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 A B S T R A C T

Accurate brain tumor detection in magnetic resonance imaging (MRI) is essential for early diagnosis, yet 
remains challenging due to the heterogeneous appearance and morphology of tumors. Although deep learning 
approaches have shown potential, their clinical applicability is often limited by high computational cost 
and restricted generalization capability. To address these issues, this study introduces BTDet, an efficient 
and lightweight detection framework that balances performance with computational efficiency. The model 
incorporates several design components: Reparameterized C2f GELAN (RCG) backbone combined with a Fast 
Spatial Pyramid Pooling Fusion (FSPPF) module to enhance feature extraction and semantic representation; C2f 
Squeeze and Excitation (CSE) attention mechanism and General Depthwise Separable Convolution (GSC) block 
to improve multi-scale feature fusion; and lightweight dual-head to maintain detection accuracy and inference 
speed. On the Br35H brain tumor dataset, BTDet achieves a 𝑚𝐴𝑃@50∶95 of 0.753, surpassing the baseline by 
2.45%, while requiring only 2.26M parameters and 6.0 GFLOPs. The framework also demonstrates strong cross-
domain adaptability, improving accuracy by 5.4% on the LUNA16 lung nodule detection benchmark. These 
results indicate that BTDet offers a practical and resource-efficient solution suitable for real-world medical 
imaging applications.
1. Introduction

Brain tumors represent the most common type of neoplasm affecting 
the Central Nervous System (CNS), and their early detection is critical 
for improving patient survival rates and overall quality of life [1]. These 
tumors are among the most aggressive and life-threatening conditions, 
affecting both pediatric and adult populations, and are estimated to 
account for approximately 85%–90% of all primary CNS tumors [2]. 
Currently, Magnetic Resonance Imaging (MRI) serves as the primary 
imaging modality for the detection and diagnosis of brain tumors due to 
its superior soft tissue contrast and non-invasive nature [3]. However, 
MRI scans generate large volumes of high-dimensional data, placing 
a significant burden on radiologists who must manually interpret the 
images. Given the heterogeneous nature of brain tumors varying in size, 
shape, location, and intensity—manual interpretation is not only time-
consuming but also prone to diagnostic inaccuracies and inter-observer 
variability. Although modern medical imaging technologies, such as 
MRI and Computed Tomography (CT), have substantially advanced 
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tumor detection, there remains a pressing need for further improvement 
in diagnostic accuracy, particularly in terms of sensitivity and speci-
ficity. These challenges have spurred increasing interest in automated, 
AI-driven methods to assist in the accurate and efficient detection of 
brain tumors.

With the continuous advancement of medical imaging technology, 
the automatic detection and identification of brain tumors have become 
particularly critical in clinical diagnosis. Notwithstanding that this task 
still faces numerous challenges, including the diverse morphology of 
tumors, blurred boundaries, low contrast between tissues, and struc-
tural variations among different patients, all of which pose significant 
difficulties for image recognition. Additionally, the high cost of ac-
quiring high-quality annotated data limits the generalization capability 
and robustness of traditional methods [4]. In recent years, the intro-
duction of deep learning, particularly Convolutional Neural Networks 
(CNNs) [5], has significantly improved the accuracy and automation 
of medical image processing. Compared to traditional manual feature 
https://doi.org/10.1016/j.bspc.2025.109283
Received 23 October 2024; Received in revised form 2 October 2025; Accepted 29
746-8094/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
 November 2025
data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/bspc
https://www.elsevier.com/locate/bspc
https://orcid.org/0000-0002-9465-0869
https://orcid.org/0000-0002-6704-0301
mailto:leeyee@zjnu.edu.cn
mailto:xhy@zjnu.edu.cn
mailto:zxz@zjnu.edu.cn
mailto:huangxiao@zjnu.edu.cn
mailto:Jason.li@geekplus.com
https://doi.org/10.1016/j.bspc.2025.109283
https://doi.org/10.1016/j.bspc.2025.109283


Y. Li et al.

 

Biomedical Signal Processing and Control 114 (2026) 109283 
extraction methods, CNNs can automatically learn high-level features 
from large volumes of brain MRI images, enabling more efficient tumor 
recognition tasks [6–8]. Nevertheless, current models still face several 
challenges in practical applications, such as few-shot learning, poor 
interpretability, and inaccurate boundary processing.

Consequently, researchers have proposed various structural opti-
mization strategies to enhance the model’s representational capac-
ity and robustness. Among these, U-Net and its variants (e.g., U-
Net++ [9], Attention U-Net [10], Residual U-Net [11]) have emerged 
as mainstream approaches for medical image segmentation. These mod-
els leverage an encoder–decoder architecture to achieve multi-scale 
feature fusion, effectively preserving spatial information in images. To 
improve the model’s focus on critical regions, attention-based methods 
such as Attention U-Net have been widely adopted, significantly en-
hancing segmentation accuracy in tumor regions. In recent years, the 
success of Transformer architectures in computer vision has garnered 
substantial attention in the field of medical image analysis. Vision 
Transformer (ViT) [12] and its variants (e.g., TransUNet [13], Swin-
Unet [14]), which rely on self-attention mechanisms, excel at capturing 
long-range dependencies, making them particularly suitable for seg-
menting brain tumors with complex morphology and heterogeneity. 
These methods have demonstrated superior performance over tradi-
tional CNN-based models on multiple public datasets, further advancing 
the precision of automated diagnosis. Meanwhile, Graph Neural Net-
works (GNNs) [15,16] have also been introduced into brain tumor 
analysis tasks, leveraging graph-structured representations to model 
relationships between tumors and surrounding tissues, thereby improv-
ing multi-modal information fusion. By representing medical images as 
graph structures, GNNs can extract higher-level structural information, 
compensating for the limitations of conventional models in modeling 
spatial topological relationships.

Developing an advanced approach that simultaneously addresses 
accuracy, robustness, lightweight architecture, and transferability is 
crucial for establishing efficient and reliable automated brain tumor 
detection systems. In this work, we introduce an efficient method for 
brain tumor detection, referred to as BTDet, which aims to improve 
detection performance through a lightweight model pattern and feature 
aggregation techniques. To facilitate effective feature extraction from 
MRI images of brain tumor, we designed Reparameterized C2f GELAN 
(RCG) block, which serves as the foundational backbone characterized 
with lightweight paradigm. Furthermore, Fast Spatial Pyramid Pool-
ing Fusion (FSPPF) module is developed to enhance the exploration 
of semantic information by multi-consecutive pooling and identity 
connections. The model’s neck integrates C2f Squeeze and Excitation 
(CSE) attention and General Depthwise Separable Convolution (GSC) to 
reinforce the multi-scale feature fusion. Additionally, we demonstrated 
that the implementation of two lightweight detection heads are capable 
to achieve superior detection performance. The main contributions of 
this work are concluded as follows,

• We propose BTDet, a highly efficient brain tumor detector which 
achieves excellent detection performance while maintaining a 
favorable accuracy-model size trade-off.

• The BTDet architecture incorporates several key technical con-
tributions: the RCG and FSPPF blocks for robust basic feature 
extraction; the CSE and GSC modules for advanced multi-scale 
feature integration; and a newly designed lightweight detection 
head that optimizes the trade-off between accuracy and inference 
efficiency.

