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ABSTRACT

Pooling is widely used in computer vision to expand the receptive field and enhance semantic understanding
by reducing spatial resolution. However, current mainstream downsampling methods primarily rely on
local spatial aggregation. While they effectively reduce the spatial resolution of feature maps and extract
discriminative features, they are still limited by the constraints of the receptive field and the inadequacy of
single-domain information, making it challenging to effectively capture fine details while suppressing noise.
To address these limitations, we propose a Dual-Domain Downsampling (D3) method, which leverages the
complementarity of spatial and frequency domains. We employ an invertible local two-dimensional Discrete
Cosine Transform (2D DCT) transformation to construct a frequency domain pooling window. In the spatial
domain, we design an Inverted Multiform Attention Modulator (IMAM) that expands the receptive field through
multiform convolutions, while adaptively constructing dynamic frequency weights guided by rich spatial
information. This allows for fine-grained modulation of different frequency components, either amplifying
or attenuating them in different spatial regions, effectively reducing noise while preserving detail. Extensive
experiments on ImageNet-1K, MSCOCO, and complex scene detection datasets across various benchmark
models consistently validate the effectiveness of our approach. On the ImageNet-1K classification task, our
method achieve up to a 1.95% accuracy improvement, with significant performance gains over state-of-the-art
methods on MSCOCO and other challenging detection scenarios. The code will be made publicly available at:
https://github.com/HZAI-ZJNU/D3.

1. Introduction

during downsampling from the perspective of local importance. Build-
ing on this, SoftPool [17] leverages the advantages of parameter-free

In convolutional neural networks (CNNs), spatial pooling layers
reduce spatial resolution by aggregating information from local K x K
regions in the feature maps. This process is pivotal in constructing
multi-scale features, promoting scale invariance, and retaining critical
spatial details, thus playing a key role in enhancing the network’s
overall performance. It is widely used in computer vision tasks that
require multi-level semantic information and discriminative details,
such as image classification [1,2], object detection [3-8] and semantic
segmentation [9-12].

Although traditional pooling methods, such as average pooling [14],
max pooling [15], and strided convolution, are fast and memory-
efficient, they have limitations in extracting discriminative features
and expanding receptive fields. Recently, according to the local impor-
tance theory, LIP [16] analyzes how to enhance discriminative features

softmax to enhance and suppress spatial pixels within each pooling win-
dow. To further expand the receptive field, Self-Attentive Pooling [18]
utilizes multi-head self-attention (MHSA) [19,20] at the patch level to
model long-range dependencies among non-local patches.
Nevertheless, the aforementioned methods only partially overcome
the limitations of traditional pooling [14,15,21-26] in terms of dis-
criminative features and receptive fields. For example, LIP [16] and
SoftPool [17] address the problem solely from the perspective of local
enhancement, Self-Attentive Pooling [18], while modeling the global
receptive field, incurs higher computational costs and memory over-
head due to the quadratic complexity of MHSA with respect to sequence
length, as well as the potential inclusion of non-target background
information. Additionally, these methods only consider the spatial
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Fig. 1. Visualization of frequency domain sparsity characteristics. For the input image
(a), figures (b) and (c) illustrate the low-frequency and high-frequency sparsity ratio
maps obtained from the local 2D DCT [13] transformation. The results indicate that
most regions exhibit significant sparsity characteristics. (d) shows the average sparsity
ratios of high-frequency and low-frequency components across the ImageNet-1K [1]
and MSCOCO [3] benchmarks. The results indicate that high-frequency components
are sparser than low-frequency ones, with non-near-zero high-frequency components
potentially containing both details and noise.

domain information, where distinguishing between details and noise
remains challenging. On one hand, the local windows extended from
traditional pooling have small receptive fields and apply a uniform
pooling strategy across all regions, which hinders the utilization of
larger contextual information to aid the aggregation process. On the
other hand, texture details and noise often have similar pixel values
in the spatial domain. This makes it difficult to distinguish subtle
structural or pattern differences between them when relying solely on
spatial domain processing. Without the introduction of learnable pa-
rameters, such as those in AvgPool [14], MaxPool [15], SoftPool [17],
and ConditionalPool [27], this issue becomes even more challenging.
In this paper, we conduct an in-depth analysis of the respective
advantages of the frequency domain and spatial domain in feature
processing: the frequency domain can generate components of vary-
ing frequency intensities, allowing further decomposition of high-
frequency components such as details and noise, while the spatial
domain, through efficient convolutional networks, not only extracts
detailed features but also provides richer contextual information to
guide the aggregation of different frequency components. Additionally,
as illustrated in Fig. 1(a), (b), and (c), we visualize the frequency
sparsity ratio of each 8 x 8 region in the image, revealing that the
image exhibits sparsity in the frequency domain, closely resembling the
feature maps. Based on these insights, we propose a novel dual-domain
downsampling method (D3). Unlike traditional downsampling, we
redefine the pooling operation from spatial windows to frequency win-
dows, meaning that we can perform local aggregation in the frequency
domain. Specifically, we first decompose the feature map into P x P
local regions and apply an efficient two-dimensional discrete cosine
transform [13] (2D DCT) to each, converting spatial signals into fre-
quency representations to construct frequency-domain windows. Since
the basis functions of DCT are fixed, prior research [28] has shown that
average pooling is proportional to the lowest frequency component of
the 2D DCT. This suggests that average pooling primarily retains low-
frequency information while potentially weakening the model’s ability
to capture discriminative high-frequency features. To further investi-
gate the distribution of different frequency components, we apply 2D
DCT to the ImageNet-1K [1] and MSCOCO [3] benchmarks to com-
pute the average sparsity rates of frequency components. Our results
reveal that both low-frequency and high-frequency components exhibit
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varying degrees of sparsity, as shown in Fig. 1(d). Consequently, we
provide new insights into the design of frequency filters, framing it as
a problem of optimizing the sparsity of different frequency components,
and we design an Inverted Multiform Attention Modulator (IMAM)
with a larger multi-scale receptive field to function as a frequency
filter, adaptively assigning dynamic weights to different frequency com-
ponents using richer contextual information. Finally, the aggregated
modulated frequency components are transformed back into the spatial
domain. By modulating the energy of different frequency components
with richer context, for different local regions, we can either strengthen
the low-frequency components to enlarge the effective receptive field or
enhance high-frequency components to capture fine details. To validate
the effectiveness of our proposed pooling method, we replace the
pooling layers in various backbone networks [2,29-31], as well as in
advanced detectors [4-7] and real-time detectors [8,32-35] with our
D3 module. Extensive experiments on image classification and object
detection tasks demonstrate significant improvements across different
benchmark datasets [1,3,36-39]. Our contributions can be summarized
as follows:

» We analyze the limitations of existing pooling methods that rely
solely on the spatial domain for detail and noise recognition,
explore the advantages of the spatial and frequency domains
in feature extraction, and redefine spatial pooling as frequency
domain pooling guided by the spatial domain.

