality dimensional information. Furthermore, when 
compared to BLKT-DE and MMLMTO, which also leverage 

index-unaligned dimension learning, ADLMTO consistently 
outperforms BLKT-DE across all 18 tasks and surpasses 
MMLMTO in 12 tasks. In five tasks—namely, CIHS-T1, CIHS-
T2, CIMS-T2, PILS-T1, and PILS-T2—ADLMTO and 
MMLMTO exhibit comparable performance, both approaching 
the global optimum, with ADLMTO showing only a marginal 
underperformance on the PIHS-T1 problem. This pronounced 
advantage is attributed to ADLMTO’s AFDES and ADL 
strategy, further enhanced by the exceptional capability of the 
SHADE operator, which optimizes search trajectories using 
historical success experiences, enabling efficient balancing of 
exploration and exploitation in complex task scenarios. 

To gain deeper insights into the evolutionary dynamics of 
ADLMTO and other EMTO algorithms on the CEC2017 
benchmark, their convergence trajectories are visualized in Fig. 
3. Firstly, as illustrated in Figs. 3(a), 3(f), and 3(g), ADLMTO 

 
(a) P3-T1                                                   (b) P3-T2                                                  (c) P6-T1                                                  (d) P6-T2 

 

 
(e) P7-T1                                                   (f) P7-T2                                                  (g) P10-T1                                                 (h) P10-T2 

Fig. 4. Convergence curves of the average fitness on several tasks from CEC2022 benchmark. 

TABLE Ⅱ EXPERIMENTAL RESULTS ON CEC2022 BENCHMARK BETWEEN ADLMTO AND OTHER EMTO ALGORITHMS 

Problem ADLMTO MFEA MFDE MFEA-AKT MKTDE AEMTO RLMFEA BLKT-DE MMLMTO 

P1-T1 6.05E+2 6.45E+2(+) 6.10E+2(+) 6.26E+2(+) 6.02E+2(−) 6.02E+2(−) 6.15E+2(+) 6.07E+2(+) 6.01E+2(−) 

P1-T2 6.05E+2 6.45E+2(+) 6.10E+2(+) 6.27E+2(+) 6.02E+2(−) 6.02E+2(−) 6.15E+2(+) 6.09E+2(+) 6.02E+2(−) 

P2-T1 7.00E+2 7.00E+2(+) 7.00E+2(+) 7.01E+2(+) 7.00E+2(≈) 7.00E+2(≈) 7.00E+2(≈) 7.00E+2(≈) 7.00E+2(≈) 

P2-T2 7.00E+2 7.00E+2(≈) 7.00E+2(+) 7.01E+2(+) 7.00E+2(≈) 7.00E+2(≈) 7.00E+2(≈) 7.00E+2(≈) 7.00E+2(≈) 

P3-T1 1.46E+4 2.12E+6(+) 1.23E+7(+) 5.48E+5(+) 8.24E+6(+) 8.42E+6(+) 1.11E+6(+) 1.32E+6(+) 3.15E+5(+) 

P3-T2 1.61E+4 1.93E+6(+) 1.40E+7(+) 6.18E+5(+) 8.45E+6(+) 8.07E+6(+) 9.94E+5(+) 1.39E+6(+) 2.64E+5(+) 

P4-T1 1.30E+3 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 

P4-T2 1.30E+3 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 1.30E+3(+) 

P5-T1 1.51E+3 1.53E+3(+) 1.53E+3(+) 1.55E+3(+) 1.53E+3(+) 1.53E+3(+) 1.51E+3(+) 1.53E+3(+) 1.51E+3(≈) 

P5-T2 1.51E+3 1.53E+3(+) 1.53E+3(+) 1.56E+3(+) 1.53E+3(+) 1.53E+3(+) 1.51E+3(+) 1.53E+3(+) 1.51E+3(≈) 

P6-T1 1.39E+4 1.19E+6(+) 4.86E+6(+) 1.36E+6(+) 2.08E+7(+) 3.79E+6(+) 7.65E+5(+) 9.60E+5(+) 1.81E+5(+) 