• BTDet achieves state-of-the-art performance in brain tumor de-
tection among mainstream algorithms, realizing a 2.45% increase 
in 𝑚𝐴𝑃@50∶95 while maintaining a super-lightweight framework 
with only 2.26M parameters and 6 GFLOPs. Furthermore, ex-
periments on the LUNA16 lung nodule dataset demonstrate its 
strong generalizability, where BTDet attains a 5.4% improvement 
in 𝑚𝐴𝑃@50∶95 compared to the baseline. These consistent results 
across different medical imaging tasks underscore the robustness 
and broad applicability of the proposed detector.
2 
2. Related works

2.1. Lightweight and real-time object detectors

Lightweight object detection algorithms are designed for deploy-
ment in resource-constrained environments, where computational
power and memory are limited [17]. These models aim to reduce 
complexity and computational load while maintaining acceptable de-
tection accuracy, enabling real-time performance on low-power de-
vices. Common strategies include using efficient backbone networks 
like MobileNet [18], ShuffleNet [19], and FasterNet [20], which lever-
age techniques such as depthwise separable convolutions, pointwise 
operations, and channel blending. Real-time object detection focuses 
on rapidly identifying and localizing multiple targets within incoming 
image or video streams [21]. Its core advantage lies in high-speed 
processing, making it suitable for latency-sensitive applications. Rep-
resentative algorithms include YOLO [22], which uses a single-stage 
pipeline to predict class and location simultaneously, drastically reduc-
ing inference time. SSD [23] detects objects at multiple feature map 
layers for better multi-scale detection, while RetinaNet [24] incorpo-
rates Focal Loss to address class imbalance, enhancing small object 
detection without compromising speed.

2.2. Brain tumor medical image processing

Brain tumors exhibit considerable heterogeneity in size, shape and 
location, making their detection and characterization particularly chal-
lenging [25]. As a result, extensive research has been conducted to 
improve the accuracy and robustness of brain tumor detection in med-
ical imaging. For instance, RCS-YOLO [26] enhances detection perfor-
mance by integrating reparameterized convolution with channel shuffle 
and a novel cascade feature fusion strategy. Alhussainan et al. [27] 
evaluated the robustness of various mainstream YOLO architectures 
for brain tumor detection, demonstrating their effectiveness in medical 
scenarios. Razzaghi et al. [28] proposed a multimodal deep transfer 
learning framework that incorporates domain adaptation techniques to 
bridge the distribution gap between training and testing MRI datasets, 
thereby improving detection performance.

In parallel, brain tumor segmentation plays a vital role in highlight-
ing structural and pathological alterations in medical images, which 
is critical for accurate diagnosis, treatment planning, disease moni-
toring, and clinical research. EA-DFFTU-Net [8] addresses this task 
by introducing consecutive feature enhancement modules within a U-
Net architecture to refine segmentation accuracy. Similarly, the Multi-
scale Fractal Feature Network (MFFN) [7] enhances sensitivity and 
classification accuracy during segmentation by leveraging fractal fea-
tures at multiple scales. Furthermore, Karthik et al. [29] proposed a 
unified framework combining attention-augmented convolutional net-
works, random forest classifiers, and U-Net models to simultaneously 
achieve high-accuracy multi-class classification and segmentation of 
brain tumors in MRI images.

Our proposed BTDet distinguishes itself by integrating a task-specific
architectural design tailored for brain tumor detection in MRI images. 
Unlike general-purpose detection architectures, BTDet is optimized 
end-to-end for the biomedical context, achieving superior performance 
in both recall and precision, setting a new benchmark for clinical-grade 
tumor detection systems.

2.3. Transformer-based methods for brain tumor recognition

Transformer-based methods have achieved remarkable progress in 
brain tumor recognition, emerging as a significant research direction 
in medical image analysis. Compared to conventional CNN models, 
Transformers effectively capture global contextual information through 
self-attention mechanisms, addressing CNN’s limitations in modeling 
long-range dependencies and identifying complex tumor boundaries. 



Y. Li et al. Biomedical Signal Processing and Control 114 (2026) 109283 
Fig. 1. Overview architecture of our proposed BTDet networks. RCG and FSPPF serve for high-efficiency feature exploration. CSE and GSC collaborate together 
for improving multi-scale feature fusion. Two lightweight detection heads for final brain tumor detection.
TransBTS [30] integrates CNN’s local feature extraction with Trans-
former’s global modeling, excelling in feature fusion from multimodal 
MRI data. UNETR [31] employs a pure Transformer encoder for end-
to-end segmentation, eliminating manual feature engineering. Beyond 
segmentation, recent efforts such as Swin-Unet [14] and TransMed [32] 
have adapted hierarchical transformers or hybrid architectures to bet-
ter model multi-scale tumor structures. However, a major challenge 
remains: transformers typically require large amounts of annotated data 
and high computational resources, which are not always feasible in 
medical settings. Furthermore, lightweight Transformer architectures, 
and transfer learning strategies have improved model generalizability 
and clinical applicability, highlighting Transformers’ promising poten-
tial for automated brain tumor analysis. Compared to Transformer-
based models, BTDet achieves state-of-the-art detection accuracy with 
a significantly more compact fully convolutional network architecture 
while maintaining excellent model scalability, thereby meeting the 
requirements for real-time brain tumor detection.

3. Methods

3.1. Overview of BTDet network

In this work, we employ the leading one-stage object detector 
YOLOv8, as our baseline for its optimal detection accuracy and infer-
ence speed. The YOLOv8 algorithm features five model categories: N, 
S, M, L, and X. We choose the smallest model, YOLOv8-N, for its satis-
factory parameters and competitive results. The overall architecture of 
BTDet is depicted in Fig.  1 and consists of several key components: the 
basic convolutional layer, RCG blocks and the FSPPF module, which 
collectively serve as the backbone for efficient feature extraction. The 
architecture integrates CSE and GSC modules to enhance the fusion of 
3 
multi-scale features. Ultimately, two lightweight detection heads are 
employed to execute the final classification and localization for brain 
tumor.

3.2. Reparameterized efficient aggregation backbone

The development of efficient and lightweight networks is crucial 
for achieving rapid, energy efficient and cost effective real-time image 
processing. These networks are particularly advantageous for deploy-
ment on resource constrained devices. Therefore, We designed RCG 
to realize fast and efficient feature extraction. The consecutive RCG 
blocks serve as the foundational backbone of BTDet, as illustrated in 
Fig.  3. The architecture of the RCG divides the input features into two 
distinct branches: the first branch (cross stage connection) facilitates 
the direct flow of information as an identity for concatenation, while 
the other (partial branch) comprises the RepGELAN modules. The RCG 
blocks are constructed using a parameterized paradigm [33] that en-
hances feature extraction while simultaneously reducing computational 
costs. Additionally, the architecture employs the GELAN [34] style to 
promote rapid gradient convergence.

The GELAN in Fig.  2 is a multi-branch lightweight architecture with 
flexible designed transition towards input data [34], aimed at enhanc-
ing the efficiency of object detection tasks. This architecture is founded 
on the basis of the Efficient Layer Aggregation Network (ELAN) [35] 
Fig.  2 and the Cross Stage Partial Network (CSPNet [36] 2. In com-
parison to ELAN, GELAN demonstrates the ability to utilize various 
computational blocks due to its generalization capabilities. Conversely, 
ELAN primarily mitigates gradient loss by minimizing the transition 
layer. CSPNet improves the model’s learning capacity through cross-
stage feature fusion, while also alleviating computational bottlenecks 
and reducing memory expenses. GELAN effectively strikes a balance 
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Fig. 2. Structure of CSP-style designed networks. CSPNet mitigates redundant gradient information in deep networks by partitioning feature maps and merging 
their gradient paths. ELAN addresses the issue of gradient degradation through a streamlined transition structure. GELAN maintains high accuracy while adhering 
to a lightweight design.
Fig. 3. Detailed structure of RCG block.

between lightweight design and high accuracy, making it particularly 
well-suited for real-time object detection tasks.

