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Abstract
Background: In ultrasound imaging, the generated images involve speckle
noise owing to the mechanism underlying image generation. Speckle noise
directly affects image analysis, necessitating its effective suppression.
Purpose: Ultrasound image denoising offers limited performance and causes
structural information loss.To address these challenges and improve ultrasound
image quality,we develop a new denoising method based on the diffusion model
(DM).
Methods: This exploratory study proposes a DM-based denoising method,
namely adversarial DM with feature extraction network (ADM-ExNet) to inves-
tigate the potential of combining diffusion models and generative adversarial
Networks (GANs) for ultrasound image denoising. Specifically, we replace the
reverse process of the DM with a GAN and modify the generator and dis-
criminator as a U-Net structure. Simultaneously, a structural feature extraction
network is incorporated into the model to construct a loss function, which offers
enhanced detail retention. The noise levels (𝜎 = 10, 15, 20) were simulated by
adding Gaussian noise to the original ultrasound images, where 𝜎 controls the
intensity of the noise. We employed three public datasets, HC18, CAMUS, and
Ultrasound Nerve,which involve the ultrasound images of the fetal head circum-
ference, heart, and nerves, respectively. Each image was adjusted to 256 × 256
pixels, and the training set and the validation set were divided by 9:1. The
mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural
similarity index (SSIM) were employed as primary evaluation metrics. To rigor-
ously validate the statistical significance of performance differences, we further
applied false discovery rate (FDR) correction for hypothesis testing and calcu-
lated Cohen’s d effect sizes to quantify the magnitude of improvements against
baselines. ADM-ExNet was compared with three traditional filtering methods
and four deep learning methods with the U-Net structure.
Results: The proposed ADM-ExNet significantly enhances denoising perfor-
mance across all datasets, with PSNR improvements exceeding 12 dB over
noisy baselines and MSE reductions of over 90%.Notably,ADM-ExNet achieves
high SSIM values (e.g., 0.941 at 𝜎 = 10 on HC18 vs. 0.369 for noisy images),
demonstrating superior structural preservation without excessive smoothing.
Statistical significance (FDR-adjusted p < 0.01) and Cohen’s d effect sizes (up
to d = 3.8 on CAMUS at 𝜎 = 20) confirm its robustness,outperforming traditional
methods and deep learning competitors in both visual quality and quantitative
metrics (PSNR, SSIM) across noise levels. This balance of detail retention and
noise suppression highlights the exploratory potential of ADM-ExNet.
Conclusions: The proposed method improves the quality of ultrasound images
with various structural features,effectively reducing noise while retaining details.
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1 INTRODUCTION

With the rapid development of medical big data and
computer processing units,deep learning methods have
been increasingly employed in medical image anal-
ysis. Ultrasound imaging has been commonly used
owing to its affordability, noninvasiveness, and deep
penetration ability. However, the limitations of the imag-
ing environment and equipment performance lead to
noise and artifacts, reducing image quality and caus-
ing loss of key information. In particular, speckle noise
reduces the contrast of soft structural features in the
image and blurs their boundary details, thereby reduc-
ing diagnostic accuracy. Extensive research has been
conducted on speckle noise modeling and ultrasound
image denoising. Traditional filtering methods such
as image denoising, median filtering,1 mean filtering,2

and Gaussian filtering3 have been commonly used for
noise reduction.

Various denoising methods have been developed
using deep learning methods, particularly convolutional
natural networks (CNNs) and generative adversarial
networks (GANs) for noise suppression. GANs have
been developed in 2014,4 and have resulted in trans-
formational development. In general, a GAN employs
adversarial thinking thinking and includes a generator,
which continuously generates data that more closely
align with the actual labels as required, and a discrim-
inator, which continuously distinguishes between the
generator’s results and the actual labels. However, orig-
inal GANs struggled to generate images with specific
attributes consistently and often suffered from mode
collapse and training instability. To address these limi-
tations, conditional GANs (cGANs) were developed to
enforce control over generated image attributes.5 Its
core concept entails integrating attribute information into
both the generator and discriminator,where the attribute
in question may be any label information. Despeckling
CNNs (DsCNNs)6 use traditional speckle noise filtering
to preprocess the ultrasound image and obtain the cor-
responding noise-free ultrasound image. Consequently,
these data are utilized to facilitate the training of deep
neural networks. To retain image details, DsCNNs use
structural similarity measures as part of the loss func-
tion to guide network training. Further, researchers have
employed a GAN to suppress ultrasound speckle noise.7

Their generator model adopted a fully convolutional U-
Net architecture, which can directly transmit shallow
details to the deeper layers of the network to better
protect structural details.

These methods, however, have certain shortcomings
in handling large-scale and multiplicative noise types.