We propose a dual-domain pooling method (D3), combining the
reversible and efficient 2D DCT with the context-rich Inverted
Multiform Attention Modulator (IMAM). The 2D DCT enables
efficient and reversible transformations between the spatial and
frequency domains for each local region, while IMAM, as a fre-
quency filter, uses depth-wise convolution with multi-scale recep-
tive field to capture the unique semantic patterns of each feature
channel, adaptively modulating the energy of different frequency
components within varying frequency windows.

We validate our pooling method through comprehensive exper-
iments on image classification and object detection, consistently
demonstrating its effectiveness and generality, surpassing existing
state-of-the-art pooling methods with a simple replacement of the
pooling layers in different networks.

2. Related work
2.1. Spatial pooling

Most CNN backbone networks utilize pooling layers for feature ag-
gregation, reducing resolution while enhancing semantic levels. Classic
architectures such as VGG [40], ResNet [2], MobileNets [29,41-43],
CSPNet [44], EfficientNets [45,46], RepVGG [30] and MobileOne [31]
employ average pooling [14], max pooling [15], or strided convo-
lutions with a stride greater than 1 for hierarchical downsampling.
However, these traditional pooling methods are constrained by local
receptive fields, which may not adequately retain useful discriminative
features. Additionally, as the convolutional receptive field increases,
the corresponding pooling stride also grows, potentially leading to
the loss of important information. This phenomenon has prompted
the emergence of several novel approaches in recent years. Stochastic
Pooling [21] and S3Pool [25] retain representative pixel informa-
tion through probability distribution and feature importance, respec-
tively. LIP [16], founded on a locally learnable importance theory,
captures key information, while the parameter-free weighting method
via Softmax [17] has been proven to highlight salient features in image
classification and video action recognition. Additionally, Conditional
Pooling [27] dynamically assesses pixel distribution relative to the
mean, optimizing the aggregation in average pooling [14]. To further
expand receptive fields, Self-Attentive Pooling [18] leverages a global
multi-head self-attention (MHSA) [19] mechanism to model long-range
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Fig. 2. Overview of the proposed Dual-Domain Downsampling Method (D3). "Split" refers to splitting along the channel dimension, "Mean" indicates averaging over local regions,
and "Reshape" denotes feature reorganization. The red dashed box indicates the 2D DCT basis functions and the invertible frequency domain transformation.

dependencies among patches. Despite their demonstrated effectiveness,
these methods are limited by either the lack of semantic richness in
local receptive fields or the introduction of extraneous background in-
formation in global receptive fields. Therefore, in our work, we explore
the practicality and effectiveness of lightweight multi-scale contextual
information from neighboring regions, combined with inductive bias of
locality [47], to extract more relevant feature information.

2.2. Frequency domain representation learning

Traditional signal processing predominantly relies on frequency do-
main analysis for feature extraction and processing [48,49]. Frequency
domain methods have been extensively utilized in deep learning to
assess optimization strategies [50] and the generalization capabili-
ties [51] of deep neural networks. Moreover, these techniques have
been integrated into downstream visual tasks, such as image deblur-
ring [52,53] and image reconstruction [54-56], with the goal of dy-
namically balancing low-frequency and high-frequency components
through various transformation functions [13,57-59], from which noise
is reduced and model performance is improved. Recent study [60]
has also shown that frequency domain awareness can adaptively ad-
just the dilation rate of convolutions. Therefore, our method offers a
dual perspective based on frequency and spatial domains for pooling
methods, leveraging rich contextual information in the spatial domain
to effectively modulate different local frequency components in the
frequency domain, thereby addressing the limitations of single spatial
domain aggregation.

3. Method

The overall structure of the proposed D3 is shown in Fig. 2. In
this section, we begin by revisiting the reversible DCT formula and
explaining the construction of frequency windows. Then, we introduce
frequency sparsity and delve into the implementation details of IMAM,
with a focus on how region-aware contextual information is leveraged
to optimize the energy distribution of different components within the
frequency domain windows. Finally, based on the sequence of local
aggregation and inverse transform, we propose two local aggregation
strategies across different domains.

3.1. Frequency window division based on DCT

In this work, we adopt the reversible DCT [13] as a bridge between
the spatial and frequency domains, primarily due to its simplicity and
efficiency in decomposing spatial signals into different frequency com-
ponents. Specifically, for a given input X € ROH*XW we first divide
it into local windows of size K x K in the spatial domain, denoted as
X)) e REXKXK ‘wherei e {0,1,...,H' —1},j € {0,1,..., W' — 1}, with

w' = %, H' = 2 Based on these spatial windows, we define the local
2D DCT basis functions as follows:

mu(2x + 1 vy +1
C((:g)) = a(u)a(v)cos| (ZK )]cos[ (2)17( )] (@D)]

\/I, ifu=0
\/E, ifu#0

Hear, u and v are represent the frequency components along the H and
W dimensions respectively, and a(-) denotes the normalization factor.
The process of constructing the frequency domain window based on
local 2D DCT can be written as:
K-1K-1
= T X X ®

x=0 y=0

a(u) = (2

where F(” ) € RKXK represents the 2D DCT frequency coefficient ma-
trix correspondmg to the region indexed by (i, j). Accordingly, the 2D
inverse DCT (IDCT) from the frequency domain back to the spatial
domain is expressed as follows:
K-1K-1
X0 =2 X FunC @
u=0 v=0
Notably, in our implementation, as shown in Fig. 2, we apply two
local 1D DCTs and compute their Kronecker product [61] to efficiently
construct the 2D DCT basis functions.

3.2. Spatially-guided frequency filters
Sparsity of local frequency components

Although we employ the efficient 2D DCT to transform each K x K
spatial block into the frequency domain, the basis function coefficients
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(a) (b)

Fig. 3. Illustrations of diverse receptive field shapes for distinct spatial semantic
information. Different colors are used to annotate distinct perceptual shapes.

in DCT are fixed and do not adapt dynamically to the input signal,
resulting in the frequency characteristics being represented as linear
or nearly linear. This constrains the ability to effectively distinguish
between details and noise in different high-frequency components and
lacks adaptability to sparse signals. As shown in Fig. 1, we observe
that real-world images, due to varying semantic richness across spa-
tial regions, should exhibit a highly sparse energy distribution when
transformed from the spatial to the frequency domain. Frequency do-
main sparsity refers to the concentration of energy in a few frequency
components, while other components have very small or near-zero
coefficients. For example, in a smoothly gradient sky, the energy is
mainly concentrated in the low-frequency components, whereas for
dense leaves with complex textures, it is focused in the high-frequency
components. To finely differentiate between details and noise in the
high-frequency component, as well as dynamically adjust the energy
weighting of low-frequency components to better integrate high re-
ceptive field features, we need to enhance the sparsity characteristics
of these components. To this end, we approach frequency filtering
design as a problem of optimizing sparsity across different frequency
components and propose a novel context-aware Inverted Multiform
Attention Modulator (IMAM).