For an input 𝐗 ∈ R𝐶×𝐻×𝑊 , where 𝐶, 𝐻 and 𝑊  denotes the channel, 
height and width of 𝐗, the whole process of RCG computation can be 
expressed by, 

𝐗𝛼 ,𝐗𝛽 = 𝑆𝑝𝑙𝑖𝑡(𝐶𝑜𝑛𝑣(𝐗)) (1)

𝐗𝜌 = 𝑅𝑒𝑝𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑣(𝐗𝛽 ))

𝐗𝜖 = 𝑅𝑒𝑝𝐶𝑜𝑛𝑣(𝐗𝜌)

𝐗𝛾 = 𝑅𝑒𝑝𝐶𝑜𝑛𝑣(𝐗𝜖)

𝐗𝜂 ,𝐗𝜇 ,𝐗𝜈 = 𝑇 (𝐗𝜌,𝐗𝜖 ,𝐗𝛾 )

(2)

𝐗 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝐗 ,𝐗 ,𝐗 ,𝐗 ] (3)
𝑜𝑢𝑡 𝛼 𝜂 𝜇 𝜈

4 
Fig. 4. Sketch of RepConv architecture.

where 𝐶𝑜𝑛𝑣 denotes the convolutional operation with kernel size 3 × 3, 
𝑆𝑝𝑙𝑖𝑡 divides the input data 𝐗 into two branches equally along chan-
nel, 𝐶𝑜𝑛𝑐𝑎𝑡 means stacking the all the outputs of multi-branches to-
gether along the channel dimension. 𝑇  denotes the general convolution 
transition.

Reparameterization Convolution (RepConv) is a technique that 
transforms a multi-branch convolutional architecture during training 
into a single-branch convolutional structure at inference time, aiming 
to maintain performance while improving computational efficiency. 
The core idea is to merge multiple convolutional kernels and branches 
into an equivalent single kernel through structural reparameterization, 
shown in Fig.  4. Below is its mathematical formulation,

Multi-Branch Structure During Training. Consider a parallel ar-
chitecture (e.g., RepVGG [33]) with the following branches: Main 
Branches: A 3 × 3 convolution with kernel weights 𝐖(3) ∈ R𝐶𝑜𝑢𝑡×𝐶𝑖𝑛×3×3

and bias 𝑏(3) ∈ Rout. Identity Branch: A skip connection, equivalent 
to 1 × 1 convolution with kernel 𝐖(1) = 𝐈 (identity matrix) and bias 
𝑏 (usually zero). Residual Branch: A 1 × 1 convolution with kernel 
weights 𝐖(1) ∈ R𝐶𝑜𝑢𝑡×𝐶𝑖𝑛×1 and bias 𝑏(1) ∈ R𝐶𝑜𝑢𝑡 . The output is the sum 
of all branches: 
𝐲𝑡𝑟𝑎𝑖𝑛 = 𝐶𝑜𝑛𝑣(𝐱,𝐖(3), 𝑏(3))

+ 𝐶𝑜𝑛𝑣(𝐱,𝐖(1), 𝑏(1)) (4)

+ 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐱)
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Fig. 5. Structure of semantic enhancement modules. Leveraging a spatial pyramid pooling structure, the SPP collects multi-scale information via pooling and 
concatenation operations. SPPELAN enhances multi-scale feature processing by integrating consecutive max-pooling blocks. FSPPF leverages stacked 5 × 5 pooling 
and multi-path routing for improved semantic feature discovery in deep networks.
Fig. 6. Schematic diagram of SiLU and ReLU activation Function.

Equivalent Single-Branch Structure at Inference. The multi-
branch structure is merged into a single 3 × 3 convolution: Zero-pad 
the 1 × 1 kernel 𝐖(1) to 3 × 3, denoted as 𝐖̂(1). Represent the identity 
mapping as a 1 × 1 identity matrix 𝐈, zero-paded to 3 × 3 (denoted as ̂𝐈). 
The Kernel Fusion, Bias Fusion and Inference Output are represented 
as follows, 
𝐖𝑚𝑒𝑟𝑔𝑒 = 𝐖(3) + 𝐖̂(1) + 𝐈̂ (5)

𝑏𝑚𝑒𝑟𝑔𝑒 = 𝑏(3) + 𝑏(1) + 𝑏𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (6)

𝐲𝑖𝑛𝑓𝑒𝑟 = 𝐶𝑜𝑛𝑣(𝐱,𝐖𝑚𝑒𝑟𝑔𝑒, 𝑏𝑚𝑒𝑟𝑔𝑒) (7)

Through this reparameterization, inference requires only a single con-
volutional computation, significantly reducing computational overhead 
and enhancing the model’s adaptability in practical deployment scenar-
ios.

3.3. Fast spatial pyramid pooling semantic enhancement

Semantic information is fundamental to achieving a comprehensive 
understanding of brain tumor region for its complex representation. It 
enables precise differentiation between tumor boundaries and healthy 
tissues, which is critical for accurate diagnosis and treatment plan-
ning. This understanding is crucial for attaining a profound level of 
5 
image comprehension. To achieve sufficient semantic information fea-
ture extraction in the deep layers, we designed FSPPF block, as is 
shown in Fig.  5. Spatial Pyramid Pooling (SPP) [37] is a technique 
employed in CNN with different large maxpooling kernels to facilitate 
the processing of input images of varying dimensions. This method 
enables adaptive processing of inputs of arbitrary sizes by executing 
pooling across sub-regions of multiple scales. Spatial Pyramid Pooling 
Efficient Layer Aggregation Networks (SPPELAN) builds upon the fast 
gradient forward flow established by ELAN, utilizing three consecutive 
maxpooling blocks with kernel size of 3 × 3 to facilitate multi-scale 
feature processing.

Our FSPPF differs from SPPELAN with regards to kernel size and 
information flow path and activation function. Specifically, within the 
FSPPF architecture, three hierarchically arranged 5 × 5 max-pooling 
layers are strategically cascaded to achieve graduated receptive field 
expansion, facilitating the extraction of high-level semantic features 
while maintaining spatial coherence in tumor boundary delineation. 
Besides, ReLU activation function was employed to replace original 
SiLU counterpart inside SPPELAN. ReLU is computationally simpler and 
more suitable for vision tasks with single and simple features as shown 
in Fig.  6, while the computational complexity of SiLU is high because 
of the exponential operations involved, resulting inferior performance 
compared with ReLU.

Give the input data 𝐗 ∈ R𝐶×𝑊 ×𝐻 , the calculation process of FSPPF 
can be expressed by, 
𝐗𝜎 ,𝐗𝜃 = 𝑆𝑝𝑙𝑖𝑡(𝐶𝐵𝑅(𝐗))

𝐗𝜃1 = 𝑀𝑃 (𝐗𝜃)

𝐗𝜃2 = 𝑀𝑃 (𝑀𝑃 (𝑀𝑃 (𝐗𝜃)))

𝐗𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝐵𝑅(𝐶𝑜𝑛𝑐𝑎𝑡[𝐗𝜎 ,𝐗𝜃1 ,𝐗𝜃2 ])

(8)

where 𝐶𝐵𝑅 denote the Convolution layer, BatchNormalization and 
ReLU activation function. 𝑆𝑝𝑙𝑖𝑡 means the input 𝐗 are divided into 
two branches equally along channel dimension, 𝑀𝑃  is the general 
maxpooling operation with fixed kernel size of 5 × 5.

