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A B S T R A C T

The theory of magneto hydrodynamic (MHD) thin film lubrication is applied to numerically 
analyze the MHD properties (including steady film pressure, non-dimensional load capacity, non- 
dimensional stiffness coefficient, and non-dimensional damping coefficient) of wide-exponential 
shaped porous slider bearings containing an electrically conducting fluid under the influence of a 
transverse magnetic field. The MHD dynamic Reynolds-type equation, which incorporates tran
sient squeezing motion, is produced by merging the continuity equation with the MHD motion 
equations. A closed-form solution is utilized to determine the static film pressure. Moreover, 
MATLAB (r2018b) numerical simulations are performed to see the effects of distinct parameters 
on velocity and pressure distributions. The findings suggest that the presence of externally 
applied magnetic fields indicates an increase in film pressure. The influence of an applied mag
netic field on the lubricant flow is analyzed, considering viscosity variations due to temperature 
and pressure changes. The governing equations are formulated and solved to determine the 
pressure distribution, load-carrying capacity, and frictional characteristics. The results reveal that 
the MHD effect enhances the bearing’s load capacity, while viscosity variation significantly in
fluences lubricant behavior, leading to optimized performance. The findings provide insights into 
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improving bearing efficiency in high-temperature, electrically conductive fluid applications, 
thermal engineering, mining industry, and energy sector.

The influence of the applied magnetic field, as shown by the Hartmann number, greatly en
hances the load-bearing capacity when contrasted with the non-conducting lubricant (NCL) 
scenario values. Moreover, with increasing Hartmann number, these improvements in bearing 
MHD characteristics become increasingly obvious and decreasing minimum film thickness.

1. Introduction

The hydrodynamic lubrication characteristics have typically been examined under the premise that a lubricant behaves as either a 
Newtonian or a non-Newtonian fluid, with the viscous fluid following the principles of classical continuum theory. Initially, Stoke 
(1966) formulated several micro continuum theories to characterize the behavior of non-Newtonian fluids containing microstructure. 
Stoke’s micro continuum theory of fluids represents the simplest modification and advancement of the classical continuum theory of 
fluid, accommodating polar effects such as anti-symmetric stress tensors and couple stress body couples. Magneto hydrodynamic is 
concerned with the physical system specified by the equation that result from the fusion of those hydrodynamic and electromagnetic 
theory. A magnetic field which is generated by the induced current is added to the applied magnetic field. MHD is interesting from 
several standpoints. Magneto-fluids can carry current which means that they can both generate field and can be influenced by magnetic 
fields. Bernard and Hamerock [1] initially explored the properties of fluid film lubrication. A systematic investigation of magneto 
hydrodynamics was initiated by Alfven Reddy and colleagues [2] examined the joint effect of changes in viscosity and squeeze 
behavior on the performance of narrow hydrodynamic journal bearings utilizing a couple stress fluid model. A number of researchers 
investigated the MHD properties using couple stress as a lubricant.

Naduvinamani et al. [4] explored the MHD lubrication of a couple stress squeeze film on circular stepped plates, while Hanu
magowda et al. [3] examined the impact of MHD with couple stress on a plane slider bearing. Naduvinamani et al. [6] investigated the 
MHD influence on an exponential film configuration using a pair stress fluid, while Lin [5] analyzed the MHD dynamic characteristics 
of a broad slider bearing with a power law film profile. Roughness denotes the irregularity or uneven quality of a texture and stands as 
one of the primary surface topographic descriptions. It illustrates the surface’s smoothness at a specific length scale. Consequently, 
roughness standards are essential in areas such as brake pads, flooring, and tires. The influence of roughness parameters on lubrication 
regarding topics such as sliding surface lubrication, compliant surfaces, and roller bearing wear has also been investigated.