Diffusion models (DMs)8 have been found to provide
immense versatility across various fields,9 including
medical image processing.10 DMs can be used for
not only the conversion of different types of medical
images,11,12 but also the reconstruction and generation
of medical images,13–15 which can increase the medical
image data available for analysis. In medical examina-
tion, DMs can be used for image segmentation16–18 and
anomaly detection,19–21 which which can assist doctors
with image analysis. In addition, it is applied to medical
image denoising. DenoOCT-DDPM22 first uses self -
fusion as a preprocessing step,and then uses denoising
diffusion probabilistic models (DDPMs)23 to despeck
the optical coherence tomography retinal image via
unsupervised learning. PET-DDPM24 is a DDPM-based
positron emission tomography denoising framework,
which embeds auxiliary modes as prior information for-
mulated by the DDPM. Compared with the denoising
network based on U-Net,25 this method enhances the
image quality. In the context of ultrasound imaging,
Stevens et al.26 recently showed diffusion models’effec-
tiveness for dehazing cardiac ultrasound images. Their
approach uses a joint posterior sampling framework with
separate score-based networks in the radio-frequency
(RF) domain to model clean tissue and haze. It can
effectively remove structured haze and retain weakly
reflected tissue signals, highlighting diffusion models’
potential in dealing with complex noise artifacts in med-
ical imaging. Compared with the GAN, the DM offers
improved quality and training convergence. However,
the sampling requires the analysis of thousands of
networks, making it costly and slow.

Two main problems persist regarding current ultra-
sound image denoising methods: First, the denoising
effect is insufficient; second, the boundary informa-
tion of structural features is easily lost after denoising.
To solve these challenges, we propose an ultrasound
image denoising model that combines the DM and GAN,
namely, adversarial DM with feature extraction network
(ADM-ExNet). The contributions of the study can be
summarized as follows:

1. Considering the slow sampling speed of the DM, we
replaced the reverse process of DM with a GAN
structure. Simultaneously, to better retain detailed
information, the U-Net structure of the GAN genera-
tor and discriminator was employed to enhance detail
retention.

2. We proposed the loss function using two visual geom-
etry group networks to extract the structural features
of ultrasound images with considerably enhanced
and consistent boundary details.
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3. We conducted experiments on three datasets with
different structural features (brain, knee, and nerve).
The results show that our proposed method is highly
robust and can be broadly employed in medical
ultrasound imaging.

2 MATERIALS AND METHODS

2.1 Ultrasound image noise model

Ultrasound imaging is a broadly employed medical
imaging procedure in cardiology, obstetrics, and gyne-
cology. It can provide high-resolution images without
the use of ionizing radiation and plays an important
role in medical imaging applications. Ultrasound imag-
ing equipment emits ultrasound waves. The interaction
of ultrasound waves reflected and scattered when prop-
agating through the human body results in certain
granular black and white points on the ultrasound image,
which constitute speckle noise.

The sound penetration and absorption of the echo
signal are fully achieved through appropriate compensa-
tion of the ultrasound imaging system. The echo signal
obtained by the final envelope detection comprises the
beneficial signal and noise,and the noise can be divided
into the multiplicative and additive noise.27

f (i, j) = g(i, j)n(i, j) + w(i, j) (1)

where n(i, j) and w(i, j) denote the multiplicative and
additive noise, respectively. (i, j) ∈ Z2 represent the coor-
dinates in two-dimensional (2D) space. g(i, j) and f (i, j)
represent the original and observed signals,respectively.
Denoising estimates the current real pixel value, g(i, j),
which is a function of the gray value f (i, j) of the noise
map and the local statistics of the pixel neighborhood.

The multiplicative noise, which is caused by random
scattering in the resolution unit of the image, mainly
forms the ultrasound noise. Compared to multiplicative
noise, the degree of the additive noise is very slight and
is made up of the sensor noise.28 To simplify the model,
the additive noise w(i, j) is typically ignored.Equation (1)
can be rewritten as

f (i, j) = g(i, j)n(i, j). (2)

2.2 Diffusion models

The DM represents a generative mode in deep
learning and comprises the forward and reverse
processes.23

In the forward process, the incorporation of the Gaus-
sian noise into the data occurs gradually (x0 ∼ q(x0)),
and the original data distribution q(x0) tends toward a

pure Gaussian distribution:

q(xt|xt−1) =  (xt;
√

1 − 𝛽 ⋅ xt−1, 𝛽t ⋅ I),

q(x1, x2,… , xT |x0) =
T∏

t=1

q(xt|xt−1), (3)

where 𝛽t is the noise variance modifier associated with
the moment t, and I is a unit matrix with the same
dimensions as the initial state x0.

The reverse process through the noise estimation
network at time t can be defined as:

p𝜃(x1, x2,… , xT ) = p(xT )
T∏

t=1

p𝜃(xt−1|xt),

p𝜃(xx−1|xt) =  (xt−1;𝜇𝜃(xt, t),Σ𝜃(xt, t)),

(4)

where 𝜇𝜃(xt, t) is the mean value of noise,Σ𝜃(xt, t) is the
variance, and 𝜃 is the noise estimation network param-
eter.

Based on the existing noise state, this process obtains
the state of the previous moment by learning to esti-
mate the noise distribution, and it gradually constructs
real data from the Gaussian distribution. Therefore, the
optimization objective can be expressed as:

−
T∑

t=1

𝔼q(x0)q(xt |x0)DKL(q(xt−1|x, x0)‖p𝜃(xt−1|xt)), (5)

which indirectly maximizes the evidence lower bound
(ELBO) of p𝜃(x0), which is the likelihood, and DKL
denotes the Kullback–Leibler (KL) divergence.