The design of the FSPPF semantic enhancement module enables 
the network to perform in-depth analysis of the spatial distribution 
characteristics of brain tumor lesions, thereby significantly improv-
ing the model’s semantic understanding of pathological regions. This 
multi-scale feature fusion mechanism not only optimizes computational 
efficiency but also generates more discriminative feature representa-
tions, providing more precise localization and grading information for 
clinical diagnosis.
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Fig. 7. Detailed architecture of the CSE integrating SEA and partial connec-
tion.

3.4. Attention and channel shuffle enhanced feature fusion

The Neck module constitutes an essential architectural component 
in modern object detection frameworks, serving as the feature process-
ing bridge between convolutional feature extractors (Backbone) and 
task-specific decoders (Head). Its principal function involves strategic 
feature aggregation from different pyramidal levels, thereby preserv-
ing both high-level semantic information and low-level spatial details 
essential for accurate detection.

We propose an enhanced collaborative fusion framework that syn-
ergistically integrates the CSE with GSC operations for optimized multi-
scale feature fusion. The framework capitalizes on the complemen-
tary characteristics of different feature scales: higher-resolution feature 
maps preserve richer spatial details that are crucial for small object 
localization, while lower-resolution features contain more discrimina-
tive semantic representations that facilitate robust object classification. 
This dual-path architecture enables simultaneous enhancement of both 
localization precision and recognition accuracy.

The attention mechanism computes adaptive spatial or channel-wise 
weights to prioritize diagnostically significant regions in brain tumor 
imaging, this selective feature enhancement improves tumor bound-
ary delineation and pathological feature extraction, particularly for 
glioma metastasis differentiation. CSE enhances feature representation 
by combining Squeeze and Excitation Attention (SEA) [38] and partial 
connection, enabling it to effectively capture complex inter-channel 
relationships, shown in Fig.  7. SEA is a channel attention strategy that 
enhances the quality of representations generated by neural networks 
by explicitly modeling the inter-dependencies among feature channels. 
The fundamental concept of the SEA mechanism is to enable the model 
to learn how to recalibrate the responses of feature channels based 
on global information. This approach enhances the model’s expressive 
capacity without a substantial increase in the number of parameters. 
For the input 𝐗 ∈ R𝐶×𝐻×𝑊 , the output of CSE can be formulated as, 
𝐗𝜆,𝐗𝜉 = 𝑆𝑝𝑙𝑖𝑡(𝐶𝐵𝑅(𝐗))

𝐗𝜏 = 𝐶𝑆𝐸(𝐗𝜉 )

𝐗𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝐗𝜆,𝐗𝜏 ]

(9)

The SEA architecture consists of two main steps: Squeeze and Exci-
tation, which is shown in Fig.  8. For squeeze, this step compresses the 
spatial information of each channel into a single value through global 
6 
Fig. 8. SEA with dynamic channel refinement to enhance feature representa-
tion.

average pooling to obtain a global representation of each channel, the 
input 𝐗 ∈ R𝐶×𝐻×𝑊 , which can be represent as, 

𝐮𝑐 = 𝐯𝑐 ∗ 𝐗 =
𝐶′
∑

𝑠=1
𝐯𝑠𝑐 ∗ 𝐱𝑠 (10)

𝐳𝑐 = 𝐹𝑠𝑞(𝐮𝑐 ) =
1

𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝑢𝑐 (𝑖, 𝑗) (11)

where 𝑢𝑐 ∈ R𝐻×𝑊  represents 2D feature map of 𝑐th channel. 𝐹𝑠𝑞
compresses the spatial dimensions 𝐻 × 𝑊  into channel descriptors 
𝐳𝑐 ∈ R𝐶 through Global Average Pooling (GAP).

Excitation operation employs a fully connected neural network with 
nonlinear activation functions to optimize the weights associated with 
each channel. Initially, the weights are downscaled through a fully 
connected layer, followed by the application of the ReLU activation 
function. Subsequently, the weights are upscaled by another fully con-
nected layer, culminating in the extraction of the final weights via a 
sigmoid function, which can be defined as, 
𝐬 = 𝐹𝑒𝑥(𝐳𝑐 ,𝐖) = 𝜎(𝐖2𝛿(𝑊1𝐳𝑐 )) (12)

𝐗𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐹𝑠𝑐𝑎𝑙𝑒(𝐮, 𝐬𝑐 ) = 𝐬𝑐𝐮𝑐 (13)

𝐅𝑒𝑥 learns the channel dependencies by connection layers. 𝐹𝑠𝑐𝑎𝑙𝑒
adjusts the channel number depended on the hyper-parameter 𝑟. 𝜎 and 
𝛿 denote sigmoid function and ReLU activation function.

The structure of GSC block is shown in Fig.  9, which aims to 
enhance the efficiency and accuracy of neural networks, particularly in 
tasks for small object detection [39]. GSC attains more efficient feature 
extraction by integrating the operations of Standard Convolution (SC) 
and Depthwise Separable Convolution (DWConv) [40], while also in-
corporating a feature shuffling process for enhancing the representation 
of the network by changing the ordering of the feature map channels.

The DWConv shown in Fig.  10, was represents an efficient convo-
lution operation utilized in computer vision, which decomposes the 
conventional convolution process into two distinct operations: depth-
wise convolution and pointwise convolution. This decomposition sub-
stantially decreases both the computational load and the number of 
parameters within the model.

DWConv offers significant advantages in computer vision and med-
ical image analysis and reduced parameter count enhances robust-
ness on small medical datasets, depthwise convolution focuses on spa-
tial correlations (e.g., tumor boundaries), while pointwise convolu-
tion learns inter-channel semantic relationships (e.g., multi-modal MRI 
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Fig. 9. The GSC architecture is a hybrid design that fuses standard convolution, DWConv, and channel shuffle operations for highly efficient feature extraction.
Fig. 10. DWConv consists of two sequential steps: depthwise convolution and 
pointwise convolution.

fusion). Additionally, DwConv can significantly reduce the computa-
tional parameters of a model, thereby further enhancing its lightweight 
characteristics.

The total parameters of a standard convolution can be expressed, 
𝑠𝑡𝑑 = 𝐾 ×𝐾 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 (14)

where 𝐾 is the kernel size of convolution usually with 3 × 3, 𝐶𝑖𝑛 and 
𝐶𝑜𝑢𝑡 are the input channel and out channel separately.

The parameters of DWConv can be divided into two steps,
(1) depthwise convolution: 

𝑑𝑤 = 𝐾 ×𝐾 × 𝐶𝑖𝑛 (15)

(2) pointwise convolution: 
𝑝𝑤 = 1 × 1 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 (16)

Total parameters: 
𝐷𝑊𝐶𝑜𝑛𝑣 = 𝑑𝑤 + 𝑝𝑤

= 𝐾2 × 𝐶𝑖𝑛 + 𝐶𝑖𝑛𝐶𝑜𝑢𝑡
(17)

The parameter reduction ratio can be expressed, 

𝜂 =
𝐷𝑊𝐶𝑜𝑛𝑣

𝑠𝑡𝑑
= 1

𝐶𝑜𝑢𝑡
+ 1

𝐾2
(18)

According to [39] suggested, we have placed the CSE blocks to 
position at the early stage of fusion layers for better results, while the 
effective GSC block can be embedded at the head’s entrance. That is 
because that shallow networks are saturated with low-level semantic 
information, rendering the fusion function of attention modules largely 
unnecessary.
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The calculation of GSC can be defined as, 
𝐗𝜍 ,𝐗𝜚 = 𝐶𝑜𝑛𝑣(𝐗)

𝐗𝜙 = 𝐷𝑊𝐶𝑜𝑛𝑣(𝐗𝜚)

𝐗𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐹𝑆ℎ𝑢𝑓𝑓𝑙𝑒(𝐶𝑜𝑛𝑐𝑎𝑡[𝐗𝜍 ,𝐗𝜚])

(19)

where 𝐷𝑊𝐶𝑜𝑛𝑣 means the depthwise separable convolution and
𝐹𝑠ℎ𝑢𝑓𝑓𝑙𝑒 denotes the channel shuffle operations for facilitating infor-
mation interaction.

