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Dynamic Ensemble Framework for Imbalanced
Data Classification
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Abstract—Dynamic ensemble has significantly greater potential
space to improve the classification of imbalanced data compared to
static ensemble. However, dynamic ensemble schemes are far less
successful than static ensemble methods in the imbalanced learning
field. Through an in-depth analysis on the behavior characteris-
tics of dynamic ensemble, we find that there are some important
problems that need to be addressed to release the full potential of
dynamic ensemble, including but not limited to, correcting the com-
ponent classifiers’ bias towards the majority classes, increasing the
proportions of the positive classifiers (i.e., the component classifiers
making correct prediction) for difficult samples, and providing the
accurate competence estimations on the hard-to-classify samples
w.r.t the classifier pool. Inspired by these, we propose a Dynamic
Ensemble Framework for imbalanced data classification (imDEF).
imDEF first uses the data generation method OREMG to generate
multiple artificial synthetic datasets, which have diverse class dis-
tributions by rebalancing the original imbalanced data. Based on
each of such synthetic datasets, imDEF then utilizes a Classification
Error-aware Self-Paced Sampling Ensemble (SPSECE) method to
gradually focus more on difficult samples, to create a low-biased
classifier pool and increase the proportions of the positive classi-
fiers for the difficult samples. Finally, imDEF constructs a referee
system to achieve the competence estimations by leveraging an En-
semble Margin-aware Self-Paced Sampling Ensemble (SPSEEM)
method. SPSEEM incrementally strengthens the learning of the
hard-to-classify samples, so that the competent levels of component
classifiers could be estimated accurately. Extensive experiments
demonstrate the effectiveness of imDEF. The source codes have
been made publicly available on GitHub.
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I. INTRODUCTION

A. Background

IMBALANCED data classification occurs when some classes
(i.e., majority classes) overwhelm the others (i.e., minority

classes) in sample size. On the one hand, class imbalance could
be entangled with data complexity factors, significantly dete-
riorating the difficulty of learning [1]. Standard classification
algorithms are usually incapable of combating class imbalance
problems, and exhibit undesired performance in the minority
classes. On the other hand, the learning from imbalanced data is
prevalent in real-world applications, which the correct prediction
of minority samples is often a critical requirement in reality
(e.g., disease diagnosis, defect detection). Under the widespread
prevalence of imbalanced learning problems, a great realistic
research need is formed between the importance of correctly
identifying minority samples and the propensity of misclassify-
ing minority samples.

Over the past two decades, a large number of imbalanced
learning techniques have been proposed. Among them, imbal-
anced ensemble algorithms are considered as one of the most
effective types of methods [2], [3]. Existing ensemble solutions
could be divided into imbalanced static ensemble methods and
dynamic ensemble schemes. Static ensemble approaches always
use all component classifiers to classify a test sample [2]. By con-
trast, dynamic ensemble schemes first estimate the competent
levels of component classifiers on the considered test sample,
then select those most competent classifiers to predict [4], [5].
Apparently, to produce correct collective decision, static ensem-
ble requires the component classifiers making correct prediction
must occupy a majority of the vote weights. When dealing with
imbalanced classification problems, such a decision-making
way is prone to performance bottleneck. The reason behind is
that the component classifiers often have a natural bias towards
the majority classes, making it highly likely that the minority
samples could only be correctly classified by a small percentage
of the component classifiers. Unlike static ensemble, dynamic
ensemble schemes could produce the correct collective decision
as long as there is one component classifier that correctly predicts
the test sample. Therefore, dynamic ensemble solutions have
significantly greater potential to improve the classification per-
formance of imbalanced data than imbalanced static ensemble
methods.

However, imbalanced static ensemble methods are dominant
in existing ensemble solutions [3], [6], [7], [8], [9], [10], and

1041-4347 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Normal University. Downloaded on January 16,2026 at 12:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9814-0973
https://orcid.org/0000-0001-6879-5266
https://orcid.org/0000-0001-9066-1475
https://orcid.org/0000-0003-2305-7555
https://orcid.org/0000-0002-0033-5260
https://orcid.org/0000-0002-6704-0301
mailto:xhu4@ualberta.ca
mailto:xinwangliu@nudt.edu.cn
https://github.com/imbLearning/imDEF
https://doi.org/10.1109/TKDE.2025.3528719


ZHU et al.: DYNAMIC ENSEMBLE FRAMEWORK FOR IMBALANCED DATA CLASSIFICATION 2457

TABLE I
SUMMARY OF MAJOR MATHEMATICAL NOTATIONS

TABLE II
AN EXAMPLE DEMONSTRATING THE SAMPLE IMPORTANCE

FOR THE CONSTRUCTION OF REFEREE SYSTEM

there is no credible evidence to show that imbalanced dynamic
ensemble schemes are better than static ensemble solutions.