Although DMs can generate high-quality samples and
can be applied to various applications, they usually
require thousands of iterations to achieve high-quality
results. The inverse distribution can be assumed to be
similar to a Gaussian distribution for these sampling
steps. However, it becomes a non-Gaussian multi-
modal distribution with substantial noise.To address this
problem, denoising diffusion GANs (DDGANs)29 were
proposed as adversarial learning schemes. The condi-
tional distribution between q(xt−1|xt) and p𝜃(xt−1|xt) is
matched using the cGAN, and large noise is randomly
added between adjacent diffusion steps to achieve
denoising with fewer steps. Its composition is summa-
rized as follows:

min
𝜃

max
Dadv

T∑
t=1

𝔼q(xt )Dadv(q(xt−1|xt)‖p𝜃(xt−1|xt)). (6)

The objective of the algorithm Dadv is to identify the dis-
crepancy between the predicted denoised image and
the sampled denoised image. The discriminator, which
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F IGURE 1 Framework of ADM-ExNet, which is mainly divided into structural feature extraction (left) and ultrasound image denoising (right)
comprising the forward diffusion process (orange) and the reverse process combined with GAN (blue). GAN, generative adversarial network.

depends on time t, is denoted as D𝜙(xt−1, xt, t). The loss
function DG can be written as

−
T∑

t=1

𝔼q(x0)q(xt−1|x0)q(xt |xt−1)[[−log(D𝜙(xt−1, xt, t))]

+ 𝔼p𝜃(xt−1|xt )[−log(1 − D𝜙(xt−1, xt, t))]].

(7)

2.3 Proposed method

Based on DMs,this study proposes an ultrasound image
denoising method combining adversarial learning and
feature extraction networks, termed ADM-ExNet,with its
overall framework illustrated in Figure 1. We adjusted
our generator and discriminator to prossess the U-
Net structure, similar to that25 employed in NCSN++.30

This U-Net structure has multiple residual network
modules,31 also known as attTention modules.32 The
generator achieves image reconstruction through pro-
gressive noise removal, while the discriminator cap-
tures local details and global semantics via multi-scale
downsampling and upsampling paths, enhancing the
guidance capability of adversarial training through pixel-
wise distribution matching. Additionally, we added two
network modules to extract structural features prior to
ultrasound imaging to enhance detail retention.

We demonstrated that distinct convolutional layers
can capture image features at varying semantic levels
within CNNs. These features can be classified into four
categories: low-level features (e.g., the target bound-
ary), intermediate features (e.g.,boundary combination),
high-level features (e.g., the target part of the region),
and complete object features. General features of the
image, such as boundaries or textures, can be extracted
in the low-level convolutional layer of the network.As the
network depth increases, these features are gradually
combined to form a representation of the target in the
image. Simultaneously, when the boundary is extracted,
the network is robust to noise. Therefore, a deep net-
work can be employed to extract the structural feature
from the ultrasound image in the low-level convolutional
layer, as shown in Figure 2.

To obtain the prior objective function of the structural
feature, we established that the ultrasound image can-
not lose details after speckle noise suppression, and its
details must be as consistent as possible with those
that existed before processing. Therefore, we propose
two visual geometry group networks (VGG-Nets)16 for
feature extraction. The extracted features are the out-
put features of the fourth layer, and this structure is
called ExNet. One of the VGG-Nets was used to extract
the features before speckle noise suppression, and the
other was used to extract the features after speckle
noise suppression. The network structure was used to
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F IGURE 2 Visualization results of feature map.

obtain the feaure information of the ultrasound image
in the output of the fourth layer. Because the features
obtained before and after speckle noise suppression
must be as similar as possible, the loss function can be
defined as follows:

s = ‖fvgg(W ; In) − fvgg(W ; fd(In))‖2, (8)

where fvgg(·) is the function representation of the
network, W represents the network parameters, In rep-
resents the real ultrasound image containing speckle
noise, and fd(In) represents the ultrasound image with
speckle noise suppressed through the network.

The ultrasound image inputs are divided into two
branches.The first is the forward diffusion process in the
diffusion model.After the denoised image is directly gen-
erated by the generator, the features are extracted using
ExNet.Another branch is the original image directly input
into ExNet to extract the features. These two features
constitute the loss function through the L2-norm. The
loss function of the overall model is described as

 = DG + 𝜔 ⋅ s. (9)

The loss function comprises two parts, one is the gen-
erator network loss function; the other is the structural
feature loss function. 𝜔 was experimentally determined
as 0.001 and was used to balance the two parts of the
objective function. The value was set to 0.001 based on
multiple experiments. Two feature extraction networks
were used as feature extractors, and their parameters
were fixed.

2.4 Implementation and evaluation

In the experiments, three datasets with different struc-
tural features were chosen. We used 90% of the data
in each dataset for training and 10% for validation and
adjusted image size to 256 × 256 pixels.