The combination CSE and GSC blocks are devoted to ameliorating 
the information flow at the bottom of feature pyramid. This pro-
cess not only shortens the transmission path of information fusion, 
but also produces fine-grained target patterns for fusing stage net-
work, increasing the feature pyramid architecture’s detection capacity 
and generating complementary features knowledge for final detection. 
Meanwhile, they also collaborate to facilitate the multi-scale feature 
fusion with local and global contextual information, thereby improving 
the performance of brain tumor detection.

4. Experiments

4.1. Dataset and settings

To evaluate the proposed BTDet, we employed brain tumor de-
tection Br35H [41], this dataset for brain tumor detection comprises 
3000 annotated MRI slices (T1/T2-weighted) with balanced binary 
classification (1500 normal vs. 1500 tumor cases), collected from di-
verse clinical sources. Besides, the Br35H dataset features clinically 
representative tumor distributions (frontal/temporal lobes, cerebellum) 
with early-stage lesions (⩾ 3 mm), providing uniformly formatted 
256 × 256 resolution MRI slices (T1/T2-weighted) that exhibit mild 
artifacts while presenting significant diagnostic challenges due to intra-
class morphological/intensity heterogeneity and moderate class im-
balance (60% high-grade gliomas). The dataset’s standardized format 
supports rapid prototyping but lacks pixel-level annotations and multi-
modal sequences, suggesting complementary use with BraTS for ad-
vanced studies. For brain tumor detection task, we employ 500 images 
for training BTDet and 201 images for validation according the original 
project roles.

We also tested BTDet on the LUNA16 [42], which is a medical imag-
ing dataset dedicated to lung nodule detection. The LUNA16 dataset is 
selected from the larger LIDC-IDRI [43] dataset and contains 888 low-
dose CT scans of the lungs, as well as annotations by four radiologists 
of 1186 lung nodules with nodule diameters ranging from 3 to 30 
millimeters. We split the dataset with ratio of 8:2 for training and 
testing, with 948 and 238 respectively to verify the effectiveness on 
lung nodule detection task.
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Table 1
Hyper parameters and configurations of BTDet training.
 Training Hyperparameters
 Parameter Value Parameter Value 
 CPU i7-13700KF amp False  
 GPU Nvidia RTX 4090 works 8  
 cuda 11.7 optimizer SGD  
 epochs 150 momentum 0.937 
 framework pytorch 2.1 learning_rate 0.01  
 image_size 640 weight_decay 5e−4  
 batch_size 16 warmup_epochs 3  

The detailed implementation information and hyperparameters for 
training BTDet is shown in Table  1. Data augmentation was system-
atically employed during network training to enhance model gener-
alizability through geometric transformations and intensity variations 
including Mosaic Augmentation, Mixup Augmentation, Random Per-
spective and Hue-Saturation-Value Color-Space Augmentation, particu-
larly. By introducing diverse image transformation, it mitigates model 
overfitting to specific training features while improving resilience to 
clinical image variations, significantly boosting detection accuracy for 
small tumors.

4.2. Evaluation metrics

We employ five criteria to assess and compare the detection perfor-
mance of our proposed BTDet: Precision Rate (P), Recall Rate (R), mean 
Average Precision (mAP) at IoU thresholds from 0.50 to 0.95, number 
of Parameters (params), Floating Point Operations (FLOPs), and Frames 
Per Second (FPS). These metrics provide a comprehensive evaluation 
of the performance of BTDet in brain tumor and lung nodule detection 
task. 
𝑃 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(20)

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(21)

𝐴𝑃𝑖 = ∫

1

0
𝑃𝑖(𝑅𝑖)𝑑𝑅𝑖 (22)

𝑚𝐴𝑃 = 1
𝑛

𝑛
∑

𝑖=1
𝐴𝑃𝑖 (23)

A threshold plays a crucial role in evaluating the accuracy of detection 
systems. Specifically, the True Positive (TP), False Positive (FP), and 
False Negative (FN) bounding box samples are essential metrics. Aver-
age Precision (AP) quantifies the area under the Precision-Recall (P-R) 
curve, indicating model performance. mAP aggregates the average 
precision across all categories, providing a comprehensive assessment 
of the detection framework.

4.3. Experimental analysis

Table  2 lists the overall comparison of our proposed BTDet with 
YOLO state-of-art series algorithms on the Br35H dataset. It is apparent 
that YOLOv5-N realizes the detection 0.684 at strict detection eval-
uation metric 𝑚𝐴𝑃@50∶95 and 227 inference speed with only 1.7M 
parameters and 4.1 GFLOPs model complexity. As for larger model 
scale for YOLOv5-S and YOLOv5-N, they achieve detection accuracy 
increase at 𝑚𝐴𝑃@50∶95 0.686 and 0.703, while hold more param-
eters and model complexity and the model running speed gradually 
descends. BTDet obtains detection improvement at 𝑚𝐴𝑃@50∶95 by 
8.19% and 10.09% compared with YOLOv6-S and YOLOv7. Compared 
with baseline model YOLOv8-N, our BTDet also boosts detection per-
formance by 2.45% at 𝑚𝐴𝑃@50∶95 and also accomplishes the overall 
improvement at 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑚𝐴𝑃@50 evaluation metrics, 
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with only 2.26M model parameters and 178 FPS inference speed, 
indicating the superior characteristic of BTDet in Brain tumor task. 
YOLOv9-C realizes the 0.73 at 𝑚𝐴𝑃@50∶95, 3.15% detection accuracy 
lower that BTDet, with over 200 GFLOPs model complexity and 94 
FPS inference speed, implying this kind of detector is incompetent 
when deployed in real applications. Compared with latest released 
YOLO detector YOLOv10, our BTDet also exhibits leading detection 
performance with regard in most evaluation standards. It is note-
worthy that the smaller model size YOLOv10-N maintains the best 
detection accuracy at 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶95 compared with its 
larger version YOLOv10-S and YOLOv10M, the reason may come from 
that larger models suffers from complicated architecture design which 
is not efficient for simple texture or feature patterns for MRI brain 
tumor images. Compared with latest leading YOLO variants YOLO11, 
YOLOv12 and YOLOv13, under comparable model sizes, BTDet still 
exhibits significantly superior performance across different evaluation 
metrics. BTDet accomplishes 0.966 and 0.753 detection accuracy at 
𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶95 and 178 FPS inference speed with only 
2.26M parameters and 6 GFLOPs model complexity, exhibiting high 
detection performance trade-off compared with the mainstream YOLO 
series algorithms, demonstrating that BTDet is competent to operate 
fast and precise brain tumor detection.