P6-T2 1.01E+4 9.78E+5(+) 4.98E+6(+) 6.57E+5(+) 1.86E+7(+) 3.82E+6(+) 4.25E+5(+) 6.60E+5(+) 1.17E+5(+) 

P7-T1 2.61E+3 3.19E+3(+) 3.90E+3(+) 3.12E+3(+) 4.32E+3(+) 3.86E+3(+) 2.99E+3(+) 2.87E+3(+) 2.82E+3(+) 

P7-T2 2.63E+3 3.44E+3(+) 3.94E+3(+) 3.18E+3(+) 4.38E+3(+) 3.83E+3(+) 2.99E+3(+) 2.92E+3(+) 2.79E+3(+) 

P8-T1 5.20E+2 5.20E+2(−) 5.21E+2(+) 5.20E+2(−) 5.21E+2(+) 5.21E+2(+) 5.21E+2(+) 5.21E+2(+) 5.20E+2(−) 

P8-T2 5.20E+2 5.20E+2(−) 5.21E+2(+) 5.20E+2(−) 5.21E+2(+) 5.21E+2(+) 5.21E+2(+) 5.21E+2(+) 5.20E+2(−) 

P9-T1 7.35E+3 8.27E+3(+) 1.47E+4(+) 8.09E+3(+) 1.47E+4(+) 1.47E+4(+) 7.24E+3(≈) 7.95E+3(+) 7.92E+3(+) 

P9-T2 1.62E+3 1.62E+3(+) 1.62E+3(+) 1.62E+3(+) 1.62E+3(+) 1.62E+3(+) 1.62E+3(+) 1.62E+3(+) 1.62E+3(+) 

P10-T1 2.34E+3 3.73E+4(+) 3.65E+4(+) 2.88E+4(+) 6.01E+4(+) 2.71E+4(+) 2.33E+4(+) 2.29E+4(+) 5.75E+3(+) 

P10-T2 1.21E+4 1.38E+6(+) 5.93E+6(+) 1.54E+6(+) 2.38E+7(+) 4.85E+6(+) 1.32E+6(+) 1.19E+6(+) 2.38E+5(+) 

Number of + / ≈ / − 17 / 1 / 2 20 / 0 / 0 18 / 0 / 2 16 / 2 / 2 16 / 2 / 2 17 / 3 / 0 18 / 2 / 0 12 / 4 / 4 

 



is the only algorithm that attains the global optimum (i.e., 0) in 
the CIHS-T1, NIMS-T1, and NIMS-T2 tasks. Moreover, 
ADLMTO demonstrates remarkably fast convergence, 
requiring approximately 30% of the MaxFEs in CIHS-T1, 40% 
in NIMS-T1, and 50% in NIMS-T2, substantially outperforming 
other algorithms. Secondly, Figs 3(b), 3(c), and 3(h) present the 
convergence curves for the CILS-T1, CILS-T2, and NIHS-T2 
tasks. As observed, during the early optimization phase, 
ADLMTO performs comparably to other algorithms (e.g., 
MFEA, MFDE), exhibiting a similar convergence trend. 
However, in the later phase, ADLMTO demonstrates a clear 
advantage by successfully escaping local optima and achieving 
superior results, whereas other algorithms remain trapped in 
local optima, resulting in suboptimal convergence. Finally, on 
the PIHS-T2 and PILS-T2 tasks, as shown in Figs. 3(d) and (e), 
ADLMTO demonstrates significantly superior solution quality 
compared to other algorithms, ultimately achieving satisfactory 
results. Specifically, in the PILS-T2 task, although MMLMTO 
also attains the global optimum (i.e., 0), ADLMTO exhibits a 
faster convergence rate, approaching the optimal solution 
noticeably earlier, while other algorithms perform relatively 
poorly. 

In summary, ADLMTO outperforms other leading EMTO 
algorithms on the CEC2017 benchmark, exhibiting superior 
performance and highlighting the effectiveness of dimension 
learning with index-unaligned. 

