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Accurate brain tumor detection in magnetic resonance imaging (MRI) is essential for early diagnosis, yet
remains challenging due to the heterogeneous appearance and morphology of tumors. Although deep learning
approaches have shown potential, their clinical applicability is often limited by high computational cost
and restricted generalization capability. To address these issues, this study introduces BTDet, an efficient
and lightweight detection framework that balances performance with computational efficiency. The model
incorporates several design components: Reparameterized C2f GELAN (RCG) backbone combined with a Fast
Spatial Pyramid Pooling Fusion (FSPPF) module to enhance feature extraction and semantic representation; C2f
Squeeze and Excitation (CSE) attention mechanism and General Depthwise Separable Convolution (GSC) block
to improve multi-scale feature fusion; and lightweight dual-head to maintain detection accuracy and inference
speed. On the Br35H brain tumor dataset, BTDet achieves a mAP@50:95 of 0.753, surpassing the baseline by
2.45%, while requiring only 2.26M parameters and 6.0 GFLOPs. The framework also demonstrates strong cross-
domain adaptability, improving accuracy by 5.4% on the LUNA16 lung nodule detection benchmark. These
results indicate that BTDet offers a practical and resource-efficient solution suitable for real-world medical
imaging applications.

1. Introduction tumor detection, there remains a pressing need for further improvement
in diagnostic accuracy, particularly in terms of sensitivity and speci-
Brain tumors represent the most common type of neoplasm affecting

the Central Nervous System (CNS), and their early detection is critical

ficity. These challenges have spurred increasing interest in automated,
Al-driven methods to assist in the accurate and efficient detection of

for improving patient survival rates and overall quality of life [1]. These
tumors are among the most aggressive and life-threatening conditions,
affecting both pediatric and adult populations, and are estimated to
account for approximately 85%-90% of all primary CNS tumors [2].
Currently, Magnetic Resonance Imaging (MRI) serves as the primary
imaging modality for the detection and diagnosis of brain tumors due to
its superior soft tissue contrast and non-invasive nature [3]. However,
MRI scans generate large volumes of high-dimensional data, placing
a significant burden on radiologists who must manually interpret the
images. Given the heterogeneous nature of brain tumors varying in size,
shape, location, and intensity—manual interpretation is not only time-
consuming but also prone to diagnostic inaccuracies and inter-observer
variability. Although modern medical imaging technologies, such as
MRI and Computed Tomography (CT), have substantially advanced
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brain tumors.

With the continuous advancement of medical imaging technology,
the automatic detection and identification of brain tumors have become
particularly critical in clinical diagnosis. Notwithstanding that this task
still faces numerous challenges, including the diverse morphology of
tumors, blurred boundaries, low contrast between tissues, and struc-
tural variations among different patients, all of which pose significant
difficulties for image recognition. Additionally, the high cost of ac-
quiring high-quality annotated data limits the generalization capability
and robustness of traditional methods [4]. In recent years, the intro-
duction of deep learning, particularly Convolutional Neural Networks
(CNNs) [51, has significantly improved the accuracy and automation
of medical image processing. Compared to traditional manual feature
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extraction methods, CNNs can automatically learn high-level features
from large volumes of brain MRI images, enabling more efficient tumor
recognition tasks [6-8]. Nevertheless, current models still face several
challenges in practical applications, such as few-shot learning, poor
interpretability, and inaccurate boundary processing.

Consequently, researchers have proposed various structural opti-
mization strategies to enhance the model’s representational capac-
ity and robustness. Among these, U-Net and its variants (e.g., U-
Net++ [9], Attention U-Net [10], Residual U-Net [11]) have emerged
as mainstream approaches for medical image segmentation. These mod-
els leverage an encoder—decoder architecture to achieve multi-scale
feature fusion, effectively preserving spatial information in images. To
improve the model’s focus on critical regions, attention-based methods
such as Attention U-Net have been widely adopted, significantly en-
hancing segmentation accuracy in tumor regions. In recent years, the
success of Transformer architectures in computer vision has garnered
substantial attention in the field of medical image analysis. Vision
Transformer (ViT) [12] and its variants (e.g., TransUNet [13], Swin-
Unet [14]), which rely on self-attention mechanisms, excel at capturing
long-range dependencies, making them particularly suitable for seg-
menting brain tumors with complex morphology and heterogeneity.
These methods have demonstrated superior performance over tradi-
tional CNN-based models on multiple public datasets, further advancing
the precision of automated diagnosis. Meanwhile, Graph Neural Net-
works (GNNs) [15,16] have also been introduced into brain tumor
analysis tasks, leveraging graph-structured representations to model
relationships between tumors and surrounding tissues, thereby improv-
ing multi-modal information fusion. By representing medical images as
graph structures, GNNs can extract higher-level structural information,
compensating for the limitations of conventional models in modeling
spatial topological relationships.

Developing an advanced approach that simultaneously addresses
accuracy, robustness, lightweight architecture, and transferability is
crucial for establishing efficient and reliable automated brain tumor
detection systems. In this work, we introduce an efficient method for
brain tumor detection, referred to as BTDet, which aims to improve
detection performance through a lightweight model pattern and feature
aggregation techniques. To facilitate effective feature extraction from
MRI images of brain tumor, we designed Reparameterized C2f GELAN
(RCG) block, which serves as the foundational backbone characterized
with lightweight paradigm. Furthermore, Fast Spatial Pyramid Pool-
ing Fusion (FSPPF) module is developed to enhance the exploration
of semantic information by multi-consecutive pooling and identity
connections. The model’s neck integrates C2f Squeeze and Excitation
(CSE) attention and General Depthwise Separable Convolution (GSC) to
reinforce the multi-scale feature fusion. Additionally, we demonstrated
that the implementation of two lightweight detection heads are capable
to achieve superior detection performance. The main contributions of
this work are concluded as follows,

» We propose BTDet, a highly efficient brain tumor detector which
achieves excellent detection performance while maintaining a
favorable accuracy-model size trade-off.

The BTDet architecture incorporates several key technical con-
tributions: the RCG and FSPPF blocks for robust basic feature
extraction; the CSE and GSC modules for advanced multi-scale
feature integration; and a newly designed lightweight detection
head that optimizes the trade-off between accuracy and inference
efficiency.