In this study, we first conduct a comprehensive experiment to
investigate the classification behavior characteristics of conven-
tional dynamic ensemble in handling class imbalance problems,
so as to reap valuable observations (or phenomenon). Then, we
dig the rallying points for improving dynamic ensemble schemes
according to these observations, and discuss the shortcomings
of existing dynamic ensemble solutions. Finally, we propose
an effective dynamic ensemble framework for imbalanced data
classification.

B. Classification Behavior Analysis of Dynamic Ensemble

To investigate the behavior characteristics of dynamic ensem-
ble, we use a series of representative dynamic ensemble schemes
to classify the imbalanced datasets in Table III. Dynamic ensem-
ble generally involves three stages when predicting a test sample:
1) generating a classifier pool; 2) estimating the competent level
of each component classifier based on the Region of Competence
(RoC1) of this sample, and then selecting the most competent
classifiers; 3) yielding a collective decision by combining all
of the selected classifiers. We form the following dynamic
ensemble schemes: the most commonly used Bagging [11] and

1RoC is usually a small region surrounding the considered test sample. The
competent levels of component classifiers are evaluated by measuring how well
they classify the samples in this region.

AdaBoost.M2 [12] are applied to generate classifier pool, re-
spectively (stage 1); the popular Dynamic Selection Techniques
(DSTs) MCB [13], KNORAE (KNE) [5], KNORAU(KNU) [5],
desRRC [14], desP [15], desKL [15], KnoP [16] are used to
select the component classifiers, respectively (stage 2); and the
selected classifiers are weighted by their corresponding compe-
tent levels (stage 3).

The dynamic ensemble schemes are performed 10 times on
each dataset with stratified 5-fold cross validation. In each
running, 4 of the 5 folds are used as both the training data and
Dynamic SELection data (DSEL2), the remaining fold is treated
as the test data Dtest. For convenience, we call the component
classifiers providing the correct (/wrong) prediction for a test
sample the positive (/negative) classifiers of this sample.

Intuitively, the proportion of the positive classifiers
within classifier pool would significantly affect whether the
corresponding test sample is classified correctly. To investigate
the classification performance of dynamic ensemble in a fine-
grained way, we divide the samples of Dtest into 5 segments,
{Tes}5s=1, depending on their proportions of positive classifiers:
Te1 = {xi|0 ≤ p(xi) ≤ 0.15, xi ∈ Dtest}, Te2 = {xi|0.15 <
p(xi) ≤ 0.3, xi ∈ Dtest}, Te3 = {xi|0.3 < p(xi) ≤ 0.5, xi ∈
Dtest}, Te4 = {xi|0.5 < p(xi) ≤ 0.7, xi ∈ Dtest}, Te5 =
{xi|0.7 < p(xi) ≤ 1, xi ∈ Dtest}, where p(xi) denotes the
proportion of xi’s positive classifiers in the classifier pool.

For each of {Tes}5s=1, we introduce the following statistics
to explore the behavior characteristics of dynamic ensemble:
� Pmajs =

|MAs|
|MA| , where MAs and MA are the majority

sample set inTes andDtest, respectively. This statistic rep-
resents the proportion of the majority samples distributed
into Tes.

� Pmins =
|MIs|
|MI| , where MIs and MI are the minority

sample set in Tes and Dtest, respectively. It is similar to
Pmajs.

� Nmajs = 1
|MAs|

∑
xi∈MAs

|MIs∩NNk(xi)|
|NNk(xi)| , where

NNk(xi) is xi’s k-nearest neighbors in DSEL (k = 7

2DSEL is a dataset in which the RoC of the test sample are defined.
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Fig. 1. The behavior characteristics of the dynamic ensemble schemes with Bagging to generate the classifier pool. (a), (b), and (c) show the average values of
the statistics Pmajs, Pmins, Nmajs, Nmins, Cmaj∗∗∗s , Cmin∗∗∗s , Emaj∗∗∗s and Emin∗∗∗s over the datasets of Table III.

here). For the samples of MAs, this statistic measures the
average percentage of the minority samples within their
k-nearest neighbors.

� Nmins =
1

|MIs|
∑

xi∈MIs

|MAs∩NNk(xi)|
|NNs(xi)| . It is Nmajs’s

counterpart. The definitions of Nmajs and Nmins are
similar to the difficulty measure k-Disagreeing Neigh-
bors [17]. They can measure the difficulty levels of the
majority and minority samples, respectively.

� Cmaj∗∗∗s = 1
|MAs|

∑
xi∈MAs

pc(xi)−nc(xi)
pc(xi)+nc(xi)

, where pc(xi)

(/nc(xi)) represents the average competent level of xi’s
positive (/negative) classifiers under certain DST. The
higher this statistic, the more accurate the competent esti-
mation of component classifiers when predicting the sam-
ples in MAs.

� Cmin∗∗∗s = 1
|MIs|

∑
xi∈MIs

pc(xi)−nc(xi)
pc(xi)+nc(xi)

. It is similar to
Cmaj∗∗∗s . The higher this statistic, the more accurate the
competence estimation when predicting the samples in
MIs.