Numerous specialists have investigated different types of bearings with the roughness effect. While Kudenatti et al. [8] considered 
the MHD squeeze film between porous, rough rectangular plates and provided a numerical solution for it, Kesavan et al. [7] inves
tigated the MHD porous parallel rectangular plates with a finite number of pores with a roughness effect.

Surface roughness and MHD effect between two finite rectangular plates were given by Bujurke [9]. Christensen [10] presents a 
stochastic model for hydrodynamic lubrication of uneven surfaces.

Slider bearings are those that generate solely sliding friction. The shaft is supported in most cases by the sliding surface, with oil and 
air in between to aid sliding movement. Porous sliding bearings are very useful in mining industry, mechanical engineering and many 
other thermal engineering applications. In mining industry, the porous sliding bearings can be used for enhanced load bearing in 
crushers and mills, for improving the performance in drilling equipment and enhanced thermal stability. The MHD effects and porous 
bearing structures work together to enhance heat dissipation, maintain ideal operating temperatures, and avoid overheating, all of 
which are critical in the mining sector and for the thermal progress of electronics.

The slider bearing featuring an exponential profile for various lubricants has been examined in many studies. The impact of porous 
exponential slider bearings on MHD pair stress was studied by Hanumagouda et al. [11]. Lin et al. [12] examined the dynamic 
characteristics of wide slider bearings featuring exponential film profiles.

The dynamic characteristics of an exponential slider bearing with MHD couple stress were examined by Naduvinamani et al. [13]. 
For various film profiles, Biradar et al. [14] and Sreekala et al. [15] investigated the couple stress effect on slider bearings.

The combined effects of surface roughness and viscosity variation on the couple stress squeeze film properties of short journal 
bearings are theoretically analyzed and presented. The Christensen stochastic theory is used to mathematically derive the modified 
stochastic Reynold’s equation that takes into account the fluid’s viscosity variation of couple stresses and the randomized surface 
roughness structure on the bearing surface. By analyzing how viscosity variations influence the behavior of MHD-based lubrication, 
this study helps optimize the design and performance of slider bearings under different operating conditions, ensuring efficient load- 
carrying capacity and reduced friction. Here we have used MATLAB (R2018b) to solve the equations numerically. The problem has not 
been encountered earlier by any other author. By improving lubrication efficiency and reducing energy losses due to friction and wear, 
this study contributes to the development of more energy-efficient and sustainable mechanical systems.

Overall, this study bridges the gap between theoretical fluid dynamics, magnetic field applications, and practical engineering 
solutions, making it highly valuable for both researchers and engineers involved in bearing technology and lubrication science.

Research Questions: 

• How does the variation in lubricant viscosity influence the pressure distribution and load-carrying capacity of wide porous slider 
bearings with an exponential film profile?
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• What is the impact of temperature-dependent viscosity changes on the lubrication performance of porous slider bearings under 
different operating conditions?

• What is the role of MHD effects in controlling the flow behavior of conducting lubricants within a porous bearing system?

Viscosity represents internal friction of the fluid, such internal forces in flowing fluid result from cohesion and molecule.

2. Mathematical formulations

The physical geometry of a wide porous slider bearing with a length L and a sliding velocity U in the x-direction and a squeezing 
velocity ∂h

∂t in the z-direction is shown in Fig. 1. The exponential film thickness is calculated as follows 

h(x, t) = e− x
(lnr)

L hm(t). (1) 

Here ‘hm(t)’ denotes the minimum film thickness at outlet ‘r =
d+hm(t)

hm(t) ’ and inlet-outlet film ratio, where ‘d’ is the shoulder height 
representing the difference between the height of the inlet and the height of the outflow.