BTDet achieves state-of-the-art performance in brain tumor de-
tection among mainstream algorithms, realizing a 2.45% increase
in mAP@50:95 while maintaining a super-lightweight framework
with only 2.26M parameters and 6 GFLOPs. Furthermore, ex-
periments on the LUNA16 lung nodule dataset demonstrate its
strong generalizability, where BTDet attains a 5.4% improvement
in mAP@50:95 compared to the baseline. These consistent results
across different medical imaging tasks underscore the robustness
and broad applicability of the proposed detector.
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2. Related works
2.1. Lightweight and real-time object detectors

Lightweight object detection algorithms are designed for deploy-
ment in resource-constrained environments, where computational
power and memory are limited [17]. These models aim to reduce
complexity and computational load while maintaining acceptable de-
tection accuracy, enabling real-time performance on low-power de-
vices. Common strategies include using efficient backbone networks
like MobileNet [18], ShuffleNet [19], and FasterNet [20], which lever-
age techniques such as depthwise separable convolutions, pointwise
operations, and channel blending. Real-time object detection focuses
on rapidly identifying and localizing multiple targets within incoming
image or video streams [21]. Its core advantage lies in high-speed
processing, making it suitable for latency-sensitive applications. Rep-
resentative algorithms include YOLO [22], which uses a single-stage
pipeline to predict class and location simultaneously, drastically reduc-
ing inference time. SSD [23] detects objects at multiple feature map
layers for better multi-scale detection, while RetinaNet [24] incorpo-
rates Focal Loss to address class imbalance, enhancing small object
detection without compromising speed.

2.2. Brain tumor medical image processing

Brain tumors exhibit considerable heterogeneity in size, shape and
location, making their detection and characterization particularly chal-
lenging [25]. As a result, extensive research has been conducted to
improve the accuracy and robustness of brain tumor detection in med-
ical imaging. For instance, RCS-YOLO [26] enhances detection perfor-
mance by integrating reparameterized convolution with channel shuffle
and a novel cascade feature fusion strategy. Alhussainan et al. [27]
evaluated the robustness of various mainstream YOLO architectures
for brain tumor detection, demonstrating their effectiveness in medical
scenarios. Razzaghi et al. [28] proposed a multimodal deep transfer
learning framework that incorporates domain adaptation techniques to
bridge the distribution gap between training and testing MRI datasets,
thereby improving detection performance.

In parallel, brain tumor segmentation plays a vital role in highlight-
ing structural and pathological alterations in medical images, which
is critical for accurate diagnosis, treatment planning, disease moni-
toring, and clinical research. EA-DFFTU-Net [8] addresses this task
by introducing consecutive feature enhancement modules within a U-
Net architecture to refine segmentation accuracy. Similarly, the Multi-
scale Fractal Feature Network (MFFN) [7] enhances sensitivity and
classification accuracy during segmentation by leveraging fractal fea-
tures at multiple scales. Furthermore, Karthik et al. [29] proposed a
unified framework combining attention-augmented convolutional net-
works, random forest classifiers, and U-Net models to simultaneously
achieve high-accuracy multi-class classification and segmentation of
brain tumors in MRI images.

Our proposed BTDet distinguishes itself by integrating a task-specific
architectural design tailored for brain tumor detection in MRI images.
Unlike general-purpose detection architectures, BTDet is optimized
end-to-end for the biomedical context, achieving superior performance
in both recall and precision, setting a new benchmark for clinical-grade
tumor detection systems.

2.3. Transformer-based methods for brain tumor recognition

Transformer-based methods have achieved remarkable progress in
brain tumor recognition, emerging as a significant research direction
in medical image analysis. Compared to conventional CNN models,
Transformers effectively capture global contextual information through
self-attention mechanisms, addressing CNN’s limitations in modeling
long-range dependencies and identifying complex tumor boundaries.
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Fig. 1. Overview architecture of our proposed BTDet networks. RCG and FSPPF serve for high-efficiency feature exploration. CSE and GSC collaborate together
for improving multi-scale feature fusion. Two lightweight detection heads for final brain tumor detection.

TransBTS [30] integrates CNN’s local feature extraction with Trans-
former’s global modeling, excelling in feature fusion from multimodal
MRI data. UNETR [31] employs a pure Transformer encoder for end-
to-end segmentation, eliminating manual feature engineering. Beyond
segmentation, recent efforts such as Swin-Unet [14] and TransMed [32]
have adapted hierarchical transformers or hybrid architectures to bet-
ter model multi-scale tumor structures. However, a major challenge
remains: transformers typically require large amounts of annotated data
and high computational resources, which are not always feasible in
medical settings. Furthermore, lightweight Transformer architectures,
and transfer learning strategies have improved model generalizability
and clinical applicability, highlighting Transformers’ promising poten-
tial for automated brain tumor analysis. Compared to Transformer-
based models, BTDet achieves state-of-the-art detection accuracy with
a significantly more compact fully convolutional network architecture
while maintaining excellent model scalability, thereby meeting the
requirements for real-time brain tumor detection.

3. Methods
3.1. Overview of BTDet network

In this work, we employ the leading one-stage object detector
YOLOVS, as our baseline for its optimal detection accuracy and infer-
ence speed. The YOLOV8 algorithm features five model categories: N,
S, M, L, and X. We choose the smallest model, YOLOV8-N, for its satis-
factory parameters and competitive results. The overall architecture of
BTDet is depicted in Fig. 1 and consists of several key components: the
basic convolutional layer, RCG blocks and the FSPPF module, which
collectively serve as the backbone for efficient feature extraction. The
architecture integrates CSE and GSC modules to enhance the fusion of

multi-scale features. Ultimately, two lightweight detection heads are
employed to execute the final classification and localization for brain
tumor.

3.2. Reparameterized efficient aggregation backbone

The development of efficient and lightweight networks is crucial
for achieving rapid, energy efficient and cost effective real-time image
processing. These networks are particularly advantageous for deploy-
ment on resource constrained devices. Therefore, We designed RCG
to realize fast and efficient feature extraction. The consecutive RCG
blocks serve as the foundational backbone of BTDet, as illustrated in
Fig. 3. The architecture of the RCG divides the input features into two
distinct branches: the first branch (cross stage connection) facilitates
the direct flow of information as an identity for concatenation, while
the other (partial branch) comprises the RepGELAN modules. The RCG
blocks are constructed using a parameterized paradigm [33] that en-
hances feature extraction while simultaneously reducing computational
costs. Additionally, the architecture employs the GELAN [34] style to
promote rapid gradient convergence.

The GELAN in Fig. 2 is a multi-branch lightweight architecture with
flexible designed transition towards input data [34], aimed at enhanc-
ing the efficiency of object detection tasks. This architecture is founded
on the basis of the Efficient Layer Aggregation Network (ELAN) [35]
Fig. 2 and the Cross Stage Partial Network (CSPNet [36] 2. In com-
parison to ELAN, GELAN demonstrates the ability to utilize various
computational blocks due to its generalization capabilities. Conversely,
ELAN primarily mitigates gradient loss by minimizing the transition
layer. CSPNet improves the model’s learning capacity through cross-
stage feature fusion, while also alleviating computational bottlenecks
and reducing memory expenses. GELAN effectively strikes a balance
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between lightweight design and high accuracy, making it particularly
well-suited for real-time object detection tasks.