HC18: The fetal head circumference (HC) ultrasound
dataset,33 from the Automated Measurement of Fetal
Head Circumference competition was used. The HC is
measured during pregnancy and quantified in a specific
cross-sectional area of the fetal head,designated as the
standard plane. A total of 1334 2D ultrasound images
of standard planes were included in the study.The initial
ultrasound image had a size of 800 × 540 pixels.

CAMUS: The CAMUS dataset34 comprises clinical
examinations of 500 patients,primarily including 2D api-
cal two-chamber and four-chamber images.Additionally,
the dataset also provides time instances of the end-
diastolic and end-systolic phases of the cardiac cycle
and has three different image qualities (poor, good, and
medium).All images were obtained using a GE Vivid E95
ultrasound scanner. In this study, only the emergency
department four-cavity images of all the three image
quality levels were selected. The size of the picture was
is not exactly the same, approximately 600 × 700 pixels.
A total of 450 images in total with an adjusted size of
256 × 256 pixels were used.

Ultrasound Nerve: The dataset35 comes from the
Ultrasound Nerve Segmentation competition on the
Kaggle site, involving a collection of nerves called
brachial plexus. It contains 11 143 ultrasound images
with a resolution of 580 × 420 pixels.
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In these three datasets,the original ultrasound images
are collected by means of physical correction. Clinically
acceptable noise levels is involved in the ultrasound
Images, which can be used as experimental data to
ensure the feasibility of the model to a certain extent.
Adding additive Gaussian noise to the original ultra-
sound image can partially simulate the noise in the
ultrasound image, which can be used to control the
noise level of the images in multiple sets of experi-
ments and evaluate the robustness of the proposed
method.The noise-containing image z can be expressed
as

z = g + randn(size(g)) ∗ 𝜎∕100, (10)

where 𝜎 is the noise variable, and randn(size(g)) gen-
erates data with the same dimensions as the original
image g with a mean of 0 and a standard deviation of 1.

We used the mean square error (MSE), peak signal-
to-noise ratio (PSNR),36 and structural similarity index
(SSIM)37 as the evaluation indicators. A smaller MSE,
value reflects a more enhanced image quality. On the
contrary, the larger the PSNR value, the better the image
quality. The SSIM is used to evaluate the similarity of
two images. A value closer to 1, indicates an increase in
the similarity of the two. They are calculated using the
following equations:

MSE = 1
H × W

H∑
i=1

W∑
j=1

‖Fd(i, j) − I(i, j)‖2
2, (11)

where H and W are the height and width of the ultra-
sound image, respectively, Fd is the image after noise
removal, and I is the original image.

PSNR = 20 × log10

(
255√
MSE

)
,

SSIM(Fd, I) =
(2𝜇Fd

𝜇I + c1)(2𝜎Fd
𝜎I + c2)

(𝜇2
Fd

+ 𝜇2
I + c1)(𝜎2

Fd
+ 𝜎2

I + c2)
.

(12)

Here, 𝜇Fd
and 𝜎2

Fd
are the mean and variance of Fd, 𝜇I

and 𝜎2
I are the mean and variance of I, and c1 and c2

are constants.
To rigorously evaluate the performance of ADM-

ExNet against baseline methods, statistical analyses
were conducted to quantify significance and effect sizes.
Statistical significance across multiple comparisons was
assessed using the Friedman test,38 a non-parametric
method suitable for comparing ranked results over three
or more paired groups. Post-hoc analysis with Nemenyi
correction was applied to control the false discovery
rate.39 Effect sizes were calculated using Cohen’s d,40

defined as

TABLE 1 Hyperparameters for ADM-ExNet.

Resolution 256

Diffusion steps 4

EMA 0.999

Batch size 128

learning rate of generator 2e-4

learning rate of discriminator 1e-4

(𝜇1 − 𝜇2)
𝜎pooled

, (13)

where 𝜇1 and 𝜇2 represent the mean values of com-
pared methods,and 𝜎pooled denotes the pooled standard
deviation. Thresholds of 0.2, 0.5, and 0.8 were adopted
to interpret small,medium,and large effects,respectively.
And Table 1 lists the hyperparameters for ADM-ExNet.

To further confirm the effectiveness of our method,
generalization ability evaluation will be conducted on
the Point-of-Care Ultrasound (POCUS) dataset.41

The POCUS dataset was collected in emergency
department settings for rapid assessment of COVID-
19 pneumonia. This dataset comprises lung ultrasound
scans from 267 RT-PCR-confirmed patients, acquired
under clinically urgent conditions. Notably, the images
contain significant noise artifacts (e.g., motion blur, sub-
optimal probe contact) due to real-world emergency
acquisition protocols. A total of 2189 keyframe images
were included, with original resolutions of 800 × 600
pixels. All images were resized to 256 × 256 pixels for
experimental consistency.