Assumptions 

• In contrast to viscous forces, inertial forces are regarded as insignificant.
• Fluid film is considered as thin.
• The body forces and body couples are considered insignificant.
• An electrically conductive immiscible isothermal fluid with electrical properties is supposed to be the lubricant.
• In the z-direction, there is an externally uniform transverse magnetic field.
• The lubricant is considered a Newtonian, incompressible fluid with viscosity varying as a function of temperature and pressure.
• The lubrication film thickness is small compared to the bearing length, allowing the use of the Reynolds equation under the thin 

film assumption.
• The fluid flow within the lubrication film is assumed to be in a steady-state condition, with no transient effects.
• The lubricant flow is assumed to be laminar, as the Reynolds number is low due to the small film thickness and moderate sliding 

velocities.

The governing equation is given by 

∂u
∂x

+
∂w
∂z

= 0, (2) 

Fig. 1. Physical Representation of the Problem.
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∂p
∂x

= μ ∂2u
∂z2 − σB0

(
Ey + uB0

)
, (3) 

∂p
∂z

= 0. (4) 

The no slip condition for the boundary at porous bearing surfaces are 

u = U and w = 0 at z= 0. (5) 

u = 0 and w =
dh
dt

at z = h. (6) 

The solution is given by 

u = A1e

̅̅
σ
μ

√
B0z

+ B1e
−

̅̅
σ
μ

√
B0z

−
1

σB0
2

[
∂p
∂x

+ σB0Ey

]

. (7) 

The x-direction velocity component is provided by 

u = U
[

cosh
(

Mz
hm0

)

− coth
(

Mz
hm0

)

sinh
(

coth
(

Mz
hm0

))]

+
1

σB0
2

[
∂p
∂x

+ σB0Ey

][

cosh
(

Mz
hm0

)

− 1 − tanh
(

Mz
hm0

)

sinh
(

coth
(

Mz
hm0

))]

,

(8) 

where M is the Hartmann number and signifies the constant minimum film thickness hm0 at the end defined as 

M = B0hm0

̅̅̅σ
μ

√

. (9) 

In this analysis, it is assumed that the fluid has no external circuit and that the bearing surfaces are perfect insulators. The electric 
field is then estimated by requiring a zero net current flow. 

∫h

z=0

(
Ey + uB0

)
dz = 0. (10) 

Taking the continuity equation (8.2) and integrating it over the film thickness with respect to z 

∫h

z=0

∂u
∂x

dz = −

∫h

z=0

∂w
∂z

dz. (11) 

Performing the integration together with the boundary condition equation (8.5) and (8.6), the MHD dynamic equation is defined as 

1
12

∂
∂x

[
f(h,M)

μ
∂p
∂x

]

−
1
2

U
∂h
∂x

=
∂h
∂t
. (12) 

Since experiments have shown that the highest temperature occurs in areas with the thinnest film thickness, a viscosity- 
temperature correlation can actually be substituted with a viscosity-film thickness correlation. when the viscosity ‘μ1’ at h = h1 

= c(1+ε) (inlet condition) is known, then 

μ = μ1

(
h
h1

)Q

. (13) 

In most cases, according to the nature of lubricant, the value of Q lies between 0 and 1. The exponent ‘Q’ can be calculated using the 
following formula. 

Q =

log
(

μ1
μ2

)

log
(

h1
h2

), (14) 

where, μ2 is taken as the outlet viscosity with the film thickness as h2. Also, Q (0 ≤ Q ≤ 1) is determined by the type of lubricant used; 
for ideal Newtonian fluids, Q = 0; for perfect gases, Q = 1.

The updated Reynold’s equation thus becomes 

∂
∂x

[
f(h,M)

μ1

∂p
∂x

(
h1

h

)Q
]

= 6U
∂h
∂x

+ 12
∂h
∂t
, (15) 
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where f(h,M) = 6hm0

h
M2

[
Mz
hm0

coth
(

1
2

Mz
hm0

)

− 2
]

, (16) 

h(x, t) = hm(t)e− xlnr, (17) 

where r =
d + hm(t)

hm(t)
, (18) 

hm(t) = 1 + ε, ε ≤≤ 1, (19) 

H = h(t) + hs(x, y). (20) 

The first part ‘h
−

(t)’ is the nominal portion of the film, ‘hs(x,y)’ is defined as x and y random function having mean equal to zero.