For an input X € RE¥>XW 'where C, H and W denotes the channel,
height and width of X, the whole process of RCG computation can be
expressed by,

Xy Xy = Split(Conv(X)) (@D)]
X, = RepConv(Conv(Xp))
X, = RepConv(X,) @
X, = RepConuv(X,)

X, X, X, =T(X,, X,.X,)

X = Concat[X,, X, X, X, ] 3

RepConv
Train-Time Inference-Time
— 3x3 Conv —
— BN
7 Trainablity + + @ = 3x3 Conv
—+— 1%x1 Conv >
_J Expressivity
I BN Parameter
Merging

Fig. 4. Sketch of RepConv architecture.

where Conv denotes the convolutional operation with kernel size 3 x 3,
Split divides the input data X into two branches equally along chan-
nel, Concat means stacking the all the outputs of multi-branches to-
gether along the channel dimension. T denotes the general convolution
transition.

Reparameterization Convolution (RepConv) is a technique that
transforms a multi-branch convolutional architecture during training
into a single-branch convolutional structure at inference time, aiming
to maintain performance while improving computational efficiency.
The core idea is to merge multiple convolutional kernels and branches
into an equivalent single kernel through structural reparameterization,
shown in Fig. 4. Below is its mathematical formulation,

Multi-Branch Structure During Training. Consider a parallel ar-
chitecture (e.g., RepVGG [33]) with the following branches: Main
Branches: A 3 x 3 convolution with kernel weights W® € RCouxCinx33
and bias b® € R,,,. Identity Branch: A skip connection, equivalent
to 1 x 1 convolution with kernel W) = I (identity matrix) and bias
b (usually zero). Residual Branch: A 1 x 1 convolution with kernel
weights W) € RCu>Cinx! and bias bV € RCu. The output is the sum
of all branches:

Yirain = Conv(x, W, p3)y
+ Conv(x, W, 5Dy
+ Identity(x)

4
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Fig. 6. Schematic diagram of SiLU and ReLU activation Function.

Equivalent Single-Branch Structure at Inference. The multi-
branch structure is merged into a single 3 x 3 convolution: Zero-pad
the 1 x 1 kernel WO to 3 x 3, denoted as W, Represent the identity
mapping as a 1 x 1 identity matrix I, zero-paded to 3 x 3 (denoted as I).
The Kernel Fusion, Bias Fusion and Inference Output are represented
as follows,

Wmerge — W(S) + W(l) + i (5)
s = b(3) + b(l) + bidentity (6)
Vinger = Conv(x, W"erse, pnerse) @

Through this reparameterization, inference requires only a single con-
volutional computation, significantly reducing computational overhead
and enhancing the model’s adaptability in practical deployment scenar-
ios.

3.3. Fast spatial pyramid pooling semantic enhancement

Semantic information is fundamental to achieving a comprehensive
understanding of brain tumor region for its complex representation. It
enables precise differentiation between tumor boundaries and healthy
tissues, which is critical for accurate diagnosis and treatment plan-
ning. This understanding is crucial for attaining a profound level of

image comprehension. To achieve sufficient semantic information fea-
ture extraction in the deep layers, we designed FSPPF block, as is
shown in Fig. 5. Spatial Pyramid Pooling (SPP) [37] is a technique
employed in CNN with different large maxpooling kernels to facilitate
the processing of input images of varying dimensions. This method
enables adaptive processing of inputs of arbitrary sizes by executing
pooling across sub-regions of multiple scales. Spatial Pyramid Pooling
Efficient Layer Aggregation Networks (SPPELAN) builds upon the fast
gradient forward flow established by ELAN, utilizing three consecutive
maxpooling blocks with kernel size of 3 x 3 to facilitate multi-scale
feature processing.

Our FSPPF differs from SPPELAN with regards to kernel size and
information flow path and activation function. Specifically, within the
FSPPF architecture, three hierarchically arranged 5 x 5 max-pooling
layers are strategically cascaded to achieve graduated receptive field
expansion, facilitating the extraction of high-level semantic features
while maintaining spatial coherence in tumor boundary delineation.
Besides, ReLU activation function was employed to replace original
SiLU counterpart inside SPPELAN. ReLU is computationally simpler and
more suitable for vision tasks with single and simple features as shown
in Fig. 6, while the computational complexity of SiLU is high because
of the exponential operations involved, resulting inferior performance
compared with ReLU.

Give the input data X € RO"*H | the calculation process of FSPPF
can be expressed by,

X,, Xy = Split(C BR(X))
Xy, = MP(Xy)
Xy, = M P(M P(M P(X,)))
= CBR(Concat[X;. Xy , Xy, 1)

(8

X

out put

where CBR denote the Convolution layer, BatchNormalization and
ReLU activation function. Spl/it means the input X are divided into
two branches equally along channel dimension, M P is the general
maxpooling operation with fixed kernel size of 5 x 5.

The design of the FSPPF semantic enhancement module enables
the network to perform in-depth analysis of the spatial distribution
characteristics of brain tumor lesions, thereby significantly improv-
ing the model’s semantic understanding of pathological regions. This
multi-scale feature fusion mechanism not only optimizes computational
efficiency but also generates more discriminative feature representa-
tions, providing more precise localization and grading information for
clinical diagnosis.
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3.4. Attention and channel shuffle enhanced feature fusion

The Neck module constitutes an essential architectural component
in modern object detection frameworks, serving as the feature process-
ing bridge between convolutional feature extractors (Backbone) and
task-specific decoders (Head). Its principal function involves strategic
feature aggregation from different pyramidal levels, thereby preserv-
ing both high-level semantic information and low-level spatial details
essential for accurate detection.

We propose an enhanced collaborative fusion framework that syn-
ergistically integrates the CSE with GSC operations for optimized multi-
scale feature fusion. The framework capitalizes on the complemen-
tary characteristics of different feature scales: higher-resolution feature
maps preserve richer spatial details that are crucial for small object
localization, while lower-resolution features contain more discrimina-
tive semantic representations that facilitate robust object classification.
This dual-path architecture enables simultaneous enhancement of both
localization precision and recognition accuracy.