For generalization ability evaluation where ground
truth is unavailable, three no-reference metrics
were adopted: Natural Image Quality Evaluator
(NIQE),42 Contrast-to-Noise Ratio (CNR),43 and
Blind/Referenceless Image Spatial Quality Evalu-
ator (BRISQUE).44 The NIQE quantifies naturalness
degradation using spatial domain statistics,where lower
values indicate better perceptual quality. The CNR is
defined as:

CNR =
𝜇ROI − 𝜇background

𝜎background
, (14)

and higher CNR demonstrates improved tissue contrast
preservation. The BRISQUE predicts quality distortions
via natural scene statistics, with lower scores reflecting
fewer artifacts.

3 RESULTS

3.1 Quantitative analysis

We compared ADM-ExNet with seven other methods,
namely,three traditional methods,and four deep learning
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TABLE 2 Comparison of results on the HC18, CAMUS, and Ultrasound Nerve datasets.

𝝈 = 10 𝝈 = 15 𝝈 = 20
Dataset Model MSE ↓ SSIM ↑ PSNR ↑ MSE ↓ SSIM ↑ PSNR ↑ MSE ↓ SSIM ↑ PSNR ↑

HC18 Noise 196.541 0.369 25.358 384.317 0.225 21.379 594.648 0.194 19.795

NLM 42.328‡ 0.438† 30.576‡ 45.137‡ 0.427† 29.375‡ 52.794‡ 0.457† 30.231‡

Bitonic 33.347‡ 0.883‡ 34.977‡ 37.619‡ 0.836‡ 32.751‡ 43.903‡ 0.813‡ 31.837‡

ASWMean 11.674‡ 0.928‡ 36.976‡ 15.473‡ 0.902‡ 34.867‡ 25.390‡ 0.880‡ 33.617‡

RED 22.128‡ 0.925‡ 36.486‡ 27.438‡ 0.889‡ 34.219‡ 37.307‡ 0.865‡ 32.918‡

RDN10 11.206‡ 0.931‡ 37.658‡ 15.024‡ 0.911‡ 35.089‡ 24.903‡ 0.890‡ 34.152‡

RED-SENet 11.268‡ 0.929‡ 37.470‡ 15.127‡ 0.907‡ 35.132‡ 24.931‡ 0.889‡ 34.027‡

GAN-RW 11.187‡ 0.934‡ 37.755‡ 14.937‡ 0.912‡ 35.157‡ 24.597‡ 0.893‡ 34.224‡

ADM-ExNet 11.037‡## 0.941‡## 37.816‡## 14.792‡## 0.916‡## 35.671‡## 24.373‡## 0.902‡## 34.367‡#

CAMUS Noise 217.107 0.499 18.113 441.218 0.368 15.394 627.891 0.324 12.348

NLM 59.174‡ 0.522† 24.813‡ 71.970‡ 0.497† 22.176‡ 84.246‡ 0.387† 20.097‡

Bitonic 47.860‡ 0.761‡ 30.594‡ 64.347‡ 0.718‡ 29.037‡ 73.549‡ 0.697‡ 27.681‡

ASWMean 25.539‡ 0.924‡ 35.061‡ 40.134‡ 0.908‡ 34.092‡ 50.346‡ 0.792‡ 31.982‡

RED 30.641‡ 0.939‡ 33.415‡ 50.671‡ 0.902‡ 32.540‡ 61.546‡ 0.873‡ 30.637‡

RDN10 25.012‡ 0.943‡ 36.306‡ 39.910‡ 0.912‡ 34.255‡ 50.171‡ 0.889‡ 32.090‡

RED-SENet 25.098‡ 0.942‡ 36.165‡ 39.795‡ 0.911‡ 34.244‡ 50.087‡ 0.891‡ 32.394‡

GAN-RW 24.834‡ 0.945‡ 36.383‡ 39.825‡ 0.920‡ 34.276‡ 49.698‡ 0.904‡ 32.421‡

ADM-ExNet 24.813‡# 0.942‡# 36.962‡## 39.873‡# 0.931‡# 34.567‡## 49.348‡# 0.912‡# 32.519‡#

Ultrasound
Nerve

Noise 210.482 0.453 24.902 445.222 0.267 20.375 665.259 0.257 18.679

NLM 39.984‡ 0.689† 29.573‡ 46.339‡ 0.593‡ 26.681‡ 62.076‡ 0.438† 27.572‡

Bitonic 27.312‡ 0.807‡ 32.167‡ 35.907‡ 0.671‡ 30.381‡ 43.044‡ 0.753‡ 30.867‡

ASWMean 16.988‡ 0.901‡ 35.880‡ 25.792‡ 0.816‡ 32.816‡ 32.112‡ 0.867‡ 32.013‡

RED 23.576‡ 0.893‡ 35.608‡ 31.109‡ 0.784‡ 31.972‡ 37.070‡ 0.862‡ 31.915‡

RDN10 16.630‡ 0.913‡ 35.967‡ 25.498‡ 0.884‡ 33.944‡ 31.732‡ 0.870‡ 32.983‡

RED-SENet 16.673‡ 0.905‡ 35.889‡ 25.509‡ 0.879‡ 33.953‡ 31.683‡ 0.871‡ 33.007‡

GAN-RW 16.435‡ 0.914‡ 36.001‡ 25.412‡ 0.888‡ 34.067‡ 31.598‡ 0.873‡ 33.160‡

ADM-ExNet 16.567‡ 0.916‡# 35.994‡ 25.401‡# 0.890‡# 34.119 ‡# 31.616‡ 0.881‡# 33.167‡#