Table  3 lists detection results of BTDet with current mainstream 
object detectors. The representative two-stage methods Faster RCNN 
and Mask RCNN reach the detection accuracy 𝑚𝐴𝑃@50∶95 0.586 and 
0.584 respectively, with more than 40 million parameters, indicating 
this kind of detector with heavy model size and not efficient for this 
medical brain tumor image detection. For classic one-stage detectors, 
SSD300 and SSD512 achieve the 𝑚𝐴𝑃@50∶95 0.647 and 0.653, they 
also hold numerous parameters with high complexity, not suitable 
for edge devices deployment. Experiments have been also conducted 
to compare with latest research transformer-based detector RT-DETR, 
which achieves 0.703 at 𝑚𝐴𝑃@50∶95, there is still larger accuracy 
gap than BTDet, this kind of result may stems from that transformer-
based method needs to benefit from large scale dataset and Br35H 
used in this task is not suitable for RT-DETR. It is notable that BTDet 
achieves 0.753 at the overall detection evaluation metric 𝑚𝐴𝑃@50∶95, 
realizing excellent detection performance and lightweight design with 
only 2.26M parameters and 6 GFLOPs model complexity.

Experiments have been conducted to verify the choice of light detec-
tion heads. The results are shown in Table  4. For the baseline model, it 
employs 3 heads to realize brain tumor localization and classification, 
whose scales from larger to small are 80 × 80, 40 × 40 and 20 × 20, 
reaching 0.735 detection accuracy at 𝑚𝐴𝑃@50∶95 with 3M parameters 
and 207 FPS running speed. First, we have made a attempt on 4 heads 
for detection by adding a larger heads DH2 160 × 160 on the base 
3 heads. Then, we found the detection accuracy at 𝑚𝐴𝑃@50∶95 and 
FPS descends dramatically, which imply that larger scale head may 
become a burden for final detection. Similarly, by inserting smaller size 
head DH6 20 × 20 also earned unpleasant results both on accuracy and 
inference stage. Then, we have tried several combination 2 heads for 
detection. Specifically, by utilizing DH3 80 × 80 and DH5 20 × 20 
realized the best detection accuracy at 𝑚𝐴𝑃@50∶95 0.736 with 214 
FPS and relatively lower model scale, compared with other choices 
such as DH3+DH4, DH4+DH5 and DH5+DH6, accomplishing satisfying 
trade-off between detection performance and inference speed. This 
experimental study demonstrates the importance choosing the proper 
detection head when dealing with the MRI medical images.

Table  5 presents experimental results of the FSPPF module with 
SPP-style methods for semantic exploration in the deep layers of back-
bone network. In advanced semantic understanding, it is becoming 
increasingly important to understand the causal relationships behind 
image content, which helps to improve the interpretive and general-
ization capabilities of the model. It can be seen that multi-maxpooling 
based SPP achieves 0.732 𝑚𝐴𝑃@50∶95 with only 7.4 GFLOPs model 
complexity, which is not efficient for lightweight paradigm detection. 
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Table 2
Overall comparison with the YOLO series algorithms on Br35H.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺) 𝐹𝑃𝑆 
 YOLOv5-N [17] 0.917 0.891 0.925 0.684 1.7 4.1 227  
 YOLOv5-S [17] 0.936 0.891 0.939 0.686 7 15.8 213  
 YOLOv5-M [17] 0.912 0.905 0.94 0.703 20.85 47.9 185  
 YOLOv6-N [44] 0.764 0.777 0.94 0.72 4.62 11.3 179  
 YOLOv6-S [44] 0.73 0.768 0.924 0.696 18.5 45.2 157  
 YOLOv7_Tiny [45] 0.934 0.91 0.942 0.678 6.01 13 156  
 YOLOv7 [45] 0.953 0.9 0.947 0.684 36.48 103.2 72  
 YOLOv8-N [46] 0.917 0.933 0.949 0.735 3 8.1 207  
 YOLOv8-S [46] 0.936 0.905 0.951 0.735 11.12 28.2 184  
 YOLOv9-C [34] 0.901 0.915 0.945 0.73 50.7 236.6 94  
 YOLOv10-N [47] 0.93 0.863 0.926 0.707 2.69 8.2 199  
 YOLOv10-S [47] 0.879 0.861 0.921 0.697 8 24.4 195  
 YOLOv10-M [47] 0.91 0.841 0.917 0.682 16.45 63.4 170  
 YOLO11-N [48] 0.916 0.925 0.944 0.917 2.58 6.3 183  
 YOLO11-S [48] 0.925 0.925 0.95 0.721 9.4 21.3 171  
 YOLOv12-N [49] 0.954 0.925 0.951 0.73 2.55 6.3 133  
 YOLOv12-S [49] 0.911 0.91 0.944 0.73 9.23 21.2 123  
 YOLOv13-N [50] 0.913 0.905 0.938 0.728 2.4 6.2 107  
 YOLOv13-S [50] 0.956 0.886 0.951 0.735 9 20.7 106  
 BTDet 0.945 0.95 0.966 0.753 2.26 6 178  
Table 3
Experimental results with the mainstream algorithms on Br35H dataset.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺) 𝐹𝑃𝑆 
 Faster RCNN [51] 0.816 0.947 0.93 0.586 41.52 91.4 115  
 Mask RCNN [52] 0.747 0.923 0.928 0.584 41.17 144.5 113  
 SSD300 [23] 0.442 0.455 0.893 0.647 34.3 154 268  
 SSD512 [23] 0.44 0.458 0.894 0.653 35 154.4 161  
 RetinaNet [24] 0.426 0.47 0.938 0.631 37.74 95.6 116  
 FCOS [53] 0.28 0.342 0.713 0.307 31.83 206.51 79.4  
 RT-DETR [54] 0.858 0.871 0.919 0.703 31.98 103.4 61  
 BTDet 0.945 0.95 0.966 0.753 2.26 6 178  
Table 4
Experimental study of choices of detection heads. DH𝛼 denotes the number of detection heads. DH3: the design of baseline model 
which has 3 heads for final detection.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺) 𝐹𝑃𝑆 
 DH3 0.917 0.933 0.949 0.735 3 8.1 207  
 + DH2 0.953 0.9 0.955 0.729 2.92 12.2 166  
 + DH6 0.934 0.915 0.951 0.732 4.78 8.1 203  
 DH3 + DH4 0.935 0.876 0.939 0.725 1.99 7.3 220  
 DH4 + DH5 0.943 0.899 0.935 0.729 3.29 6.9 196  
 DH5 + DH6 0.926 0.933 0.951 0.734 5.59 6.1 264  
 DH3 + DH5 0.934 0.91 0.956 0.736 2.78 7.4 214  
Table 5
Comparison of semantic feature extraction block with proposed FSPPF.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺) 𝐹𝑃𝑆 
 SPPF [46] 0.917 0.933 0.949 0.735 3 8.1 207  
 SPPELAN [35] 0.928 0.898 0.955 0.731 3.27 7.8 229  
 SPPCSPC [36] 0.939 0.935 0.957 0.735 4.39 8.7 214  
 RFB [55] 0.946 0.896 0.949 0.728 2.94 7.5 197  
 ASPP [56] 0.889 0.917 0.946 0.739 4.84 9 217  
 SPP [37] 0.941 0.925 0.955 0.732 2.78 7.4 225  
 FSPPF 0.945 0.926 0.957 0.74 2.78 7.4 221  
Atrous Spatial Pyramid Pooling (ASPP) is a deep learning technique 
for extracting multi-scale features, commonly used in semantic segmen-
tation tasks. It contains components such as 1×1 convolution, dilated 
convolution and pyramidal maxpooling branches, where features with 
different receptive fields are obtained by various expansion rates of 
convolution. Notably, ASPP achieves the best detection accuracy 0.739 
at 𝑚𝐴𝑃@50∶95 whereas its parameters and model complexity became 
a burden for model deployment. Our FSPPF employs larger maxpooling 
size 5 × 5 than SPPELAN 3 × 3 and also concatenated all the branches 
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output before next 𝐶𝑜𝑛𝑣𝐵𝑁𝑅𝑒𝐿𝑈 process, whichi shorten the infor-
mation flows to a certain extent. FSPPF realizes the 0.74 detection 
accuracy compared with most semantic information methods, and also 
offers 221 FPS running speed with the lowest model complexity 7.4 
GFLOPs, which meet our lightweight and effective quality for building 
backbone.