2.1. Stochastic Reynold’s equation

Let hs(x, y) be the stochastic film thickness probability derivative function defined as f(hs). Taking the average of the stochastic Eqs. 
(15)

∂
∂x

[
E(f(h,M))

μ1

∂E(p)
∂x

(
h1

h

)Q
]

= 6U
∂E(h)

∂x
+ 12

∂E(h)
∂t

, (21) 

where E(.) =
∫∞

− ∞

(.)f(hs)dhs, (22) 

where α = E(hs), (23) 

σ2 = E(hs − α)2
, (24) 

ε = E(hs − α)3
. (25) 

The mean value is given by α. The symmetry of the variables is measured by ε.
For the probability function defined by Christensen, it is assumed that 

f(hs) =

⎧
⎨

⎩

35
32c7

[(
c2 − hs

2)3]
, − c < hs < c

0 elsewhere

⎫
⎬

⎭
, (26) 

where ‘σ = c/3’ is the standard deviation. 

E(H) =

∫c

− c

Hf(hs)ds, (27) 

=

∫c

− c

(h+ hs)f(hs)ds, (28) 

=

∫c

− c

(h)
35

32c7

(
c2 − hs

2)3
dhs

∫c

− c

(hs)
35

32c7

(
c2 − hs

2)3
dhs, (29) 

= h(t), (30) 

where
∫c

− c

35
32c7

(
c2 − hs

2)3
dhs = 1. (31) 

2.2. Transverse roughness

The film thickness takes the shape of a one-dimensional transverse roughness pattern composed of long thin ridges and valleys 
running perpendicular to the sliding surface (z-direction). 
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H = h(x, t) + hs. (32) 

The Reynold’s Eq. (31) thus assumes the following form. 

∂
∂x

⎡

⎢
⎢
⎣

1

E
[

1
(f(h,M))

]
h1

Q

hQ
∂E(p)

∂x

⎤

⎥
⎥
⎦ = 6U

∂
∂x

⎡

⎢
⎢
⎣

E
(

1
h2

)

E
(

1
h3

)

⎤

⎥
⎥
⎦+ 12

∂E(H)

∂t
. (33) 

The modified stochastic MHD couple stress Reynold’s equation for both types of roughness patterns is obtained by combining the 
equations (8.35) and (8.53). where, 

G(h,M, c) =

⎧
⎪⎨

⎪⎩

E(f(h,M)) ʹFor longitudinal roughnesś

E
(

1
f(h,M)

)
ʹFor transverse roughnesś

⎫
⎪⎬

⎪⎭
, (34) 

χ(h, c) =

⎧
⎪⎨

⎪⎩

E(h) ʹFor longitudinal roughnesś

E
(

1
h2

)
ʹFor transverse roughnesś

⎫
⎪⎬

⎪⎭
, (35) 

and E(f(h,M)) =
35

32c7

⎡

⎣
∫c

− c

f(h,M)
(
c2 − hs

2)3
dhs

⎤

⎦, (36) 

E
(
f(h,M)

− 1)
=

35
32c7

∫c

− c

[(
c2 − hs

2)3

f(h,M)

]

dhs . (37) 

Then the above equation (8.53) becomes 

∂
∂x

[

G(h,M, c)
h1

Q

hQ
∂E(p)

∂x

]

= 6U
∂(χ(h, c))

∂x
+ 12

∂E(H)

∂t
. (38) 

Incorporating the non-dimensional parameters and variables 

x* =
x
L
, p* =

E(p)h0
2

μUL
, t* =

tU
L
, l* =

l
2

(
1
hm

)

, h* =
h
h0
,M = B0h0

̅̅̅σ
μ

√

,H =
H
h0

=
h
h0

+
hs

h0
= h + hs, c* =

c
hm

. (39) 

The film pressure’s boundary condition at p = 0 at x* = 0 and x* = − 3, E(p) = 0 at x* = 0 and x* = − 3 and dE(p)
dx = 0 at x* = 0.