Note: Bold values indicate best performance; underlined values indicate second-best. Significance markers: † (p < 0.05 vs. Noise); ‡ (p < 0.01 vs. Noise);# (p < 0.05
vs. GAN-RW);## (p < 0.01 vs. GAN-RW).
Abbreviations: MSE, mean square error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

methods. Nonlocal means (NLM)45 is a classical image
denoising method. Bitonic46 involves linear filtering in
a morphological framework, and ASWMean47 is an
adaptive switching weight mean filter designed for
the denoising of images affected by salt and pep-
per noise. The RED48 approach to image restoration
employs a convolutional encoder-decoder network with
symmetrical skip connections, to facilitate informa-
tion transfer between layers. RDN1049 is a recently
proposed simplified version of the RDN model for super-
resolution and denoising of images. RED-SENet50

represents a channel-adaptive denoising model based
on a residual codec and employs a squeeze-and-
excitation network to achieve its denoising capabilities.
Further, GAN-RW51 is a GAN comprising residual
dense connectivity and a weighted joint loss. The
denoising network is based on the U-Net architectural

framework, comprising four encoder and four decoder
modules.

As shown in Table 2, which summarizes averaged
experimental results across three ultrasound image
datasets, deep learning-based denoising methods sig-
nificantly outperform traditional approaches. Table 3
provides the Cohen’s d effect sizes quantifying the mag-
nitude of performance improvements (PSNR) against
the noise baseline, with thresholds for small (d ≥ 0.2),
medium (d ≥ 0.5), and large (d ≥ 0.8) effects. Among
these, the proposed ADM-ExNet achieves superior
performance across most metrics and datasets, with
statistical significance (FDR-adjusted p < 0.01) in criti-
cal comparisons.Specifically,ADM-ExNet demonstrates
consistent superiority, attaining the highest PSNR and
SSIM values on HC18 (37.816 dB, 0.941 at 𝜎 = 10)
and Ultrasound Nerve (35.994 dB PSNR,0.916 SSIM at
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TABLE 3 Cohen’s d effect sizes for all models on PSNR (vs. Noise Image).

𝝈 = 10 𝝈 = 15 𝝈 = 20
Dataset Model 𝚫PSNR Cohen’s d Effect size 𝚫PSNR Cohen’s d Effect Size 𝚫PSNR Cohen’s d Effect Size

HC18 NLM 5.2 1.0 Large 8.0 1.6 Large 10.4 2.1 Large

Bitonic 9.6 1.9 Large 11.4 2.3 Large 12.0 2.4 Large

ASWMean 11.6 2.3 Large 13.5 2.7 Large 13.8 2.8 Large

RED 11.1 2.2 Large 12.8 2.6 Large 13.1 2.6 Large

RDN10 12.3 2.5 Large 13.7 2.7 Large 14.4 2.9 Large

RED-SENet 12.1 2.4 Large 13.8 2.8 Large 14.4 2.9 Large

GAN-RW 12.4 2.5 Large 13.8 2.8 Large 14.4 2.9 Large

ADM-ExNet 12.5 2.5 Large 14.3 2.9 Large 14.6 2.9 Large

CAMUS NLM 6.7 1.3 Large 8.0 1.6 Large 9.5 1.9 Large

Bitonic 12.5 2.5 Large 14.0 2.8 Large 15.5 3.1 Large

ASWMean 16.9 3.4 Large 16.9 3.4 Large 17.2 3.4 Large

RED 15.3 3.1 Large 15.3 3.1 Large 15.8 3.2 Large

RDN10 18.2 3.6 Large 18.2 3.6 Large 18.5 3.7 Large

RED-SENet 18.1 3.6 Large 18.1 3.6 Large 18.4 3.7 Large

GAN-RW 18.3 3.7 Large 18.3 3.7 Large 18.6 3.7 Large

ADM-ExNet 18.8 3.8 Large 18.8 3.8 Large 18.9 3.8 Large

Ultrasound
nerve

NLM 4.7 0.9 Large 6.3 1.3 Large 7.9 1.6 Large

Bitonic 7.3 1.5 Large 9.0 1.8 Large 11.1 2.2 Large

ASWMean 11.0 2.2 Large 12.0 2.4 Large 12.2 2.4 Large

RED 10.7 2.1 Large 11.6 2.3 Large 12.1 2.4 Large

RDN10 11.2 2.2 Large 12.5 2.5 Large 13.2 2.6 Large

RED-SENet 11.0 2.2 Large 12.4 2.5 Large 13.2 2.6 Large

GAN-RW 11.1 2.2 Large 12.5 2.5 Large 13.3 2.7 Large

ADM-ExNet 11.1 2.2 Large 12.5 2.5 Large 13.4 2.7 Large

Note: Small (d ≥ 0.2), medium (d ≥ 0.5), large (d ≥ 0.8). Abbreviation: PSNR, peak signal-to-noise ratio.