The attention mechanism computes adaptive spatial or channel-wise
weights to prioritize diagnostically significant regions in brain tumor
imaging, this selective feature enhancement improves tumor bound-
ary delineation and pathological feature extraction, particularly for
glioma metastasis differentiation. CSE enhances feature representation
by combining Squeeze and Excitation Attention (SEA) [38] and partial
connection, enabling it to effectively capture complex inter-channel
relationships, shown in Fig. 7. SEA is a channel attention strategy that
enhances the quality of representations generated by neural networks
by explicitly modeling the inter-dependencies among feature channels.
The fundamental concept of the SEA mechanism is to enable the model
to learn how to recalibrate the responses of feature channels based
on global information. This approach enhances the model’s expressive
capacity without a substantial increase in the number of parameters.
For the input X € ROH>*W ' the output of CSE can be formulated as,

X,;.X; = Split(CBR(X))
X, =CSEXy) 9

X, = Concat[X;,X ]
The SEA architecture consists of two main steps: Squeeze and Exci-

tation, which is shown in Fig. 8. For squeeze, this step compresses the
spatial information of each channel into a single value through global
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average pooling to obtain a global representation of each channel, the
input X € RO*HXW which can be represent as,

C/
uC:vC*X:sz*xs 10)
s=1
1 H W
z, = Fg(u,) = TXW ZZuc(i,j) 1n

Il
~.
Il

where u, € R¥*" represents 2D feature map of cth channel. F,,
compresses the spatial dimensions H x W into channel descriptors
z, € R€ through Global Average Pooling (GAP).

Excitation operation employs a fully connected neural network with
nonlinear activation functions to optimize the weights associated with
each channel. Initially, the weights are downscaled through a fully
connected layer, followed by the application of the ReLU activation
function. Subsequently, the weights are upscaled by another fully con-
nected layer, culminating in the extraction of the final weights via a
sigmoid function, which can be defined as,

§ = Fou(2,. W) = 0(W,5(W,2,)) a2

X = Fcae(u,s.) = s.u, 13)

out put

F,, learns the channel dependencies by connection layers. F;.,,
adjusts the channel number depended on the hyper-parameter r. ¢ and
& denote sigmoid function and ReLU activation function.

The structure of GSC block is shown in Fig. 9, which aims to
enhance the efficiency and accuracy of neural networks, particularly in
tasks for small object detection [39]. GSC attains more efficient feature
extraction by integrating the operations of Standard Convolution (SC)
and Depthwise Separable Convolution (DWConv) [40], while also in-
corporating a feature shuffling process for enhancing the representation
of the network by changing the ordering of the feature map channels.

The DWConv shown in Fig. 10, was represents an efficient convo-
lution operation utilized in computer vision, which decomposes the
conventional convolution process into two distinct operations: depth-
wise convolution and pointwise convolution. This decomposition sub-
stantially decreases both the computational load and the number of
parameters within the model.

DWConv offers significant advantages in computer vision and med-
ical image analysis and reduced parameter count enhances robust-
ness on small medical datasets, depthwise convolution focuses on spa-
tial correlations (e.g., tumor boundaries), while pointwise convolu-
tion learns inter-channel semantic relationships (e.g., multi-modal MRI
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Fig. 10. DWConv consists of two sequential steps: depthwise convolution and
pointwise convolution.

fusion). Additionally, DwConv can significantly reduce the computa-
tional parameters of a model, thereby further enhancing its lightweight
characteristics.

The total parameters of a standard convolution can be expressed,

Py =K XKXC;,, xC,, (14

where K is the kernel size of convolution usually with 3 x 3, C;, and
C,,; are the input channel and out channel separately.

The parameters of DWConv can be divided into two steps,

(1) depthwise convolution:

Po=KXKXC;, (15)

(2) pointwise convolution:

Py = 1X1XxCyy X Cppyy (16)

Total parameters:

7)DVI/ConL' = pdw + Ppw

! an
=K"x Cin + Cincout
The parameter reduction ratio can be expressed,
7)DWCm'm 1 1
n= ——— = + — (18)
pxtd Cﬂut K2

According to [39] suggested, we have placed the CSE blocks to
position at the early stage of fusion layers for better results, while the
effective GSC block can be embedded at the head’s entrance. That is
because that shallow networks are saturated with low-level semantic
information, rendering the fusion function of attention modules largely
unnecessary.

The calculation of GSC can be defined as,
Xg,XO = Conv(X)

X¢ = DW Conuv(X,) (19)
X = Fspyypio(Concat[X, X, 1)

out put

where DW Conv means the depthwise separable convolution and
Fipygr1. denotes the channel shuffle operations for facilitating infor-
mation interaction.

The combination CSE and GSC blocks are devoted to ameliorating
the information flow at the bottom of feature pyramid. This pro-
cess not only shortens the transmission path of information fusion,
but also produces fine-grained target patterns for fusing stage net-
work, increasing the feature pyramid architecture’s detection capacity
and generating complementary features knowledge for final detection.
Meanwhile, they also collaborate to facilitate the multi-scale feature
fusion with local and global contextual information, thereby improving
the performance of brain tumor detection.

4. Experiments
4.1. Dataset and settings

To evaluate the proposed BTDet, we employed brain tumor de-
tection Br35H [41], this dataset for brain tumor detection comprises
3000 annotated MRI slices (T1/T2-weighted) with balanced binary
classification (1500 normal vs. 1500 tumor cases), collected from di-
verse clinical sources. Besides, the Br35H dataset features clinically
representative tumor distributions (frontal/temporal lobes, cerebellum)
with early-stage lesions (> 3 mm), providing uniformly formatted
256 x 256 resolution MRI slices (T1/T2-weighted) that exhibit mild
artifacts while presenting significant diagnostic challenges due to intra-
class morphological/intensity heterogeneity and moderate class im-
balance (60% high-grade gliomas). The dataset’s standardized format
supports rapid prototyping but lacks pixel-level annotations and multi-
modal sequences, suggesting complementary use with BraTS for ad-
vanced studies. For brain tumor detection task, we employ 500 images
for training BTDet and 201 images for validation according the original
project roles.

We also tested BTDet on the LUNA16 [42], which is a medical imag-
ing dataset dedicated to lung nodule detection. The LUNA16 dataset is
selected from the larger LIDC-IDRI [43] dataset and contains 888 low-
dose CT scans of the lungs, as well as annotations by four radiologists
of 1186 lung nodules with nodule diameters ranging from 3 to 30
millimeters. We split the dataset with ratio of 8:2 for training and
testing, with 948 and 238 respectively to verify the effectiveness on
lung nodule detection task.
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Table 1
Hyper parameters and configurations of BTDet training.