Applying the following boundary conditions and integrating twice with respect x, we get 

p* =

[

6hm −
12

ln(δ + 1)
dH
dt

] ∫x*

x*=0

he(x)hQ

E(G(h,M, c))h1
Q dx* + c1

(

hm,
dH
dt

) ∫x*

x*=0

hQ

E(G(h,M, c))h1
Q dx*, (40) 

where he(x) = e− xln(δ+1), (41) 

c1

(

hm,
dH
dt

)

= −

[

6hm −
12

ln(δ + 1)
dH
dt

]

∫3

x*=0

he(x)
E(G(h,M, c))

dx*

∫3

x*=0

1
E(G(h,M, c))

dx*

. (42) 

The non-dimensional formula for film force is found by integrating Eq. (40) over the film region, and it is given by 

F =

∫− 3

x*=0

p*dx*, (43) 

F =

[

6hm −
12

ln(δ + 1)
dH
dt

] ∫1

x*=0

∫x*

x*=0

he(x)hQ

E(G(h,M, c))h1
Q dx*dx* + c1

(

hm,
dH
dt

) ∫1

x*=0

∫x*

x*=0

hQ

E(G(h,M, c))h1
Q dx*dx*, (44) 

Z. Iqbal et al.                                                                                                                                                                                                           



c1

(

hm,
dH
dt

)

= −

[

6hm −
12

ln(δ + 1)
dH
dt

] ∫ 3
x*=0

he(x)
E(G(h,M,c)) dx*

∫ 3
x*=0

1
E(G(h,M,c)) dx*

. (45) 

2.3. Steady state characteristics

Both the steady film pressure and the steady load-carrying capacity can be calculated using Eqs. (40) and (44), respectively, by 
keeping the minimum film height constant and the squeezing velocity zero. 

[p*]steadystate = [6hm]

∫x*

x*=0

he(x)hQ

E(G(h,M, c))h1
Q dx* + c1(hm,V =0)

∫x*

x*=0

hQ

E(G(h,M, c))h1
Q dx* 

[W*]steady state = [F]steady state = [6hm]

∫1

x*=0

∫x*

x*=0

he(x)hQ

E(G(h,M, c))h1
Q dx*dx* + c1(hm,V= 0)

∫1

x*=0

∫x*

x*=0

hQ

E(G(h,M, c))h1
Q dx*dx*. (46) 

The partial derivative of film force with respect to the minimal film thickness can be used to calculate the linear dynamic stiffness 
coefficient. 

S* = −

(
∂F

∂hm

)

= 6
∫− 3

x*=0

∫x*

x*=0

he(x)hQ

E(G(h,M, c))h1
Q dx*dx* + 6hm

⎡

⎣
∫− 3

x*=0

∫x*

x*=0

he(x)hQ

E(G(h,M, c))h1
Q

∂f
∂hm

dx*dx*

⎤

⎦+

∂c1

∂hm

∫− 3

x*=0

∫x*

x*=0

hQ

E(G(h,M, c))h1
Q dx*dx* − c1

⎡

⎣
∫− 3

x*=0

∫x*

x*=0

hQ

E(G(h,M, c))h1
Q

∂f
∂hm

dx*dx*

⎤

⎦,

(47) 

∂c1

∂hm
=

∂
∂hm

⎡

⎢
⎢
⎢
⎣
−

[

6hm −
12

ln(δ + 1)
V
] ∫ − 3

x*=0
he(x)hQ

E(G(h,M,c))h1
Q dx*

∫ − 3
x*=0

hQ

E(G(h,M,c))h1
Q dx*

⎤

⎥
⎥
⎥
⎦
, (48) 

and 

∂f
∂hm

=
∂

∂hm

[

6hm0
2 h
M2

[
Mh
hm0

coth
(

1
2

Mh
hm0

)

− 2
]]

. (49) 

The partial derivative of film force with respect to the squeezing velocity can be used to calculate the linear dynamic damping 
coefficient. 