𝜎 = 10), while maintaining competitiveness on CAMUS
(36.962 dB PSNR at 𝜎 = 10, 0.931 SSIM at 𝜎 = 15).
Its robustness against high noise is evident at 𝜎 =
20, where it surpasses baselines by substantial mar-
gins (e.g., HC18: +14.6 dB PSNR over noise; CAMUS:
ΔPSNR = 18.9 dB), supported by Cohen’s d values up
to d = 3.8 (CAMUS, 𝜎 = 20), far exceeding the “Large”
threshold. Notably, ADM-ExNet achieves the largest
effect sizes in all datasets (e.g.,d = 2.9 for HC18 and d =
2.7 for Ultrasound Nerve at 𝜎 = 20),reinforcing its practi-
cal impact. Combined with superior SSIM scores, these
results highlight ADM-ExNet’s ability to balance noise
reduction with structural preservation, solidifying its ver-
satility for clinical ultrasound denoising across diverse
noise levels and anatomical complexities.

3.2 Visual quality improvement

Figure 3 shows the noise removal results of different
types of ultrasound images (enlarged images,which dis-
play more details,are provided).All methods can reduce

the influence of noise to a certain extent. Although
NLM has been proposed in 2013, it can obtain effective
regional smoothing owing to the similarity of nonlocal
regions but relatively vague feature boundaries. Bitonic
and ASWMean preserve more boundary information
than NLM. The four deep learning methods remove
noise, with no noticeable differences. However, the loss
of boundary details appears to be more substantial for
GAN-RW. In terms of visual effects, ASWMean, RDN10,
and ADM-ExNet all provide detailed feature boundaries.

3.3 Ablation studies

Ablation experiments were conducted to evaluate the
addition of the feature extraction network (ExNet) and
the use of the generator and discriminator with the
U-Net structure. Inspired by DDGANs,29 we proposed
our time-dependent G and D convolutional networks
with residual network blocks. D determines whether
Xt−1 is true or false under Xt and t conditions. Conse-
quently,a minibatch standard deviation is added to each
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F IGURE 3 Results obtained using various methods on the HC18, CAMUS and Ultrasound Nerve datasets. To better show noise reduction
and boundary information retention effects, specific areas (enclosed with red rectangles) were enlarged and placed on the right of the images
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TABLE 4 Network structure for G and D, with the number of
channels in each of the remaining network blocks provided on the
right.

1 × 1 conv2d, 128

Residual Block, 128

Residual Block down, 256

Residual Block down, 512

Residual Block down, 512

Residual Block down, 512

minibatch standard layer

Global Sum Pooling

FC layer → scalar

TABLE 5 Results of ablation studies obtained on the CAMUS
dataset.

MSE ↓ PSNR ↑ SSIM ↑

Noise 217.107 18.113 0.499

ADM-ExNet 24.813‡ 36.962‡ 0.942‡

w/o ExNet 27.244† 36.672‡ 0.935‡

Non-UNet G w/o ExNet 27.516† 34.937† 0.924†

Non-UNet D w/o ExNet 27.602† 34.721† 0.917†

Non-Unet G&D w/o ExNet 28.769† 33.855† 0.908†

Non-UNet G w/ ExNet 26.982‡ 35.092‡ 0.937‡

Non-UNet D w/ ExNet 26.543‡ 36.421‡ 0.939‡

Non-Unet G&D w/ ExNet 27.060† 34.232† 0.911†

Note: The values in bold indicate the highest level of statistical significance. † =
p < 0.05 versus Noise; ‡ = p < 0.01 versus Noise.

residual network block. The specific structure is pre-
sented in Table 4. As shown in Table 5, we obtained the
best indicator values by adding the ExNet and modifying
the network structure.

Modifying either the generator or the discriminator
to prossess a U-Net structure increases the evaluation
indicators (compared with the case of the unmodified
network structure). The U-shaped network architecture
offers upsampling and downsampling, as well as the
operation of the feature concatenate. This can better
process image-related information, especially when the
discriminator has a U-Net structure. Conventional dis-
criminators can output only global binary logic (true
or false). The discriminator of the U-Net structure
can distinguish detail information from different levels.
When the generator and discriminator are constructed
using the U-Net structure but ExNet is not added, the
three evaluation indicators slightly decline, indicating the
necessity of the feature extraction network.

Figure 4 shows the visualization results of our abla-
tion experiments. The included subimages show the
post-experimental magnification effect for the images
obtained from the same region of the same original
image. The combination of the GAN and DM provides
improved noise reduction and boundary information

retention. Although the denoised image without ExNet
is relatively smoother, it indicates the loss of a few
structural features.