Training Hyperparameters

Parameter Value Parameter Value
CPU 17-13700KF amp False
GPU Nvidia RTX 4090 works 8
cuda 11.7 optimizer SGD
epochs 150 momentum 0.937
framework pytorch 2.1 learning_rate 0.01
image size 640 weight_decay 5e—4
batch_size 16 warmup_epochs 3

The detailed implementation information and hyperparameters for
training BTDet is shown in Table 1. Data augmentation was system-
atically employed during network training to enhance model gener-
alizability through geometric transformations and intensity variations
including Mosaic Augmentation, Mixup Augmentation, Random Per-
spective and Hue-Saturation-Value Color-Space Augmentation, particu-
larly. By introducing diverse image transformation, it mitigates model
overfitting to specific training features while improving resilience to
clinical image variations, significantly boosting detection accuracy for
small tumors.

4.2. Evaluation metrics

We employ five criteria to assess and compare the detection perfor-
mance of our proposed BTDet: Precision Rate (P), Recall Rate (R), mean
Average Precision (mAP) at IoU thresholds from 0.50 to 0.95, number
of Parameters (params), Floating Point Operations (FLOPs), and Frames
Per Second (FPS). These metrics provide a comprehensive evaluation
of the performance of BTDet in brain tumor and lung nodule detection
task.

TP

pP=—" (20)
TP+ FP
R=_ TP 1)
TP+ FN
1
AP = / P.(R,)dR; (22)
0
1 n
AP =~ AP, 2
mAP = — % AP, (23)

i=1
A threshold plays a crucial role in evaluating the accuracy of detection
systems. Specifically, the True Positive (TP), False Positive (FP), and
False Negative (FN) bounding box samples are essential metrics. Aver-
age Precision (AP) quantifies the area under the Precision-Recall (P-R)
curve, indicating model performance. mAP aggregates the average
precision across all categories, providing a comprehensive assessment
of the detection framework.

4.3. Experimental analysis

Table 2 lists the overall comparison of our proposed BTDet with
YOLO state-of-art series algorithms on the Br35H dataset. It is apparent
that YOLOV5-N realizes the detection 0.684 at strict detection eval-
uation metric mAP@50:95 and 227 inference speed with only 1.7M
parameters and 4.1 GFLOPs model complexity. As for larger model
scale for YOLOvV5-S and YOLOV5-N, they achieve detection accuracy
increase at mAP@50:95 0.686 and 0.703, while hold more param-
eters and model complexity and the model running speed gradually
descends. BTDet obtains detection improvement at mAP@50:95 by
8.19% and 10.09% compared with YOLOv6-S and YOLOv7. Compared
with baseline model YOLOvV8-N, our BTDet also boosts detection per-
formance by 2.45% at mAP@50:95 and also accomplishes the overall
improvement at Precision, Recall and mAP@50 evaluation metrics,
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with only 2.26M model parameters and 178 FPS inference speed,
indicating the superior characteristic of BTDet in Brain tumor task.
YOLOV9-C realizes the 0.73 at mAP@50:95, 3.15% detection accuracy
lower that BTDet, with over 200 GFLOPs model complexity and 94
FPS inference speed, implying this kind of detector is incompetent
when deployed in real applications. Compared with latest released
YOLO detector YOLOv10, our BTDet also exhibits leading detection
performance with regard in most evaluation standards. It is note-
worthy that the smaller model size YOLOv10-N maintains the best
detection accuracy at mAP@50 and mAP@50:95 compared with its
larger version YOLOv10-S and YOLOv10M, the reason may come from
that larger models suffers from complicated architecture design which
is not efficient for simple texture or feature patterns for MRI brain
tumor images. Compared with latest leading YOLO variants YOLO11,
YOLOv12 and YOLOvV13, under comparable model sizes, BTDet still
exhibits significantly superior performance across different evaluation
metrics. BTDet accomplishes 0.966 and 0.753 detection accuracy at
mAP@50 and mAP@50:95 and 178 FPS inference speed with only
2.26M parameters and 6 GFLOPs model complexity, exhibiting high
detection performance trade-off compared with the mainstream YOLO
series algorithms, demonstrating that BTDet is competent to operate
fast and precise brain tumor detection.

Table 3 lists detection results of BTDet with current mainstream
object detectors. The representative two-stage methods Faster RCNN
and Mask RCNN reach the detection accuracy mAP@50:95 0.586 and
0.584 respectively, with more than 40 million parameters, indicating
this kind of detector with heavy model size and not efficient for this
medical brain tumor image detection. For classic one-stage detectors,
SSD300 and SSD512 achieve the mAP@50:95 0.647 and 0.653, they
also hold numerous parameters with high complexity, not suitable
for edge devices deployment. Experiments have been also conducted
to compare with latest research transformer-based detector RT-DETR,
which achieves 0.703 at mAP@50:95, there is still larger accuracy
gap than BTDet, this kind of result may stems from that transformer-
based method needs to benefit from large scale dataset and Br35H
used in this task is not suitable for RT-DETR. It is notable that BTDet
achieves 0.753 at the overall detection evaluation metric mAP @50:95,
realizing excellent detection performance and lightweight design with
only 2.26M parameters and 6 GFLOPs model complexity.

Experiments have been conducted to verify the choice of light detec-
tion heads. The results are shown in Table 4. For the baseline model, it
employs 3 heads to realize brain tumor localization and classification,
whose scales from larger to small are 80 x 80, 40 x 40 and 20 x 20,
reaching 0.735 detection accuracy at mAP@50:95 with 3M parameters
and 207 FPS running speed. First, we have made a attempt on 4 heads
for detection by adding a larger heads DH2 160 x 160 on the base
3 heads. Then, we found the detection accuracy at mAP@50:95 and
FPS descends dramatically, which imply that larger scale head may
become a burden for final detection. Similarly, by inserting smaller size
head DH6 20 x 20 also earned unpleasant results both on accuracy and
inference stage. Then, we have tried several combination 2 heads for
detection. Specifically, by utilizing DH3 80 x 80 and DH5 20 x 20
realized the best detection accuracy at mAP@50:95 0.736 with 214
FPS and relatively lower model scale, compared with other choices
such as DH3+DH4, DH4+DH5 and DH5+DH6, accomplishing satisfying
trade-off between detection performance and inference speed. This
experimental study demonstrates the importance choosing the proper
detection head when dealing with the MRI medical images.