D = −

(
∂F
∂V

)

=
− ∂
∂V

⎡

⎣(− 1)

⎧
⎨

⎩

⎡

⎣ −

[

6hm −
12

ln(δ + 1)
V
] ∫− 3

x*=0

∫x*

x*=0

hQ

E(G(h,M, c))h1
Q dx*dx*

⎤

⎦

⎫
⎬

⎭

⎤

⎦

+c1(hm,V)

⎡

⎣
∫− 3

x*=0

∫x*

x*=0

hQ

E(G(h,M, c))h1
Q

∂f
∂hm

dx*dx*

⎤

⎦.

(50) 

The following parameters values have been used in this article.

Physical Quantity Symbol Value of Physical Quantity

‘Length of the bearing’ L ‘1.0× 10− 1m’
‘Inlet film thickness’ h1 ‘2.0× 10− 4m’
‘Outlet film thickness’ hm ‘1.0× 10− 4m’
‘Profile parameter’ δ ‘1.0′
Electrical conductivity σ h0/m
‘Lubricant viscosity Parameter’ Q ‘0 ∼ 1′
‘Applied magnetic field’ B0 0,0.95,1.90Wb/m2

‘Roughness parameter’ c* ‘(0,0.4)× 10− 4m’
‘Steady minimum film thickness’ hm0 ‘0.5 ∼ 1.5′
Hartmann number M 0 ∼ 10
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3. Results and discussions

This study examines how surface roughness affects an exponential slider bearing’s slider and dynamic properties when a magnetic 
field is present. These are affected by the roughness parameter, Hartmann number M, and profile parameter δ. Using the given values 
for the non-dimensional parameter in the current study yields the following outcomes. 

• c*=0, l* = 0, Naduvinamani et al. [93] investigated the influence of magneto hydrodynamic coupling stresses on the dynamic 
properties of an exponential slider bearing (2017).

• Santhanakrishnan et al. [103] examined magneto hydrodynamics properties for wide porous slider bearings with an exponential 
film profile with c*=0, Q (viscosity variation=0) (2016).

Squeeze Film Pressure
Fig. 2 illustrates the fluctuation of non-dimensional steady state pressure p* with coordinate x* for different Hartmann number and 

viscosity parameter Q values. An increase in the value of M leads to a noticeable rise in the non-dimensional p* measure. As Hartmann 
number increases, the presence of the magnetic field enhances the overall pressure, leading to a more uniform pressure profile due to 
the damping effect of Lorentz forces. Conversely, increasing Q, which accounts for viscosity variation, results in a noticeable shift in 
pressure peaks and distribution while MHD forces can enhance pressure, viscosity variation can either counteract or amplify these 
effects depending on the flow conditions.

Fig. 3 shows the fluctuation of p* with profile parameter δ for various values of Hartmann number M and steady minimum film 
thickness hm0 with viscosity parameter Q = 1, roughness parameter c* = 0.4 for both longitudinal and transverse roughness pattern for 
both longitudinal and transverse roughness patterns. The squeeze film pressure reduces as the viscosity variation parameter increases 
in both longitudinal and transverse roughness patterns.

For both longitudinal and transverse roughness, Fig. 4 illustrates the variation of p* with hm0 for varying values of M and Q. 
Moreover, p* increases with increasing M in both scenarios for constant δ=1. The results indicate that pressure increases with 
increasing M in both low and high viscosity variation scenarios. This is attributed to the strengthening of the Lorentz force, which 
enhances fluid resistance and contributes to higher pressure. Additionally, as Q increases, viscosity variation influences the pressure 
profile, leading to a reduction in peak pressure due to the weakening of lubricant viscosity. However, the MHD effect dominates at 
higher M, ensuring an overall pressure increase despite viscosity changes. This interplay suggests that optimizing M and Q can 
significantly influence the hydrodynamic performance of the porous slider bearing which is very useful in advancing the hydraulic 
systems used in mining equipment.