Spatial Information Enhancement (SEM)

As indicated by prior studies [62,63], pooling operations are typi-
cally associated with halving feature resolution and deepening semantic
hierarchies, inevitably leading to some information loss, and may even
induce shifts in gradient flow [34]. Considering that convolution can
be regarded as a selective enhancement process in feature extraction,
and local convolution is often treated as a high-pass filter that amplifies
high-frequency signals [64], we propose a simple residual-based Spatial
Information Enhancement Module (SEM), which first applies a 3 x 3
depthwise convolution to enhance spatial information, followed by
a 1 x 1 regular convolution to facilitate channel interaction. The
enhanced features are then split and fed into IMAM for adaptive modu-
lation of local frequency components. Additionally, we employ residual
connections to enrich the gradient paths. This approach injects finer-
grained information into the subsequent modulation of high-frequency
components by IMAM. The specific process is as follows:

X,1 = X + G(BN(DW ConvCE (X)) ®)
Xy =Xy + GBN(Cont§ (X)) 6

where G, BN, DW Conv and Conv represent GELU, Batch Normal-
ization, depthwise convolution and regular convolution, respectively.
Superscript € denotes the transformation from input channels to
output channels, and subscript 5,5 represents the kernel size.

Inverted multiform attention modulator

Based on the analysis of the sparse characteristics of local frequency
components in Fig. 1, a critical issue arises: how to selectively enhance
the sparsity of different frequency bands for each semantic part X -/,
Traditional frequency filtering methods typically operate on the global
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space, selecting fixed thresholds based on specific tasks [65], adaptively
adjusting frequency responses using simple composite coefficients, or
even utilizing high-cost NAS searches [28] to find the optimal filter. In
contrast, we consider that a larger receptive field offers greater robust-
ness when dealing with local noise, allowing for better decision-making
by leveraging appropriate surrounding regions. To this end, we propose
a novel Inverted Multiform Attention Modulator (IMAM), which utilizes
richer spatial contextual information to generate dynamic weights,
thereby effectively modulating different frequency components. Specif-
ically, we first apply spatial pooling over each K x K local region to
align with its frequency window, expanding the receptive field while
retaining a certain level of low-frequency information, i.e., the primary
semantic content. Subsequently, the features are evenly split along the
channel dimension into two parts: one part captures the information
from spatial pooling, while the other part is processed in the frequency
domain, thereby reducing the computational overhead introduced by
the frequency transformation.

P = X‘(;['j) — p(Xile)) 0]
X, X, = Split(Xp,Z)
8
=X.c.,Xc.. ®
S AE 3o

Here, P(-) denotes the average pooling, and Split(X,, N) represents the

uniform splitting of X, into N equal parts along the channel dimension.
After generating an aggregation point for each region, we center at
pixel P%) and combine depthwise convolutions of varying shapes
and sizes with two pointwise convolutions of size 1x 1 to efficiently
capture contextual information from the appropriate neighborhood of
P@D, Specifically, as shown in Fig. 3, objects with different shapes or
semantics exhibit distinct perceptual regions, which capture both local
and global features of the target. To effectively leverage these diverse
semantic features, we decompose the feature map into multiple non-
overlapping sub-features and apply lightweight depthwise convolutions
with varying receptive fields to extract complementary sub-features
with different semantic patterns. These sub-features are then combined
using a 1 x 1 convolution for dimensionality reduction, followed by a
sigmoid normalization function to generate dynamic weights for the
frequency components. Our IMAM adaptively adjusts the weights of
frequency components based on the semantic information of the input
features. Each sub-feature, depending on its perceptual region and
semantic pattern, contributes differently to the frequency components.
This enables IMAM to precisely enhance or suppress frequency compo-
nents, optimizing their contribution to the relevant semantic contexts.
Additionally, considering that IMAM is designed to learn the frequency
response within a local K x K region, its output channels are set to
K?. However, since K is typically 2 in the pooling layer, this small
number of channels may limit the learning capacity for representation.
Inspired by the inverted residual structure in MobileNetV2 [29], We
set the intermediate channel size of multiform depthwise convolutions
to r x K2, where r is a hyperparameter, in order to enhance the mod-
ulation of local frequency responses. This process can be written as
follows:

Xy = GBN(Conv<; (X)) ©)
X1 X 1. X 3. X g = Split(X,.. 4) 10)
= X;g,;anzzg,:vXZg:Sg,:’Xk:.I
X', = R(IDW Conv; 5 (X 11)) an
X, = R(DWConui;iP e X52)) a2)
Xy = RODW Conti 5, | (X3) a3)
Xiy = R(DW Convi® |\ (X y4) a4
X, = Concat(X.'“,X}z,X’ﬁ,X}Z‘) as
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=G(GN4 (X)) (16)
Attn = 5(Conv: K=K (X)) a”n

where o(-) represents the Sigmoid normalization, R denotes the ReLU
activation function, and GN, indicates Group Normalization with 4
groups. ,_, representing a dilation rate of 2 for the dilated convolu-
tion [66], with the default value being 1 if not specified. The afore-
mentioned K, x K, and r are hyperparameters of IMAM. Their value
selection and analysis will be thoroughly discussed in the ablation
studies in Tables 8 and 9. This dynamic frequency weighting gener-
ation method, guided by spatial domain contextual information, en-
hances the network’s fine-grained responsiveness to different frequency
components.

Local aggregation strategies across different domains

After completing the dimension-preserving 2D DCT transformation
from spatial to frequency domain, IMAM generates dynamic weights
for different frequency components by leveraging the rich contextual
spatial awareness. Subsequently, local feature aggregation is applied
to fully exploit the varying energy intensities across frequency compo-
nents. Notably, the 2D IDCT is also dimension-preserving, meaning that
a K x K frequency domain window remains K x K when transformed
back into the spatial domain. Based on this property, we propose two
local aggregation strategies, one in the frequency domain and the other
in the spatial domain. Specifically, for frequency domain aggregation,
as shown in Fig. 2, we first compute the weighted sum of frequency

components in each frequency window, and then reconstruct it into a
()

new frequency representation F, - as follows:
R = Aun) x FD) as)
sum(F, ) if(u,v)=(0,0)
FZEIMJU))(X V)= (u,0) (19)
0, otherwise

Here, sum(-) represents the weighted summation of frequency com-
ponents within the K x K frequency domain window, and F2EZ,13)(X7 y)
denotes the coefficient at position (x, y) in the DCT coefficient matrix
indexed by (i, /), functioning as a low-frequency filter, where x,y €
{0,1,...,K — 1}. In Eq. (19), the weighted sum of Fl(’”) is reassigned
to the lowest frequency component, while all other components are set
to zero. Next, we apply the IDCT to FZE' J )), and take the average as the
final pooling output for the local window. The process can be written
as follows:

K-1K-1
X =73 T A @
u=0 v=0

For spatial domain aggregation, the frequency components FIE;JI))
modulated by IMAM are first inverse transformed back to the spatial
domain, followed by averaging to obtain the aggregated result.