3.4 Generalization ability evaluation

To address the generalization capability of ADM-ExNet
beyond synthetic noise conditions, additional evaluation
was conducted on the POCUS Lung COVID-19 dataset.
These clinical lung images were acquired without pre-
processing and exhibit significant noise artifacts due
to real-world emergency acquisition protocols. These
raw images were directly fed into the pre-trained ADM-
ExNet without retraining.Using the no-reference metrics
defined in 2.4,Table 6 showed significant improvements:
NIQE decreased by 31.6% (from 5.73 ± 0.82 to 3.92 ±
0.71, p < 0.01), CNR increased by 60.5% (from 1.85 ±
0.34 to 2.97 ± 0.41,p < 0.01), and BRISQUE decreased
by 30.5% (from 38.21 ± 6.17 to 26.54 ± 5.23, p < 0.01).
As shown in Figure 5, the qualitative results indicate that
in lung ultrasound,effective speckle suppression can be
achieved around the pleural line, while the key A-line
texture is retained, without introducing artificial texture.
These findings confirm ADM-ExNet’s capability to gen-
eralize to real-world noise distributions while preserving
diagnostically critical features.

4 DISCUSSION

Medical ultrasound images contain a large amount
of image information. Low image contrast increases
the difficulty of distinguishing the lesion site from the
background thereby increasing the risk of inaccurate
diagnosis.We combined and optimized the DM and GAN
to process three types of ultrasound images with noise
and enhanced noise reduction. As shown in Table 2,
our proposed method, ADM-ExNet, achieves optimal
or second-best performance on the HC18 and Ultra-
sound Nerve datasets across all noise levels (𝜎 = 10,
15, 20). For example, on the HC18 dataset at 𝜎 =
10, ADM-ExNet achieves a PSNR of 37.816 dB and
an SSIM of 0.941, outperforming traditional methods
(e.g.,NLM,Bitonic) and other deep learning approaches
(e.g., GAN-RW, RED-SENet). However, on the CAMUS
dataset, it slightly trails RED-SENet in SSIM at 𝜎 = 10
(0.942 vs.0.945) under low noise conditions,suggesting
potential refinement for subtle cardiac structural details.
Statistical significance and Cohen’s d effect sizes (e.g.,
d = 3.8 at 𝜎 = 20 on CAMUS) confirm its overall
superiority, with performance gaps narrowing as noise
increases (e.g., CAMUS 𝜎 = 20: ADM-ExNet PSNR =
32.519 dB vs.GAN-RW = 32.421 dB).This underscores
ADM-ExNet’s robustness in high-noise scenarios while
highlighting targeted opportunities for optimization in
low-noise cardiac imaging.



HU ET AL. 11 of 13

F IGURE 4 Visualization results of ablation experiments in terms of noise reduction and boundary information retention.

TABLE 6 Results of generalization ability evaluation obtained on
the POCUS dataset.

Metric Original images ADM-ExNet output Improvement

NIQE ↓ 5.73 ± 0.82 3.92 ± 0.71 31.6%(p < 0.01)

CNR ↑ 1.85 ± 0.34 2.97 ± 0.41 60.5%(p < 0.01)

BRISQUE ↓ 38.21 ± 6.17 26.54 ± 5.23 30.5%(p < 0.01)

Note: NIQE, CNR and BRISQUE are presented as mean ±std.
Abbreviations: BRISQUE, blind/referenceless image spatial quality evaluator;
CNR, contrast to-noise ratio; NIQE, natural image quality evaluator.

Our study has two main limitations. First, we focused
on static, rather than dynamic, ultrasound images, limit-
ing the applicability of our method to dynamic imaging
scenarios, such as echocardiography. Dynamic imag-
ing provides critical information about heart function,
particularly for assessing left ventricular torsion—a sen-
sitive indicator of myocardial fiber contraction that is
more informative than ejection fraction. Although our

method shows promise for static images, extending it to
dynamic ultrasound videos remains a challenge, as cur-
rent diffusion models are primarily designed for static
data. Second, we assumed that speckle noise is uni-
formly distributed in ultrasound images, which may not
fully capture the complex interactions between the ultra-
sound probe’s sound field and the received signals. In
future work,we plan to integrate linear sound field calcu-
lations into our model to better simulate real-world noise
conditions and further enhance denoising performance.

It is important to explicitly acknowledge the
exploratory nature of this study. Although our approach
demonstrates technical advancements in noise reduc-
tion, its clinical applicability remains constrained by
the use of synthetic noise and a moderate sample
size. The simulated noise conditions, though useful for
controlled experimentation, may not fully replicate the
variability and complexity of clinical environments. To
translate these methodological innovations into clinical
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F IGURE 5 Visualization results of generalization ability evaluation.

practice, future confirmatory studies must prioritize
real-world validation. This includes utilizing diverse
clinical datasets with naturally occurring noise patterns,
incorporating evaluations by radiologists to assess the
diagnostic relevance of denoised images, and adopting
pre-registered statistical plans to ensure methodological
rigor and reproducibility.

5 CONCLUSIONS

In this study, we developed an ultrasound image denois-
ing method based on the DM and GAN. First, the DM
and GAN were combined to improve the denoising
effect, and the generator and discriminator were mod-
ified to possess the U-Net structure. Subsequently, a
network module for feature extraction was added to
avoid information loss after denoising.The superiority of
our method in ultrasound image denoising was exper-
imentally demonstrated vis-à-vis state-of -the-art deep
learning-based denoising methods. The image denois-
ing capability was considerably improved to retain more
detailed feature information.
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