Fig. 5 illustrates the fluctuation in work load W* as a function of hm0 different viscosity parameters while maintaining a constant 
roughness parameterc*. As Q increases, it is observed that it expands.

Fig. 6 illustrates non-dimensional work W* with δ for various M and hm0 . It is noted that the work increases as the Hartmann number 
M grows, as well as for both roughness patterns.

The steady state stiffness coefficient fluctuates with the profile parameter δ for different values of M, as seen in Fig. 7. As M 

Fig. 2. MHD steady film pressure p* as a function of x* for different M and Q under δ = 1 and hm0 = 1.
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increases, the transverse and longitudinal roughness patterns become more rigid. It is also demonstrated that the viscosity variation 
parameter increases the load carrying capacity.

Fig. 8 shows the variation of damping coefficient in a steady condition with profile parameter δ with hm0 = 1 and Q = 0.5. With both 
types of roughness pattern, it is seen that D* increases for increasing values of M and roughness parameter c*. When compared to non- 
magnetic and Newtonian situations, the application of a magnetic field and the effect of the roughness parameter both enhance the 
value of the damping coefficient.

4. Conclusion

Based on the MHD thin-film lubrication theory, the MHD characteristic for a wide exponential-shaped porous rough slider bearing 
with an electrically conducting fluid in the presence of a transverse magnetic field is theoretically investigated. The following 
conclusion can be taken from the findings and discussions: 

Fig. 3. Plot of MHD steady film pressure p* as a function of δ for different M and hm0 under Q = 1.

Fig. 4. Plot of MHD steady film pressure p* as a function of hm0 for different M and Q under δ = 1.
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• The MHD dynamic Reynolds-type equation has been derived for the study of an MHD exponential-shaped porous slider bearing, 
taking into account the transient squeezing action.

• For the stable load carrying capacity, stiffness coefficient, and damping coefficient, a closed form solution is obtained.
• In contrast to the non-conducting lubricant (NCL) example, the effects of externally applied magnetic fields on the steady load and 

dynamic stiffness coefficients are more noticeable with greater values of the Hartmann number and the profile parameter and small 
values of the minimum film thickness.

• With higher Hartmann number and profile parameter values and lower minimum film thickness values, the effects of externally 
applied magnetic fields on the steady load and dynamic stiffness coefficients are increasingly noticeable.

The findings suggest that incorporating MHD effects enhances the load-carrying capacity and reduces frictional losses, making the 
system more efficient in high-performance and precision in engineering applications and mining industry. Additionally, the consid
eration of viscosity variation improves the accuracy of performance predictions, particularly in extreme temperature or pressure 
environments, ensuring better lubrication and durability. These insights can be effectively utilized in industries such as aerospace, 
automotive, mining, and manufacturing, where optimized bearing performance is crucial for reliability and energy efficiency.

Fig. 5. Variation of non-dimensional work load W* with hm0 for different Q under δ = 1.

Fig. 6. Variation of non-dimensional work load W* with δ for different M and hm0 under Q = 1.
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Industrial Applications: Industries utilizing high-speed rotating equipment, such as mining industry, textile machinery and 
precision machining tools, rely on porous bearings for effective lubrication and minimal wear. The study’s findings can improve 
lubricant distribution strategies, hydraulic systems in mining, and enhancing machine longevity. In applications where extreme 
temperature variations affect lubricant viscosity, such as aircraft landing gear mechanisms and automotive transmissions, under
standing viscosity-dependent performance can optimize bearing efficiency under dynamic conditions.
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