K-1K-1
XD =Y, 3 R e
u=0 v=0

Finally, the output of the S3 module is expressed as

Output = Concat(X,, X,,) (22)

4. Experiments
4.1. Experiments settings

Datasets

We validate the effectiveness of our method across four visual tasks.
For the image classification, we select the widely used ImageNet-1K [1]
dataset. In the object detection, we employ several challenging detec-
tion datasets, including MSCOCO [3], Pascal VOC [38], VisDrone [37],
ExDark [36], and HazyDet [39]. The specific details of the dataset are
presented in Table 2.

Neurocomputing 625 (2025) 129507

‘ PreBlock :

Fig. 4. Illustration of the generalized hierarchical structure with pooling method. The
structures depicted by gray dashed lines are conditionally included, indicating the
optional existence of residual branches. When these branches are present, pooling
layers are likewise incorporated within them. PreBlock and PostBlock indicate optional
operations, such as convolution for channel scaling transformations.

Metrics

We use Top-1 and Top-5 metrics to measure image classification,
Average Precision (AP) to evaluate object detection, and report Pa-
rameter Count (Params) and Floating Point Operations Per Second
(FLOPs).

Implement details

To validate that our method contributes to enhancing the represen-
tational capacity of the model, we select four mainstream backbone
networks based on CNN architecture and conduct a quantitative com-
parison of different pooling methods based on them. We maintain the
same configurations for ResNet [2], MobileNetV2 [29], RepVGG [30],
and MobileOne [31] as presented in their original papers [2,29-31].
We uniformly replace all pooling layers with a stride greater than 1,
except for the first pooling layer in the stem layer. It is worth noting
that, to ensure fairness, we apply the replacement method shown in
Fig. 4 for all pooling layers. For network structures that include residual
branches with a stride greater than 1, such as ResNet [2], we also apply
the proposed pooling method for replacement.

To evaluate the advantages of our pooling method in dense detec-
tion tasks, we explore its integration into various detectors, including
the two-stage detectors Faster R-CNN [5] and Cascade R-CNN [4],
the one-stage detector TOOD [67], the latest real-time YOLO series
detectors [8,32-35], and the improved DINO [6] and DDQ [7] based
on DETR [68]. For the MSCOCO [3] dataset, we follow their respective
hyperparameter settings [4-7,67] and fine-tune the pre-trained models
for 12 epochs (1x schedule) on object detection. For the real-time
YOLO series detectors, we select representative datasets focusing on
low-light [36] and small object surveillance [37] scenarios. We train
the models from scratch for 300 epochs, using a batch size of 16 and
a learning rate of 0.01, with the remaining hyperparameters and data
augmentation settings following the default configurations of the YOLO
series [8,32-35].

We train the above models using 8 NVIDIA 2080 Ti GPUs with the
MMPretrain [69], MMDetection [70], and Ultralytics [8] toolboxs.

4.2. Main results

In this section, we first evaluate the effectiveness of our method
in feature extraction using standard image classification benchmarks.
Next, We report the detection results fine-tuned on the MSCOCO [3]
dataset using advanced detectors. Finally, we integrate the proposed D3
module into the mainstream YOLO series real-time detectors to further
demonstrate its generalization ability in complex scenarios, such as
low-light and small-object surveillance.
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Table 1
Comparison of our proposed D3 with other state-of-the-art pooling across multiple benchmark models at a 224 x 224 resolution on the ImageNet-1K validation set [1].
% prop! % g P 8
Backbone Pooling Params (M) FLOPs (G) Top-1 (%) Top-5 (%)
Original (MaxPool + Strided Conv) 25.56 4.11 76.44 93.27
StochasticPool 22.46 3.77 76.27 93.01
L, 22.46 3.76 76.38 93.20
MixedPool 22.46 3.76 76.40 93.28
WaveletPool 22.46 3.77 76.44 93.31
ResNet-50 GaussianPool 25.07 3.77 76.61 93.27
S3Pool 22.46 4.24 76.85 93.36
ConditionalPool 22.46 3.76 76.89 93.32
SoftPool 22.46 3.76 77.06 93.38
LDW-Pool 26.72 4.55 77.10 93.31
LIP 23.86 5.34 77.25 93.50
D3 (Ours) 24.66 4.70 77.72 93.74
Original (MaxPool + Strided Conv) 44.55 7.83 77.76 93.81
ConditionalPool 41.45 7.49 77.81 93.83
ResNet-101 SoftPool 41.45 7.49 78.01 93.92
LIP 42.86 9.06 78.13 93.99
D3 (Ours) 43.65 8.42 78.58 94.17
Original (Strided Conv) 3.51 0.31 71.88 90.28
GaussianPool 4.01 0.31 72.15 90.35
LIP 3.51 0.34 72.39 90.49
MobileNetV2-1.0 ConditionalPool 3.49 0.31 72.40 90.55
SoftPool 3.49 0.31 72.44 90.60
SAPool 3.86 0.96 72.74 91.03
D3 (Ours) 3.94 0.64 73.20 91.30
Original (Strided Conv) 14.09 2.64 74.16 91.63
ConditionalPool 12.46 2.51 74.66 91.98
RepVGG-Al SoftPool 12.46 2.51 74.98 92.14
LIP 15.82 4.38 75.49 92.55
D3 (Ours) 14.27 3.03 76.11 92.98
. Original (Strided Conv) 2.08 0.27 71.34 89.88
MobileOne-50 D3 (Ours) 2.19 0.36 73.08 91.01
. Original (Strided Conv) 10.08 1.89 78.01 93.78
MobileOne-53 D3 (Ours) 10.84 2.23 78.89 94.21
Table 2 process to enhance feature extraction capabilities. Additionally, D3
Datasets used in our work. demonstrates strong performance on MobileOne-SO with a 1.74% im-
Name train val test category provement and even achieves a 0.88% gain over Strided Convolution
ImageNet-1K 1281167 50000 100000 1000 on the larger MobileOne-S3.
MSCOCO 2017 118287 5000 40670 80
VOC 07+12 16551 4952 - 20
VisDrone2019-DET 6471 548 1610 10 Pretrained-based object detection
ExDark 4712 1178 1473 12 To validate the effectiveness of D3 in detail-intensive detection
HazyDet 8000 1000 2000 3