C. Experimental Results on CEC2022 EMTO Benchmark 

Table II presents the results of ADLMTO and other EMTO 
algorithms on the CEC2022 benchmark. From Table II, 
ADLMTO achieves the best results on 13 out of 20 tasks, while 
other algorithms can only achieve the best results in a maximum 
of 6 tasks, which demonstrates the superiority of ADLMTO. 
Compared to the EMTO algorithms that use KT methods based 
on index-aligned dimensions (including MFEA, MFDE, 
MFEA-AKT, MKTDE, AEMTO, and RLMFEA), ADLMTO 
outperforms them on 17, 20, 18, 16, 16, and 17 tasks, 
respectively, and only underperforms them on 2, 0, 2, 2, 2, and 
0 tasks. Although BLKT-DE and MMLMTO utilize index-
unaligned dimensional learning, ADLMTO consistently 
demonstrates superior performance. Specifically, it outperforms 
BLKT-DE on 18 tasks, matches performance on 2 tasks, and 
underperforms on none. Similarly, it surpasses MMLMTO on 
12 tasks, achieves comparable results on 4 tasks, and 
underperforms on only 4 tasks. These results further highlight 
the effectiveness of AFDES in adaptively adjusting evolutionary 
modes and the ADL strategy in efficiently leveraging index-
unaligned dimensional information, ensuring more effective KT 
and improved optimization performance. 

To gain deeper insights into the evolutionary dynamics of 
ADLMTO and other EMTO algorithms on the CEC2022 
benchmark, their convergence trajectories are visualized in Fig. 
4. Firstly, as shown in Figs. 4(a) and (b), although ADLMTO 
exhibits a slightly slower convergence rate than MFEA-AKT in 
the early stages, it progressively demonstrates a substantial 
advantage in the mid-to-late evolutionary phases, ultimately 
achieving superior results compared to MFEA-AKT and other 
algorithms. Secondly, the P6-T1, P6-T2, P10-T1 and P10-T2 
tasks, as shown in Figs. 4(c), (d), (g), and (h), ADLMTO 
consistently outperforms other algorithms throughout the 
optimization process, with its convergence curve steadily 

declining, reflecting superior optimization capability, and 
ultimately achieving satisfactory results across these tasks. 
Finally, on the P7-T1 and P7-T2 tasks, as shown in Figs. 3(d) 
and (e), while the performance of most algorithms remains 
similar, ADLMTO reliably delivers more precise results 
compared to other EMTO algorithms. 

In summary, ADLMTO outperforms other leading EMTO 
algorithms on the CEC2022 benchmark, exhibiting superior 
performance and highlighting the effectiveness of dimension 
learning with index-unaligned. 

V. CONCLUSION 

Existing EMTO methods focus on index-aligned 
dimensional learning, assuming shared semantic meanings 
across tasks, which overlooks index-unaligned dimensions, 
leading to ineffective or negative transfer when task semantics 
vary. To address this and fully harness the potential of index-
unaligned learning, we propose ADLMTO, which incorporates 
two key strategies. AFDES adaptively adjusts evolutionary 
modes based on performance feedback, enhancing flexibility 
and stability in the optimization process. ADL strategy performs 
dimensional-level learning by integrating both index-aligned 
and index-unaligned dimensions, effectively reducing negative 
transfer and improving overall optimization performance. 
Extensive experiments on the CEC2017 and CEC2022 multitask 
optimization benchmarks demonstrate the superiority of 
ADLMTO, outperforming most state-of-the-art multitask 
evolutionary algorithms in terms of convergence speed and 
solution quality. 

ADLMTO shows promising results, but it may face 
challenges in large-scale problems where the ADL strategy may 
not perform as effectively. Future research could focus on 
improving the strategy's scalability in high-dimensional spaces, 
such as in large-scale feature selection [31]. Additionally, 
enhancing computational efficiency for larger task sets, like in 
multi-objective optimization [32], could further optimize its 
practical applications. 
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