Table  6 shows the experimental results of mainstream lightweight 
architecture with combination of RCG blocks and FSPPF. It is known 
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Table 6
Experimental results of mainstream lightweight networks with RCG and FSPPF.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺) 𝐹𝑃𝑆 
 YOLOv8-N [46] 0.917 0.933 0.949 0.735 3 8.1 207  
 GhostNet [57] 0.952 0.896 0.892 0.736 1.7 6.1 227  
 MobileViT [58] 0.907 0.927 0.954 0.719 1.18 5.3 106  
 MobileNetv3 [59] 0.958 0.905 0.943 0.724 2.35 5.7 209  
 ShuffleNetv2 [60] 0.94 0.886 0.942 0.707 1.7 5 283  
 RCG+FSPPF 0.934 0.94 0.946 0.747 2.34 6.1 172  
Table 7
Ablation study of the improved modules of BTDet on Br35H.
 Scheme Methods 𝑚𝐴𝑃@50 𝑚𝐴𝑃@75 𝑚𝐴𝑃@50∶95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺) 
 A baseline 0.949 0.9 0.735 3 8.1  
 B A + LightHead 0.956 0.911 0.736 2.78 7.4  
 C B + FSPPF 0.957 0.9 0.74 2.78 7.4  
 D C + RCG 0.946 0.905 0.747 2.34 6.1  
 E D + CSE + GSC 0.966 0.911 0.753 2.26 6  
that lightweight architectures is particularly important for resource-
constrained environments such as mobile platforms, embedded sys-
tems, and Things of Net (IoT) devices, which could maintain a rela-
tively high level of accuracy while significantly reduce the amount of 
computation and the number of parameters in the model. It is clear 
that by utilizing repeat RCG and conv blocks attached FSPPF module 
as the backbone for basic feature extraction achieves the best result 
0.747 at the overall detection evaluation metric 𝑚𝐴𝑃@50∶95, which 
outperforms most famous lightweight networks, gaining 1.5%, 3.9%, 
3.2% and 5.7% improvement compared with GhostNet, MobileViT, 
MobileNetv3 and ShuffleNetv2. RCG strengthens feature expression of 
conventional C2f blocks with GELAN archetype, which combines the 
features of CSPNet and ELAN, through well-designed gradient paths, 
allowing the network to propagate and aggregate feature information 
from different layers more efficiently.

Ablation study was conducted to verify the effectiveness of the 
designed modules in BTDet as shown in Table  7. When introduced the 
LightHead paradigm, the parameters and model complexity reduced 
7.3% and 8.6% respectively compared with baseline method with 
detection accuracy 0.736 at 𝑚𝐴𝑃@50∶95. Based on LightHead, the mAP 
was increased to 0.74 with the embedding of FSPPF in the deep layers 
owing the its contribution for semantic feature extraction. When RCG 
blocks take the place of the original backbone, the 𝑚𝐴𝑃@50∶95 was 
boosted to 0.747, showcasing the productive feature exploration of the 
brain tumor complicated patterns. The synergistic design of CSE and 
GSC enhances multi-scale feature refinement across network layers, 
equipping the model with superior adaptability to object size changes 
and greater robustness in varied environments. As a result, BTDet 
attains 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶95 scores of 0.966 and 0.753 with 
merely 2.26M parameters and 6 GFLOPs, underscoring its effectiveness 
and efficiency in brain tumor detection.

To further validate the robustness of our proposed BTDet on other 
medical image processing task, we have also conducted experiments 
on the LUNA16 dataset, which is instrumental for developing and 
testing novel lung nodule detection algorithms, significantly advancing 
research in medical image analysis. Compared with YOLO series algo-
rithms, which is shown in Table  8, BTDet achieves leading detection 
accuracy 0.328 at the overall evaluation metric 𝑚𝐴𝑃@50∶95, 14.7%, 
20.1% and 5.5% accuracy improvement than YOLOv5-M, YOLOv6-S 
and baseline YOLOv8-N. Besides, BTDet also follows the lightweight 
style design on LUNA16 dataset, with only 2.25M parameters and 6 
GFLOPs model complexity and 263 FPS inference speed when testing 
lung nodule MRI images. For the YOLO new version methods, YOLOv9-
C realized 0.325 accuracy at 𝑚𝐴𝑃@50∶95 but the parameters are 
already up to 50M and GFLOPs over 200M, obviously, not capable to 
deploy on computational resource limited devices. This experiments 
validates the flexibility of BTDet on lung nodule detection task with 
notable performance among the main family of YOLO series algorithms.
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Table  9 list the comparative results of BTDet with prevalent de-
tection algorithms. For two-stage based method, Faster RCNN and 
Cascade RCNN achieved 0.262 and 0.282 at 𝑚𝐴𝑃@50∶95 and the 
inference speed FPS are all below 100, significantly behind the ac-
curacy reached by BTDet. As to the one-stage measures, SSD300 and 
SSD512 also realized unpleasant results. Transformer-designed detector 
RT-DETR behaved 0.694 and 0.302 at 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶95, 
3.46% and 8.6% lower than BTDet. Although Sparse RCNN realized 
the best detection accuracy at 𝑚𝐴𝑃@50∶95, it owes more than 100M 
model parameters and 157 GFLOPs complexity. Our BTDet only has 
2.25M parameters and 6 GFLOPs complexity, saving 97.9% and 96.2% 
counterpart than SparseRCNN. BTDet not only realizes outstanding 
detection performance, but also features in model lightweight and fast 
inference speed compared with mainstream detection algorithms.

Table  10 list the ablation study of bounding box regression loss 
function of BTDet on LUNA16 dataset. The baseline model YOLOv8-N 
applies CIoU for accurate regression task, realized 0.317 at 𝑚𝐴𝑃@50∶95
and 260 FPS. DIoU loss function does not performs well at accuracy and 
inference stage. GIoU extends the traditional IoU metric to provide a 
more comprehensive optimization objective by taking into account the 
distances between the predicted and true frames as well as their sizes. 
The GIoU loss function is particularly valuable because it addresses the 
limitations of IoU in certain situations, such as when the predicted and 
true frames do not overlap at all, where IoU cannot provide gradient 
information. Following the experimental results, we adjust the IoU loss 
function to GIoU when tested on LUNA16 dataset, which achieved 
the best detection performance 0.328 at 𝑚𝐴𝑃@50∶95 and 263 FPS 
inference speed.

4.4. Visualization analysis of BTDet on brain tumor detection

For an intuitive understanding of BTDet real detection performance, 
we visualize several representative validation samples of Br35H in Fig. 
11. It is noticeable that brain tumor presented in the figure all display 
irregular shapes and different locations. As shown in the last two row in 
the figure, detection confidence offered in the image of BTDet are gen-
erally higher than the baseline YOLOv8-N counterpart, demonstrating 
BTDet could process brain tumor images with comprehensive high-level 
performance due the effectiveness of the model design.