Standard image classification

As shown in Table 1, we compare the proposed D3 with several ex-
isting pooling methods, including Max Pooling (MaxPool) [15], Strided
Convolution (Strided Conv), Stochastic Pooling (StochasticPool) [21],
Learned-norm Pooling (Lp) [71], Mixed Pooling (MixedPool) [22],
Gaussian-based Pooling (GaussianPool) [72], S3Pool [25], Local
Importance-based Pooling (LIP) [16], SoftPool [17], Self-attentive Pool-
ing (SAPool) [18], and Conditional Pooling (ConditionalPool) [27].
On the widely-used ImageNet-1K classification dataset, replacing tra-
ditional pooling layers (stride > 1) with our D3 method improved the
Top-1 accuracy by 1.28%, 0.82%, 1.32%, and 1.95% on ResNet-50,
ResNet-101, MobileNetV2-1.0, and RepVGG-A1l, respectively. On the
ResNet-50 backbone, D3 outperformed the probabilistically
importance-based StochasticPool and S3Pool methods by 1.45% and
0.87%, respectively. It also outperformed wavelet-based pooling meth-
ods, including WaveletPool [73] and LDW-Pool [74]. When applied to
MobileNetV2-1.0 and RepVGG-Al, D3 demonstrates significant advan-
tages over several state-of-the-art methods, particularly outperforming
parameter-free poolings such as SoftPool (+0.76% and +1.13%) and
ConditionalPool (+0.80% and +1.45%). Our results further under-
score the necessity of incorporating convolutions within the pooling

and its adaptability across different detectors, we select two two-stage
detectors and two recently improved DETR-based detectors, using the
ResNet-50 backbone pretrained on ImageNet-1K for fine-tuning. As
shown in Table 3, our D3 improves the performance of Cascade R-CNN
based on ResNet-50 and ResNet-101 by 1.4% and 1.0%, respectively,
over the combination of MaxPool and Strided Conv. In detectors based
on DINO-4scale [6] and DDQ-4scale [7], D3 also achieves notable im-
provements of 0.5% and 0.7%, respectively. This further demonstrates
the effectiveness of our method in object detection.

Scratch-based real-time object detection

Real-time object detectors are crucial for security surveillance [75]
and autonomous driving [76] applications. We further evaluate the
performance of the proposed D3 on YOLOv7 ~ YOLOv10 [32-35], as
well as lastest YOLO11 [8], within low-light, small-object surveillance
scenarios, as shown in Table 4. Replacing all pooling layers with the
proposed D3 (including PAFPN [77] neck layers), except for the first
layer with stride > 1, improves detection accuracy by 1.0% to 2.6% on
the Pascal VOC benchmark, 0.5% to 1.4% on the VisDrone dataset, and
0.7% to 4.1% in ExDark low-light scenarios. Furthermore, compared to
the original structures across multiple models, the proposed method
reduces the parameter count with only a minor increase in FLOPs,
effectively demonstrating its lightweight efficacy.
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Table 3
Performance comparison of various pooling methods for object detection on MSCOCO val2017 [3], using detectors like Faster R-CNN [5], Cascade R-CNN [4], TOOD [67], DINO
[6], and DDQ [7]. All models were fine-tuned under the 1x schedule.

Detector Pooling Backbone Type Params (M) AP (%) APy, (%) AP;5 (%) APg (%) APy, (%) AP, (%)
MaxPool + Strided Conv ResNet-50 Two-stage 41.8 37.4 58.3 40.8 21.6 41.0 48.1
ConditionalPool ResNet-50 Two-stage 38.7 37.5 58.5 40.8 21.8 41.2 48.4
Faster R-CNN SoftPool ResNet-50 Two-stage 38.7 37.7 58.8 41.1 21.7 41.5 48.4
LIP ResNet-50 Two-stage 40.1 38.2 59.0 41.4 22.6 42.1 48.9
D3 (Ours) ResNet-50 Two-stage 40.9 38.9 60.1 42.2 23.7 42.9 49.2
MaxPool + Strided Conv ResNet-50 Two-stage 69.4 40.1 58.6 43.4 22.6 43.5 51.4
ConditionalPool ResNet-50 Two-stage 66.3 40.4 58.7 43.7 22.6 43.9 52.0
SoftPool ResNet-50 Two-stage 66.3 40.5 59.1 43.8 22.8 44.0 51.9
LIP ResNet-50 Two-stage 67.7 40.9 59.7 44.1 23.3 44.7 52.2
Cascade R-CNN D3 (Ours) ResNet-50 Two-stage 68.5 41.5 60.4 45.3 24.6 45.0 53.0
MaxPool + Strided Conv ResNet-101 Two-stage 88.4 42.3 60.8 46.3 24.8 46.1 55.3
ConditionalPool ResNet-101 Two-stage 85.3 421 60.8 46.2 24.7 46.5 55.6
SoftPool ResNet-101 Two-stage 85.3 42.6 61.1 46.7 25.1 46.5 55.8
LIP ResNet-101 Two-stage 86.7 43.0 61.7 47.0 25.2 46.6 56.0
D3 (Ours) ResNet-101 Two-stage 87.5 43.3 62.1 47.5 25.2 47.0 56.3
MaxPool + Strided Conv ResNet-50 One-stage 32.2 42.4 59.5 46.1 25.1 45.5 55.5
ConditionalPool ResNet-50 One-stage 29.1 42.4 59.3 46.3 249 45.5 56.0
TOOD SoftPool ResNet-50 One-stage 29.1 42.8 59.9 47.0 25.3 45.8 56.1
LIP ResNet-50 One-stage 30.5 42.9 60.3 47.2 25.5 46.3 56.1
D3 (Ours) ResNet-50 One-stage 31.3 43.3 60.9 47.1 25.3 47.0 56.3
MaxPool + Strided Conv ResNet-50 End-to-end 47.7 48.8 66.1 53.3 31.9 51.9 62.6
ConditionalPool ResNet-50 End-to-end 44.6 48.6 65.9 53.3 31.5 52.0 62.5
DINO-4scale SoftPool ResNet-50 End-to-end 44.6 48.8 66.2 53.5 31.8 52.2 62.9
LIP ResNet-50 End-to-end 46.0 49.0 66.2 53.7 31.9 52.4 63.0
D3 (Ours) ResNet-50 End-to-end 46.8 49.3 67.0 53.7 32.2 52.8 63.4
MaxPool + Strided Conv ResNet-50 End-to-end 47.5 51.1 68.2 56.5 34.2 54.5 65.0
ConditionalPool ResNet-50 End-to-end 44.4 51.0 68.3 56.6 34.0 55.0 65.1
DDQ-4scale SoftPool ResNet-50 End-to-end 44.4 51.3 68.3 56.7 34.4 54.8 65.4
LIP ResNet-50 End-to-end 46.8 51.5 68.6 56.8 34.5 55.0 65.7
D3 (Ours) ResNet-50 End-to-end 46.6 51.8 69.0 57.1 34.7 55.4 66.0
Table 4
Comparison of different pooling methods in complex scenes [36-38], conducted using the latest real-time detectors [8,32-35]. All models were trained from scratch for 300 epochs.
Detector Pooling VOC 07+12 [38] VisDrone2019 [37] ExDark [36] Latency
Params (M) FLOPs (G) AP (%) Params (M) FLOPs (G) AP (%) Params (M) FLOPs (G) AP (%) (ms)
Original (Strided Conv) 6.1 13.3 54.6 6.0 13.3 18.5 6.0 13.3 38.2 4.4
SoftPool 5.7 12.6 55.8 5.7 12.6 19.1 5.7 12.6 40.8 4.8
YOLOV7-tiny LIP 7.3 29.7 56.2 7.3 29.7 19.3 7.3 29.7 41.4 6.2
SAPool 7.0 16.6 56.4 7.0 16.6 19.3 7.0 16.6 41.7 12.5
D3 (Ours) 5.9 15.1 57.2 5.9 15.0 19.9 5.9 15.0 42.3 6.8
Original (Strided Conv) 3.0 8.2 59.4 3.0 8.2 19.5 3.0 8.2 43.1 3.9
SoftPool 2.5 7.5 60.1 2.5 7.5 19.6 2.5 7.5 43.0 4.2
YOLOV8-n LIP 3.5 16.0 60.6 3.4 16.0 19.8 3.5 16.0 43.5 5.4
SAPool 3.6 9.5 60.8 3.6 9.4 19.9 3.6 9.4 43.1 11.8
D3 (Ours) 2.6 8.9 61.3 2.6 8.8 20.0 2.6 8.9 44.1 5.9
Original (AConv) 2.0 7.9 61.4 2.0 7.9 19.7 2.0 7.9 43.3 9.8
SoftPool 1.8 7.4 61.7 1.8 7.4 19.7 1.8 7.4 43.4 10.0
YOLOV9-t SAPool 2.3 8.8 61.8 2.3 8.8 20.0 2.3 8.8 43.4 17.2
LIP 2.2 13.5 62.2 2.2 13.5 20.4 2.2 13.5 43.5 11.5
D3 (Ours) 1.8 8.5 62.8 1.8 8.4 21.0 1.8 8.4 44.1 11.9
Original (SCDown) 2.3 6.7 60.6 2.3 6.7 19.3 2.3 6.7 42.6 5.7
GaussianPool 2.4 6.5 58.9 2.4 6.5 19.0 2.4 6.5 42.1 7.2
YOLOV10-n ConditionalPool 2.2 6.3 60.5 2.2 6.3 19.3 2.2 6.3 42.7 6.8
SoftPool 2.2 6.3 61.0 2.2 6.3 19.5 2.2 6.3 42.9 6.3
D3 (Ours) 2.3 7.6 62.0 2.3 7.6 20.1 2.3 7.6 43.3 7.5
Original (Strided Conv) 2.6 6.5 60.5 2.6 6.5 19.3 2.6 6.5 42.9 4.9
GaussianPool 2.1 5.1 60.0 21 5.1 19.1 21 5.1 42.2 6.6
YOLO11-n ConditionalPool 2.0 5.0 60.3 2.0 5.0 19.2 2.0 5.0 42.6 6.2
SoftPool 2.0 5.0 60.6 2.0 5.0 19.2 2.0 5.0 43.3 5.2
D3 (Ours) 21 6.4 61.5 21 6.4 19.8 21 6.4 44.1 7.1
4.3. Ablation study Pooling layer replacement across depths
From the Top-1 and Top-5 results in Table 6, along with the
To gain a deeper understanding of how D3 impacts model perfor- changes in parameters and FLOPs, we observe that as the depth of D3
mance across multiple aspects, we conduct a comprehensive ablation pooling layer replacements increases, accuracy improves correspond-
study on each component of D3 using the ResNet-50 [2] architecture. ingly, parameters decrease, and FLOPs slightly increase. The two most
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Table 5