Table 5 presents experimental results of the FSPPF module with
SPP-style methods for semantic exploration in the deep layers of back-
bone network. In advanced semantic understanding, it is becoming
increasingly important to understand the causal relationships behind
image content, which helps to improve the interpretive and general-
ization capabilities of the model. It can be seen that multi-maxpooling
based SPP achieves 0.732 mAP@50:95 with only 7.4 GFLOPs model
complexity, which is not efficient for lightweight paradigm detection.
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Table 2
Overall comparison with the YOLO series algorithms on Br35H.
Methods Precision Recall mAP @50 mAP@50:95 Params.(M) FLOPs(G) FPS
YOLOVS5-N [17] 0.917 0.891 0.925 0.684 1.7 4.1 227
YOLOVS-S [17] 0.936 0.891 0.939 0.686 7 15.8 213
YOLOV5-M [17] 0.912 0.905 0.94 0.703 20.85 47.9 185
YOLOV6-N [44] 0.764 0.777 0.94 0.72 4.62 11.3 179
YOLOV6-S [44] 0.73 0.768 0.924 0.696 18.5 45.2 157
YOLOV7 Tiny [45] 0.934 0.91 0.942 0.678 6.01 13 156
YOLOV7 [45] 0.953 0.9 0.947 0.684 36.48 103.2 72
YOLOVS-N [46] 0.917 0.933 0.949 0.735 3 8.1 207
YOLOVS8-S [46] 0.936 0.905 0.951 0.735 11.12 28.2 184
YOLOV9-C [34] 0.901 0.915 0.945 0.73 50.7 236.6 94
YOLOV1O0-N [47] 0.93 0.863 0.926 0.707 2.69 8.2 199
YOLOV10-S [47] 0.879 0.861 0.921 0.697 8 24.4 195
YOLOV10-M [47] 0.91 0.841 0.917 0.682 16.45 63.4 170
YOLO11-N [48] 0.916 0.925 0.944 0.917 2.58 6.3 183
YOLO11-S [48] 0.925 0.925 0.95 0.721 9.4 21.3 171
YOLOV12-N [49] 0.954 0.925 0.951 0.73 2.55 6.3 133
YOLOV12-S [49] 0.911 0.91 0.944 0.73 9.23 21.2 123
YOLOV13-N [50] 0.913 0.905 0.938 0.728 2.4 6.2 107
YOLOV13-S [50] 0.956 0.886 0.951 0.735 9 20.7 106
BTDet 0.945 0.95 0.966 0.753 2.26 6 178
Table 3
Experimental results with the mainstream algorithms on Br35H dataset.
Methods Precision Recall mAP@50 mAP@50:95 Params.(M) FLOPs(G) FPS
Faster RCNN [51] 0.816 0.947 0.93 0.586 41.52 91.4 115
Mask RCNN [52] 0.747 0.923 0.928 0.584 41.17 144.5 113
SSD300 [23] 0.442 0.455 0.893 0.647 34.3 154 268
SSD512 [23] 0.44 0.458 0.894 0.653 35 154.4 161
RetinaNet [24] 0.426 0.47 0.938 0.631 37.74 95.6 116
FCOS [53] 0.28 0.342 0.713 0.307 31.83 206.51 79.4
RT-DETR [54] 0.858 0.871 0.919 0.703 31.98 103.4 61
BTDet 0.945 0.95 0.966 0.753 2.26 6 178
Table 4

Experimental study of choices of detection heads. DHa denotes the number of detection heads. DH3: the design of baseline model

which has 3 heads for final detection.

Methods Precision Recall mAP@50 mAP@50:95 Params.(M) FLOPs(G) FPS
DH3 0.917 0.933 0.949 0.735 3 8.1 207
+ DH2 0.953 0.9 0.955 0.729 2.92 12.2 166
+ DH6 0.934 0.915 0.951 0.732 4.78 8.1 203
DH3 + DH4 0.935 0.876 0.939 0.725 1.99 7.3 220
DH4 + DH5 0.943 0.899 0.935 0.729 3.29 6.9 196
DHS5 + DH6 0.926 0.933 0.951 0.734 5.59 6.1 264
DH3 + DH5 0.934 0.91 0.956 0.736 2.78 7.4 214

Table 5

Comparison of semantic feature extraction block with proposed FSPPF.
Methods Precision Recall mAP@50 mAP@50:95 Params.(M) FLOPs(G) FPS
SPPF [46] 0.917 0.933 0.949 0.735 3 8.1 207
SPPELAN [35] 0.928 0.898 0.955 0.731 3.27 7.8 229
SPPCSPC [36] 0.939 0.935 0.957 0.735 4.39 8.7 214
RFB [55] 0.946 0.896 0.949 0.728 2.94 7.5 197
ASPP [56] 0.889 0.917 0.946 0.739 4.84 9 217
SPP [37] 0.941 0.925 0.955 0.732 2.78 7.4 225
FSPPF 0.945 0.926 0.957 0.74 2.78 7.4 221

Atrous Spatial Pyramid Pooling (ASPP) is a deep learning technique
for extracting multi-scale features, commonly used in semantic segmen-
tation tasks. It contains components such as 1x1 convolution, dilated
convolution and pyramidal maxpooling branches, where features with
different receptive fields are obtained by various expansion rates of
convolution. Notably, ASPP achieves the best detection accuracy 0.739
at mAP@50:95 whereas its parameters and model complexity became
a burden for model deployment. Our FSPPF employs larger maxpooling
size 5 x 5 than SPPELAN 3 x 3 and also concatenated all the branches

output before next ConvBN ReLU process, whichi shorten the infor-
mation flows to a certain extent. FSPPF realizes the 0.74 detection
accuracy compared with most semantic information methods, and also
offers 221 FPS running speed with the lowest model complexity 7.4
GFLOPs, which meet our lightweight and effective quality for building
backbone.

Table 6 shows the experimental results of mainstream lightweight
architecture with combination of RCG blocks and FSPPF. It is known