To further explore the recognition ability towards small tumor 
regions, we conducted a comparative Grad-CAM [67] visualization 
analysis between BTDet and baseline methods. As shown in Fig.  12, 
BTDet generates precise, compact heatmaps (the second row) that 
closely match tumor boundaries, while baseline (the first row) methods 
produce diffuse activation extending into healthy tissue. Furthermore, 
BTDet demonstrates a stronger response to brain tumor locations in 
heatmaps, enabling precise lesion localization. The proposed model 
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Table 8
Overall comparison with the YOLO series algorithms on LUNA16 dataset.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺) 𝐹𝑃𝑆 
 YOLOv5-N [17] 0.711 0.559 0.588 0.25 1.76 4.1 400  
 YOLOv5-S [17] 0.677 0.605 0.621 0.254 7 15.8 417  
 YOLOv5-M [17] 0.688 0.634 0.645 0.286 20.8 47.9 270  
 YOLOv6-N [44] 0.739 0.629 0.626 0.274 4.63 11.34 321  
 YOLOv6-S [44] 0.69 0.655 0.619 0.273 18.5 45.17 298  
 YOLOv7_Tiny [45] 0.66 0.588 0.593 0.24 6 13 270  
 YOLOv7 [45] 0.599 0.504 0.537 0.244 36.48 103.2 141  
 YOLOv8-N [46] 0.759 0.71 0.715 0.311 3 8.1 268  
 YOLOv8-S [46] 0.786 0.695 0.701 0.327 11.1 28.4 254  
 YOLOv8-M [46] 0.723 0.691 0.701 0.327 25.7 78.7 165  
 YOLOv9-C [34] 0.789 0.706 0.747 0.325 50.6 236.6 99  
 YOLOv10-N [47] 0.713 0.655 0.674 0.303 2.69 8.2 287  
 YOLOv10-S [47] 0.755 0.636 0.689 0.296 8 24.4 283  
 YOLOv10-M [47] 0.732 0.681 0.712 0.317 16.4 63.4 209  
 YOLO11-N [48] 0.753 0.693 0.714 0.322 2.58 6.3 291  
 YOLO11-S [48] 0.753 0.718 0.708 0.322 9.41 21.3 275  
 YOLOv12-N [49] 0.676 0.647 0.619 0.271 2.55 6.3 190  
 YOLOv12-S [49] 0.685 0.676 0.671 0.3 9.23 21.2 185  
 YOLOv13-N [50] 0.72 0.649 0.657 0.291 2.44 6.2 131  
 YOLOv13-S [50] 0.752 0.676 0.698 0.306 9 20.7 133  
 BTDet 0.761 0.714 0.718 0.328 2.25 6 263  
Table 9
Comparison with the mainstream algorithms on LUNA16 dataset.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺) 𝐹𝑃𝑆 
 Faster RCNN [51] 0.667 0.552 0.559 0.262 41.12 206.66 84  
 Cascade RCNN [61] 0.637 0.626 0.609 0.282 68.93 234.66 65  
 SSD300 [23] 0.609 0.504 0.433 0.155 23.75 34.27 199  
 SSD512 [23] 0.691 0.668 0.651 0.208 24.39 87.72 157  
 DCNv2 [62] 0.672 0.559 0.549 0.252 148.69 229.42 72  
 Sparse RCNN [63] 0.739 0.721 0.626 0.342 105.94 157 71  
 RT-DETR [54] 0.742 0.66 0.694 0.302 41.9 125.6 68  
 BTDet 0.761 0.714 0.718 0.328 2.25 6 263  
Fig. 11. Visualization of detection results of BTDet and YOLOv8n on Br35H. (a) Input Images. (b) Ground Truth. (c) Baseline. (d) BTDet.
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Fig. 12. Comparative analysis of heatmap by Grad-CAM between baseline method and BTDet on Br35H. (a) Baseline. (b) BTDet.
Fig. 13. Visualization of detection results of BTDet and YOLOv8n on LUNA16. (a) Input Images. (b) Ground Truth. (c) Baseline. (d) BTDet.
Table 10
Detection results of BTDet on LUNA16 under different IoU loss function 
settings.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50∶95 𝐹𝑃𝑆 
 CIoU [64] 0.755 0.698 0.317 260  
 DIoU [65] 0.733 0.727 0.313 231  
 GIoU [66] 0.761 0.714 0.328 263  

maintains strong spatial correlation with radiologist annotations across 
all tumor sizes. Consequently, our architecture demonstrates signifi-
cantly improved detection of smaller lesions through its multi-scale 
feature aggregation design, consistently localizing tumors that baseline 
methods miss or incorrectly fragment.

We also visualize several examples from LUNA16 dataset to verify 
the lung nodule detection performance of BTDet which shown in Fig. 
13. From the sample images, we can understand that the percentage 
of lung nodules in MRI images is extremely small and surrounded by 
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complex contextual feature information, which greatly boosts the diffi-
culty for accurate nodule detection. Surprisingly, BTDet demonstrated 
excellent detection performance and was able to accurately localize and 
identify the position of lung nodules in the image at a high confidence 
level. BTDet is not only able to achieve a high level of detection 
performance on the brain tumor task, but also performs equally well 
on the lung nodule task, confirming that BTDet is robust and scalable 
and has great potential for application in the field of medical image 
processing.

5. Limitations

Despite achieving strong performance in brain tumor and lung 
nodule detection tasks, BTDet still has several limitations. First, the 
datasets used are relatively small and lack diversity, which may affect 
the model’s generalizability across different clinical settings. Second, 
the detection accuracy for lesions with blurred boundaries or irregular 
shapes remains suboptimal. Third, BTDet has not yet been validated in 
real-world clinical environments, and the absence of interaction with 



Y. Li et al. Biomedical Signal Processing and Control 114 (2026) 109283 
medical professionals limits its practical applicability. Moreover, the 
model currently relies on 2D imaging and does not fully leverage 3D 
spatial information, potentially overlooking subtle lesions across slices. 
Finally, the structure of the detection head is fixed, making it difficult 
to adapt dynamically to different tasks. Future work should focus 
on improving data diversity, incorporating 3D modeling, conducting 
clinical validations, and enhancing structural flexibility to improve the 
practicality and adaptability of BTDet.

6. Conclusion

In this work, we present BTDet, an efficient and lightweight frame-
work for brain tumor detection in medical images. The proposed model 
achieves an effective balance between detection accuracy and computa-
tional efficiency, demonstrating strong performance while maintaining 
low parameter counts and minimal computational overhead. BTDet 
integrates several design components to enhance detection capability: 
(1) an RCG block combined with a reparameterized GELAN backbone 
to facilitate gradient propagation and feature extraction; (2) an FSPPF 
module that enlarges the receptive field through large-kernel pooling 
for improved semantic representation in deeper layers; (3) a neck struc-
ture augmented with a CSE and GSC, supporting adaptive attention and 
efficient multi-scale fusion; and (4) two lightweight detection heads 
that further reduce inference cost. Extensive experiments show that 
BTDet achieves consistent performance gains across medical imaging 
tasks. On the Br35H brain tumor dataset, it attains a 2.45% improve-
ment in 𝑚𝐴𝑃@50∶95 over strong baselines. It also generalizes well to 
lung nodule detection on the LUNA16 dataset, where it achieves a 5.4% 
accuracy gain, confirming its cross-domain applicability. These results 
highlight BTDet as a practical and accurate detection solution that is 
suitable for real-world clinical scenarios.
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