Comparison of the Params, FLOPS, and AP of different single-stage, two-stage, and end-to-end detectors on the HazyDet [39] dataset.
Detector Backobone Pooling Params (M) FLOPs (G) AP (%)
YOLOX-s CSPDarkNet Strided Conv 9.0 26.8 423
Centernet ResNet-50 MaxPool + Strided Conv 321 191 47.2
TOOD ResNet-50 MaxPool + Strided Conv 32.0 193 51.4
Faster RCNN ResNet-50 MaxPool + Strided Conv 41.4 201.7 48.7
Cascade RCNN ResNet-50 MaxPool + Strided Conv 69.2 230.4 51.6
Conditional DETR ResNet-50 MaxPool + Strided Conv 43.6 94.2 30.5
Deformable DETR ResNet-50 MaxPool + Strided Conv 43.7 192.5 51.9
YOLO11-n CSPDarkNet Strided Conv 2.6 6.5 47.5
YOLO11-n CSPDarkNet D3 (Ours) 2.1 6.4 49.2
YOLO11-1 CSPDarkNet Strided Conv 25.3 87.3 56.2
YOLO11-1 CSPDarkNet D3 (Ours) 18.3 79.3 57.1
YOLO11-x CSPDarkNet Strided Conv 56.8 195.5 58.2
YOLO11-x CSPDarkNet D3 (Ours) 41.0 176.4 58.8

Table 6

Substitution of pooling layers in ResNet-50 [2], with experiments conducted on the
ImageNet-1K validation set [1]. Different pooling layers selected for substitution are
marked with /.

Layer Pooling layers substitution with D3

N I I 11 v \ VI
pool ., v v
stage; v v v v v
stage, v v 4 v
stage; v v v
stage, v v

Top-1 (%) 76.44 76.79 76.49 76.59 76.73 77.36 77.72
Top-5 (%) 93.27 93.29 93.22 93.17 93.25 93.54 93.74

Params (M) 25.56 25.56 25.56 25.52 25.35 24.61 24.66
FLOPs (G) 4.10 4.18 4.11 4.29 4.46 4.62 4.70

Table 7
Ablation studies on varying frequency window sizes using ResNet-50 [2] on the
ImageNet-1K validation set [1].

Frequency window size 2 3 4

Top-1 (%) 77.72 77.25 77.27

Top-5 (%) 93.74 93.52 93.52

Params (M) 24.66 24.78 24.97

FLOPs (G) 4.70 4.79 4.98
Table 8

Ablation studies on different hidden factor r using ResNet-50 [2] on the ImageNet-1K
validation set [1].

Hidden factor r 4 8 16 32

Top-1 (%) 77.38 77.56 77.72 77.50

Top-5 (%) 93.64 93.70 93.74 93.69

Params (M) 24.59 24.61 24.66 24.76

FLOPs (G) 4.68 4.69 4.70 4.73
Table 9

Comparison of performance based on kernel sizes in different stages, conducted on the
ImageNet-1K validation set [1].

Stages kernel size Params (M) FLOPs (G) Top-1 (%) Top-5 (%)
3, 3,33 24.66 4.70 77.72 93.74
@3, 3,5 7) 24.69 4.71 77.41 93.66
7,7,7,7) 24.70 4.73 77.39 93.61
9,9,9, 9 24.73 4.76 77.33 93.61

significant gains, 0.35% and 0.57%, are achieved by replacing max
pooling in the stem and adopting strided convolution in the seman-
tically deepest fourth stage, respectively. The primary reason lies in
the enhanced information richness from multi-domain learnability and
the greater benefit of receptive field enlargement in deeper layers
compared to shallow ones. Compared to single-domain, non-learnable

pooling methods, cooperative learning between frequency and spatial
domains effectively boosts the model’s representational capacity. Ad-
ditionally, deeper layers provide higher levels of semantic abstraction
through the IMAM module’s multiform convolution, receptive field
expansion not only improves the model’s ability to capture broader
features but also enhances its comprehension of high-level semantic
information.