Y. Li et al.

Biomedical Signal Processing and Control 114 (2026) 109283

Table 6
Experimental results of mainstream lightweight networks with RCG and FSPPF.
Methods Precision Recall mAP@50 mAP@50:95 Params.(M) FLOPs(G) FPS
YOLOVS-N [46] 0.917 0.933 0.949 0.735 3 8.1 207
GhostNet [57] 0.952 0.896 0.892 0.736 1.7 6.1 227
MobileViT [58] 0.907 0.927 0.954 0.719 1.18 5.3 106
MobileNetv3 [59] 0.958 0.905 0.943 0.724 2.35 5.7 209
ShuffleNetv2 [60] 0.94 0.886 0.942 0.707 1.7 5 283
RCG+FSPPF 0.934 0.94 0.946 0.747 2.34 6.1 172
Table 7
Ablation study of the improved modules of BTDet on Br35H.
Scheme Methods mAP@50 mAP@75 mAP@50:95 Params.(M) FLOPs(G)
A baseline 0.949 0.9 0.735 3 8.1
B A + LightHead 0.956 0.911 0.736 2.78 7.4
C B + FSPPF 0.957 0.9 0.74 2.78 7.4
D C + RCG 0.946 0.905 0.747 2.34 6.1
E D + CSE + GSC 0.966 0.911 0.753 2.26 6

that lightweight architectures is particularly important for resource-
constrained environments such as mobile platforms, embedded sys-
tems, and Things of Net (IoT) devices, which could maintain a rela-
tively high level of accuracy while significantly reduce the amount of
computation and the number of parameters in the model. It is clear
that by utilizing repeat RCG and conv blocks attached FSPPF module
as the backbone for basic feature extraction achieves the best result
0.747 at the overall detection evaluation metric mAP@50:95, which
outperforms most famous lightweight networks, gaining 1.5%, 3.9%,
3.2% and 5.7% improvement compared with GhostNet, MobileViT,
MobileNetv3 and ShuffleNetv2. RCG strengthens feature expression of
conventional C2f blocks with GELAN archetype, which combines the
features of CSPNet and ELAN, through well-designed gradient paths,
allowing the network to propagate and aggregate feature information
from different layers more efficiently.

Ablation study was conducted to verify the effectiveness of the
designed modules in BTDet as shown in Table 7. When introduced the
LightHead paradigm, the parameters and model complexity reduced
7.3% and 8.6% respectively compared with baseline method with
detection accuracy 0.736 at mAP@50:95. Based on LightHead, the mAP
was increased to 0.74 with the embedding of FSPPF in the deep layers
owing the its contribution for semantic feature extraction. When RCG
blocks take the place of the original backbone, the mAP@50:95 was
boosted to 0.747, showcasing the productive feature exploration of the
brain tumor complicated patterns. The synergistic design of CSE and
GSC enhances multi-scale feature refinement across network layers,
equipping the model with superior adaptability to object size changes
and greater robustness in varied environments. As a result, BTDet
attains mAP@50 and mAP@50:95 scores of 0.966 and 0.753 with
merely 2.26M parameters and 6 GFLOPs, underscoring its effectiveness
and efficiency in brain tumor detection.

To further validate the robustness of our proposed BTDet on other
medical image processing task, we have also conducted experiments
on the LUNA16 dataset, which is instrumental for developing and
testing novel lung nodule detection algorithms, significantly advancing
research in medical image analysis. Compared with YOLO series algo-
rithms, which is shown in Table 8, BTDet achieves leading detection
accuracy 0.328 at the overall evaluation metric mAP@50:95, 14.7%,
20.1% and 5.5% accuracy improvement than YOLOvV5-M, YOLOV6-S
and baseline YOLOv8-N. Besides, BTDet also follows the lightweight
style design on LUNA16 dataset, with only 2.25M parameters and 6
GFLOPs model complexity and 263 FPS inference speed when testing
lung nodule MRI images. For the YOLO new version methods, YOLOv9-
C realized 0.325 accuracy at mAP@50:95 but the parameters are
already up to 50M and GFLOPs over 200M, obviously, not capable to
deploy on computational resource limited devices. This experiments
validates the flexibility of BTDet on lung nodule detection task with
notable performance among the main family of YOLO series algorithms.
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Table 9 list the comparative results of BTDet with prevalent de-
tection algorithms. For two-stage based method, Faster RCNN and
Cascade RCNN achieved 0.262 and 0.282 at mAP@50:95 and the
inference speed FPS are all below 100, significantly behind the ac-
curacy reached by BTDet. As to the one-stage measures, SSD300 and
SSD512 also realized unpleasant results. Transformer-designed detector
RT-DETR behaved 0.694 and 0.302 at mAP@50 and mAP@50:95,
3.46% and 8.6% lower than BTDet. Although Sparse RCNN realized
the best detection accuracy at mAP@50:95, it owes more than 100M
model parameters and 157 GFLOPs complexity. Our BTDet only has
2.25M parameters and 6 GFLOPs complexity, saving 97.9% and 96.2%
counterpart than SparseRCNN. BTDet not only realizes outstanding
detection performance, but also features in model lightweight and fast
inference speed compared with mainstream detection algorithms.

Table 10 list the ablation study of bounding box regression loss
function of BTDet on LUNA16 dataset. The baseline model YOLOvV8-N
applies CloU for accurate regression task, realized 0.317 at mAP @50:95
and 260 FPS. DIoU loss function does not performs well at accuracy and
inference stage. GIoU extends the traditional IoU metric to provide a
more comprehensive optimization objective by taking into account the
distances between the predicted and true frames as well as their sizes.
The GIoU loss function is particularly valuable because it addresses the
limitations of IoU in certain situations, such as when the predicted and
true frames do not overlap at all, where IoU cannot provide gradient
information. Following the experimental results, we adjust the IoU loss
function to GIoU when tested on LUNA16 dataset, which achieved
the best detection performance 0.328 at mAP@50:95 and 263 FPS
inference speed.

4.4. Visualization analysis of BTDet on brain tumor detection

For an intuitive understanding of BTDet real detection performance,
we visualize several representative validation samples of Br35H in Fig.
11. It is noticeable that brain tumor presented in the figure all display
irregular shapes and different locations. As shown in the last two row in
the figure, detection confidence offered in the image of BTDet are gen-
erally higher than the baseline YOLOv8-N counterpart, demonstrating
BTDet could process brain tumor images with comprehensive high-level
performance due the effectiveness of the model design.