Ablation on frequency window size

Different sizes of frequency windows yield varying levels of fre-
quency response. As shown in Table 7, we conducted ablation studies
on common pooling window sizes, and the results indicate that a
frequency window size of 2 significantly outperforms other sizes in
terms of accuracy, parameter count, and FLOPs. This advantage can be
partly attributed to the fact that odd window sizes involve padding with
irrelevant pixels, which may impact effectiveness. Additionally, while
a stride of 2 with a non-overlapping window size of 2 might suggest
limited coverage, the IMAM module’s integration of multi-scale over-
lapping information effectively mitigates the reduced generalization
to unseen data typically associated with non-overlapping downsam-
pling [25]. The improvement in generalization is further validated by
the complex scene detection results shown in Table 4.

Selection of expansion hidden factor

The number of local frequency components is constrained by the
size of the frequency window. To address this, we introduced an
expansion factor to enhance the model’s ability to learn the weights of
local frequency components. As shown in Table 8, accuracy consistently
improves with an increase in the expansion factor, reaching its peak
performance at an expansion factor of r = 16. However, further
increases in the expansion factor lead to a decline in accuracy. This is
because a small expansion factor may hinder effective feature extrac-
tion, whereas an overly large expansion factor introduces redundant
feature channels, which can interfere with learning critical features and
increase the risk of overfitting.

Kernel size for neighboring spatial area

The size of the neighboring spatial kernel largely determines the
receptive range of D3. A kernel that is too small may fail to effectively
leverage contextual information, limiting the ability to distinguish
between details and noise; conversely, a kernel that is too large may
introduce irrelevant background noise into the local aggregation. As
shown in Table 9, we conducted ablation studies on the convolutional
kernel sizes across four stages. Interestingly, in the pooling process, a
larger convolutional kernel size is not necessarily optimal. For the mul-
tiform convolution in IMAM, kernel sizes are selected from {K,2K,—1}.
Results indicate that both shallow and deep layers achieve optimal per-
formance and minimal computational cost with appropriately chosen
kernel sizes.
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Fig. 5. Heatmap of frequency component weight importance at different pooling layers and locations using the proposed D3 method, with the feature maps for each stage shown
in the lower left corner. The importance is measured using the Sigmoid function, with brighter colors indicating relatively higher importance. (a) generated from YOLO11 [8] and
the ExDark [36] dataset. (b) generated from ResNet-50 [2] and the ImageNet-1K dataset [1].

Table 10
Comparison of the four aggregation strategies in different domains on the ImageNet-1K
validation set [1].

Domain aggregation method  Params (M) FLOPs (G) Top-1 (%) Top-5 (%)
Mean w frequency domain 24.57 4.67 76.93 93.35
Sum w frequency domain 24.57 4.67 76.31 93.15
Learned w frequency domain 24.66 4.70 77.72 93.74
Learned w sptial domain 24.66 4.70 77.41 93.66

Table 11
Performance of different structures in the D3 module on the ImageNet-1K validation
set [1], including ablation studies of proposed SEM and IMAM.

Ablations Params (M) FLOPs (G) Top-1 (%) Top-5 (%)
D3 (baseline) 24.66 4.70 77.72 93.74
sigmoid — softmax 24.66 4.70 77.28 93.55
w/o SEM 22.90 3.84 76.99 93.42
w/o IMAM 24.57 4.66 76.82 93.23

Domain aggregation strategy and single-domain learning

We compared four pooling aggregation methods: two static fre-
quency domain aggregation methods (mean and sum) and two dynam-
ically weighted aggregation methods based on learning across different
domains. As shown in Table 10, the frequency-domain-based dynamic
aggregation method significantly outperforms static aggregation meth-
ods, with an accuracy improvement of 0.79% to 1.39%, and it also
surpasses the spatial aggregation method by 0.31%. This result suggests
that feature aggregation in the frequency domain better preserves
subtle variations in frequency components, while effectively capturing
their excitatory and inhibitory properties. This is because frequency
component coefficients and dynamic frequency weights are more natu-
rally aligned with the frequency domain, allowing for a more accurate
representation of their interactions and variations. We also conducted
ablation studies on the SEM and IMAM modules to evaluate their
feature extraction capabilities in the frequency and spatial domains. As
shown in Table 11, pooling solely in the spatial domain results in a
0.55% increase over traditional strided convolution. Pooling solely in
the frequency domain, without spatial information enhancement, also
outperforms strided convolution by 0.38%. When both domains are
combined, the Top-1 accuracy reaches a peak of 77.72%. Additionally,
replacing the attention normalization function from sigmoid to softmax
significantly decreases accuracy, further indicating the synergistic ef-
fect of multiple frequency components rather than the influence of a
single one.

MaxPool + Strided Conv SoftPool

D3 (Ours)

Fig. 6. Visual comparison of effective receptive fields (ERF) among various pooling
methods. The brightness represents the contribution strength of each region, while
the coverage reflects the size of the ERF. The analysis is based on the ImageNet-1K
validation set [1] and the ResNet-50 [2] model, with four positions randomly selected
for evaluation.

5. Analysis and discussion

We utilize ResNet-50 [2] and YOLO11 [8] as baselines and conduct
an in-depth analysis of the proposed D3.

5.1. Analysis of frequency component weights

As shown in Fig. 5, we visualize the frequency component weights
generated by the IMAM module across four stages. In Fig. 5(a), the
input image size is 640 x 640, with resolutions at the four stages being
160x160, 80 x 80,40x40, and 20 x 20. In contrast, in Fig. 5(b), the
input image size is 224 x 224, and the resolutions at the four stages
are 56x56,28 x 28,14x14, and 7 x 7. For each stage, we display the
weight heatmaps from low-frequency components to high-frequency
components from left to right. We observe that at different stages,
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Ground Truth Strided Conv
Fig. 7. Heatmap visualizations on the HazyDet test set [39] based on YOLO11 [8].
The heatmaps for the shallow layers are generated using the Grad-CAM [78] tool, with
brighter colors indicating higher attention values.
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Fig. 8. Visualized results on the ImageNet-1K validation set [1]. The heatmaps are
generated for layer 4.2 using the Grad-CAM [78] tool. Brighter colors indicate higher
attention values.

the data distribution of weights produced by IMAM varies not only
across different frequency components but also somewhat resembles
the feature maps displayed in the lower left corner, facilitating the
distinction between the main objects and background regions. This is
primarily due to our use of contextual information from the neigh-
borhood of each pixel, which modulates different frequency responses
through spatial information. Specifically, F(0,0) represents the weight
of the lowest frequency component, and across all stages, the model
significantly enhances important targets, with this weight being the
highest among all components. This further emphasizes the importance
of low-frequency information throughout the feature extraction pro-
cess. Additionally, high-frequency components contain more detailed
information (as shown in Stage 2 of Fig. 5(a), where mid-to-high
frequency components capture the contours of the bicycle and rider,
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assigning them relatively higher weights, and in Stage 2 of Fig. 5(b),
which captures the shark’s eyes and teeth). However, as the frequency
increases, the weights of the components gradually diminish, with some
high-frequency components being suppressed. This suggests that the
model selectively attends to high-frequency components, considering
only a few critical details. In contrast, the mid-frequency and low-
frequency components capture the majority of relevant features. Thus,
the reduction in high-frequency component weights can effectively
minimize feature redundancy and filter out irrelevant noise, reinforcing
the model’s focus on essential information. It is also noteworthy that,
as seen in Fig. 5(b), high-frequency components are less likely to be
modulated as the network progresses to deeper stages. A direct reason
for this is that deeper networks tend to focus on extracting high-
level semantic features, such as object categories or scene information,
rather than detailed textures. Moreover, at deeper stages, the feature
representation becomes more sparse and compact, and the model has
already extracted sufficient edges and textures from mid-frequency
and high-frequency components in the earlier stages. Therefore, high-
frequency information no longer provides significant discriminative
power in deeper layers, leading to a reduction in modulation strength.

5.2. Analysis of effective receptive fields

The importance of expanding the effective receptive field for im-
proving representations [79-83] has been widely demonstrated to be
highly effective. The IMAM employs multiform convolutions to capture
the spatial context of each pixel across different scales. By leveraging
the captured multi-scale contextual information, the model adaptively
generates appropriate weights for various frequency components within
the corresponding regions, effectively modulating both low-frequency
and high-frequency components and optimizing frequency sparsity. As
depicted in Fig. 6, we randomly select four locations for effective
receptive field (ERF) visualization, which clearly demonstrates that D3
method exhibits higher contribution and broader coverage. Although
D3 follows a relatively small local frequency domain window, it lever-
ages the advantages of multiform convolutions to achieve a superior
ERF compared to other state-of-the-art pooling methods.

5.3. Analysis of scalability and adaptability

We applied the proposed D3 method to image classification and
object detection tasks, evaluating its performance on five mainstream
backbone networks of different scales using the large-scale ImageNet-
1K dataset. On the MSCOCO benchmark, D3 outperformed other state-
of-the-art methods in handling fine-grained details across three com-
mon detector architectures (two-stage, single-stage, and end-to-end),
significantly improving detection accuracy. Additionally, we extended
the detection scenarios to noisy, low-light, and UAV perspectives, focus-
ing on small, dense, and distant objects. D3 was also integrated with
mainstream YOLO real-time detectors to assess its performance in real-
time scenarios. Extensive experiments, as shown in Tables 1, 3, 4, and
5, consistently demonstrate that D3 is highly scalable and adaptable
across models and datasets for both classification and detection tasks.

5.4. Analysis of inference latency in real-time detectors

We evaluate the inference latency of D3 against other poolings
methods on real-time detectors (YOLOv7 to YOLO11) using a single
4090 GPU with FP32. The results in Table 4 show that, while D3
introduces some overhead compared to the baseline and parameter-free
methods like SoftPool and ConditionalPool, it requires fewer parame-
ters, less computation, and achieves lower latency than LIP and SAPool.
The additional inference latency of D3 is mainly due to the frequency
domain transformations in local regions and multi-scale attention mod-
ulation. Despite this, the trade-off between accuracy and inference
latency in complex scenarios, except for ImageNet-1K and MSCOCO,
makes D3 a promising choice for real-time applications, effectively
demonstrating the method’s efficacy.
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Fig. 9. Detection results on the MSCOCO validation set [3] using Cascade R-CNN [4] and RestNet-50 [2].

5.5. Analysis of robustness in noisy scenarios

Various types of noise, such as low-light conditions [36], motion
blur, occlusion [37], and haze [39], are commonly encountered in
real-world scenarios, significantly impacting object recognition. In this
work, we evaluate the robustness of the proposed D3 method under
these noisy conditions and validate its effectiveness in distinguishing
between details and noise. The results in Tables 4 and 5 demonstrate
that the proposed D3 outperforms other pooling methods in these
challenging scenarios. We also visualize the heatmaps of D3 and the
baseline on the HazyDet dataset [39] in Fig. 7, highlighting the advan-
tage of D3 in leveraging the synergistic processing of both frequency
and spatial domains to effectively suppress noise while preserving
critical details.

5.6. Visualization of attention maps
Attention mechanisms represent the model’s ability to understand

the target by selectively focusing on important parts and suppress-
ing less relevant background. This strategy is widely recognized as
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an effective way to enhance the model’s overall representation ca-
pacity [20,84,85]. In our work, IMAM serves as an attention-based
frequency modulation mechanism, guiding the adaptive adjustment of
local frequency components through multi-scale spatial contextual in-
formation, thereby improving feature extraction. In Fig. 8, we visualize
the attention maps for different pooling methods. The results indicate
that the D3 method effectively extends attention over a broader area,
enhancing the focus on significant features. This further substantiates
its capability to leverage the advantages of multiform convolutions,
thereby capturing more valuable features through a larger contextual
associations.

5.7. Qualitative results of object detection

We employ Cascade R-CNN and ResNet-50 as baseline models to
compare the proposed D3 with MaxPool, Strided Convolution, LIP, and
SoftPool, and evaluate their detection performance on MSCOCO, as
shown in Fig. 9. Based on the Ground Truth, we can observe that the
D3 method effectively reduces the detection of incorrect objects and
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categories, such as handbags and beach towels on the beach, and is also
able to accurately detect partially occluded objects like bed and bench.
For correctly detected objects, it achieves higher confidence scores and
covers a larger effective area. This further demonstrates the advantages
of proposed method in expanding the receptive field and leveraging the
complementary information from both domains.

6. Limitations

While the proposed D3 method has demonstrated significant advan-
tages in image classification and object detection tasks, and integrates
effectively across various models by directly replacing pooling layers
with a stride > 1, the visual domain encompasses a broader range
of tasks, including instance segmentation, semantic segmentation, 3D
reconstruction, and 3D detection. Future work will aim to explore the
application potential of our pooling method across these diverse visual
tasks.

7. Conclusion

In this paper, we analyze the limitations of current pooling methods
that rely solely on the spatial domain and explore the advantages of
both spatial and frequency domains in handling local features. We
propose viewing the design of frequency filtering as a task of optimizing
the sparsity of different frequency components. By leveraging rich
contextual information from the spatial domain, we guide the dynamic
generation of weights for various frequency components, leading to the
development of the IMAM filter. Additionally, we investigate the tim-
ing sequence of spatial local aggregation and inverse transformation,
proposing two distinct aggregation strategies within different domains.
Extensive experiments demonstrate that our method outperforms other
pooling techniques across multiple visual tasks. We hope this research
advances the application of the integration between frequency and
spatial domains in diverse real-world applications.
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