To further explore the recognition ability towards small tumor
regions, we conducted a comparative Grad-CAM [67] visualization
analysis between BTDet and baseline methods. As shown in Fig. 12,
BTDet generates precise, compact heatmaps (the second row) that
closely match tumor boundaries, while baseline (the first row) methods
produce diffuse activation extending into healthy tissue. Furthermore,
BTDet demonstrates a stronger response to brain tumor locations in
heatmaps, enabling precise lesion localization. The proposed model
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Table 8
Overall comparison with the YOLO series algorithms on LUNA16 dataset.
Methods Precision Recall mAP @50 mAP@50:95 Params.(M) FLOPs(G) FPS
YOLOVS5-N [17] 0.711 0.559 0.588 0.25 1.76 4.1 400
YOLOVS-S [17] 0.677 0.605 0.621 0.254 7 15.8 417
YOLOV5-M [17] 0.688 0.634 0.645 0.286 20.8 47.9 270
YOLOV6-N [44] 0.739 0.629 0.626 0.274 4.63 11.34 321
YOLOV6-S [44] 0.69 0.655 0.619 0.273 18.5 45.17 298
YOLOV7 Tiny [45] 0.66 0.588 0.593 0.24 6 13 270
YOLOV7 [45] 0.599 0.504 0.537 0.244 36.48 103.2 141
YOLOVS-N [46] 0.759 0.71 0.715 0.311 3 8.1 268
YOLOVS-S [46] 0.786 0.695 0.701 0.327 11.1 28.4 254
YOLOV8-M [46] 0.723 0.691 0.701 0.327 25.7 78.7 165
YOLOV9-C [34] 0.789 0.706 0.747 0.325 50.6 236.6 99
YOLOV10-N [47] 0.713 0.655 0.674 0.303 2.69 8.2 287
YOLOV10-S [47] 0.755 0.636 0.689 0.296 8 24.4 283
YOLOV10-M [47] 0.732 0.681 0.712 0.317 16.4 63.4 209
YOLO11-N [48] 0.753 0.693 0.714 0.322 2.58 6.3 201
YOLO11-S [48] 0.753 0.718 0.708 0.322 9.41 21.3 275
YOLOV12-N [49] 0.676 0.647 0.619 0.271 2.55 6.3 190
YOLOv12-S [49] 0.685 0.676 0.671 0.3 9.23 21.2 185
YOLOV13-N [50] 0.72 0.649 0.657 0.291 2.44 6.2 131
YOLOV13-S [50] 0.752 0.676 0.698 0.306 9 20.7 133
BTDet 0.761 0.714 0.718 0.328 2.25 6 263
Table 9
Comparison with the mainstream algorithms on LUNA16 dataset.
Methods Precision Recall mAP @50 mAP@50:95 Params.(M) FLOPs(G) FPS
Faster RCNN [51] 0.667 0.552 0.559 0.262 41.12 206.66 84
Cascade RCNN [61] 0.637 0.626 0.609 0.282 68.93 234.66 65
SSD300 [23] 0.609 0.504 0.433 0.155 23.75 34.27 199
SSD512 [23] 0.691 0.668 0.651 0.208 24.39 87.72 157
DCNv2 [62] 0.672 0.559 0.549 0.252 148.69 229.42 72
Sparse RCNN [63] 0.739 0.721 0.626 0.342 105.94 157 71
RT-DETR [54] 0.742 0.66 0.694 0.302 41.9 125.6 68
BTDet 0.761 0.714 0.718 0.328 2.25 6 263

Fig. 11. Visualization of detection results of BTDet and YOLOv8n on Br35H. (a) Input Images. (b) Ground Truth. (c) Baseline. (d) BTDet.
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Fig. 13. Visualization of detection results of BTDet and YOLOv8n on LUNA16. (a) Input Images. (b) Ground Truth. (c) Baseline. (d) BTDet.

Table 10

Detection results of BTDet on LUNA16 under different IoU loss function

settings.
Methods Precision Recall mAP@50:95 FPS
CIoU [64] 0.755 0.698 0.317 260
DIoU [65] 0.733 0.727 0.313 231
GIoU [66] 0.761 0.714 0.328 263

maintains strong spatial correlation with radiologist annotations across
all tumor sizes. Consequently, our architecture demonstrates signifi-
cantly improved detection of smaller lesions through its multi-scale
feature aggregation design, consistently localizing tumors that baseline
methods miss or incorrectly fragment.

We also visualize several examples from LUNA16 dataset to verify
the lung nodule detection performance of BTDet which shown in Fig.
13. From the sample images, we can understand that the percentage
of lung nodules in MRI images is extremely small and surrounded by
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complex contextual feature information, which greatly boosts the diffi-
culty for accurate nodule detection. Surprisingly, BTDet demonstrated
excellent detection performance and was able to accurately localize and
identify the position of lung nodules in the image at a high confidence
level. BTDet is not only able to achieve a high level of detection
performance on the brain tumor task, but also performs equally well
on the lung nodule task, confirming that BTDet is robust and scalable
and has great potential for application in the field of medical image
processing.

5. Limitations

Despite achieving strong performance in brain tumor and lung
nodule detection tasks, BTDet still has several limitations. First, the
datasets used are relatively small and lack diversity, which may affect
the model’s generalizability across different clinical settings. Second,
the detection accuracy for lesions with blurred boundaries or irregular
shapes remains suboptimal. Third, BTDet has not yet been validated in
real-world clinical environments, and the absence of interaction with



Y. Li et al.

medical professionals limits its practical applicability. Moreover, the
model currently relies on 2D imaging and does not fully leverage 3D
spatial information, potentially overlooking subtle lesions across slices.
Finally, the structure of the detection head is fixed, making it difficult
to adapt dynamically to different tasks. Future work should focus
on improving data diversity, incorporating 3D modeling, conducting
clinical validations, and enhancing structural flexibility to improve the
practicality and adaptability of BTDet.

6. Conclusion

In this work, we present BTDet, an efficient and lightweight frame-
work for brain tumor detection in medical images. The proposed model
achieves an effective balance between detection accuracy and computa-
tional efficiency, demonstrating strong performance while maintaining
low parameter counts and minimal computational overhead. BTDet
integrates several design components to enhance detection capability:
(1) an RCG block combined with a reparameterized GELAN backbone
to facilitate gradient propagation and feature extraction; (2) an FSPPF
module that enlarges the receptive field through large-kernel pooling
for improved semantic representation in deeper layers; (3) a neck struc-
ture augmented with a CSE and GSC, supporting adaptive attention and
efficient multi-scale fusion; and (4) two lightweight detection heads
that further reduce inference cost. Extensive experiments show that
BTDet achieves consistent performance gains across medical imaging
tasks. On the Br35H brain tumor dataset, it attains a 2.45% improve-
ment in mAP@50:95 over strong baselines. It also generalizes well to
lung nodule detection on the LUNA16 dataset, where it achieves a 5.4%
accuracy gain, confirming its cross-domain applicability. These results
highlight BTDet as a practical and accurate detection solution that is
suitable for real-world clinical scenarios.
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Main abbreviations are used in this manuscript:

CNNs Convolutional Neural Networks

c2f CSPDarknet53 to 2-Stage FPN

RCG Reparameterized C2f GELAN

FSPPF Fast Spatial Pyramid Pooling Fusion

SEA Squeeze and Excitation Attention

CSE C2f Squeeze and Excitation

GSC General Depthwise Separable
Convolution

ELAN Efficient Layer Aggregation Network

GELAN Generalized Efficient Layer
Aggregation Network

DWConv Depthwise Separable Convolution

P Precision

R Recall

mAP mean Average Precision

FPS Frame Per Second

FLOPs Floating Point Operations

IoU Intersection over Union
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