� Emaj∗∗∗s and Emin∗∗∗s are the misclassification rates on
MAs and MIs under certain DST, respectively.

Fig. 1 illustrates the average results of these statistics over
the datasets of Table III, where the classifier pool is generated
by Bagging. Due to space limitations, the results using Ad-
aBoost.M2 to create classifier pool are shown in Fig. S1 of the
supplementary material. Note that the behavior characteristics
reflected by Fig. 1 and Fig. S1 are highly similar, and the detailed
experimental results are provided in Tables S1 and S2 of the
supplementary material. From this experiment, we can obtain
the following observations.
Observation i. In dynamic ensemble, a DSEL is required to

provide RoC for the test samples. Given the rarity of minority
samples, existing dynamic ensemble schemes usually use the
training data itself as DSEL. However, this would inevitably
cause the overestimation of competent levels, because the sam-
ples are used both for training the component classifiers and
evaluating their competent levels.
Observation ii. The minority samples are more frequently

distributed in the segments with low proportional positive
classifiers than the majority samples (see Fig. 1(a), Pmins >
Pmajs when s ≤ 4). It indicates that the minority samples are

TABLE III
DESCRIPTION OF CHARACTERISTICS OF EXPERIMENTAL TWO-CLASS DATASETS

easier to be misclassified, and the component classifiers have a
bias towards the majority class.
Observation iii.The samples with lower proportions of pos-

itive classifiers have higher Nmins and Nmajs (see Fig. 1(a),
Nmins and Nmajs increase as s becomes smaller), which
means they have higher difficulty levels. It can be understood as
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more difficult samples tend to be correctly predicted by fewer
classifiers.
Observation iv. Compared to the positive classifiers, DSTs

might assign higher competent levels to the negative classi-
fiers, especially for those difficult samples (see Fig. 1(b), both
Cmajxxxs and Cminxxx

s are usually smaller than 0 over s ≤ 3).
We call this phenomenon the competence conflict problem. In
existing DSTs, the competent level of a component classifier is
estimated based on a local neighborhood around the test sample
(i.e., RoC). Given that the RoC of a difficult minority (/majority)
sample is often dominated by the majority (/minority) samples,
the component classifiers, which classify all samples in the RoC
of the difficult minority (/majority) sample into the majority
(/minority) class, would naturally obtain highly competent lev-
els, even if they misclassify this difficult sample itself. On the
contrary, the classifiers correctly identifying this difficult sample
might acquire low competent levels due to the propensity of
mispredicting its neighbors.
Observation v. The samples with lower proportions

of positive classifiers have a higher likelihood of being
misclassified (see Fig. 1(c), both Emajxxxs and Eminxxx

s

are increased as s decreases). Two reasons could account for
this observation. First, these samples require more accurate
competence estimations. Small errors on the competent levels of
component classifiers could result in wrong collective decisions
on them (see Section III-C1 for the details). Second, the lower the
proportion of positive classifiers, the higher the difficulty level
according to Observation iii. DSTs might deteriorate the clas-
sification of the difficult samples due to the competence conflict
problem.

C. Rallying Points of Improving Dynamic Ensemble Schemes

Based on the observations above, addressing the following
problems can serve as the rallying points for improving the
performance of dynamic ensemble in handling imbalanced data
classification.
Problem i.The overestimation of competent levels should be

mitigated according to Observation i, as it increases the risk
that the incompetent classifiers are selected for prediction.
Problem ii. From Observation ii, imbalanced class distri-

bution should be handled, so that the bias toward the majority
classes could be corrected in classifier pool.
Problem iii. The learning of difficult samples should be

reinforced in the process of training component classifiers
to increase their number of positive classifiers. According to
Observations iii and v, the difficult samples have a low pro-
portion of positive classifiers, and the lower the proportion of
positive classifiers, the higher the classification errors.
Problem iv. The competent conflict problem should be

avoided based on Observation iv. It could aggravate the clas-
sification of difficult samples during dynamic prediction, while
the correct classification of these samples is the key for obtaining
a highly effective classification system.
Problem v Inspired by Observation v, the reliable com-

petence estimations should be provided when predicting the

samples with low proportional positive classifiers (i.e., those
hard-to-classify samples w.r.t the classifier pool).

D. Limitations of Existing Dynamic Ensemble Solutions

Conventional dynamic ensemble schemes are generally mod-
ified in three aspects to combat class imbalance problems:
1) Imbalanced static ensemble methods are used to generate
low-biased classifier pool; 2) resampling techniques are applied
to rebalance DSEL, so that the minority samples appear more
frequently in the RoC of the test sample; 3) skew-insensitive
DSTs are designed to accommodate imbalanced DSEL (note:
more details can be found in Section S2.B of the supplementary
material). The first modification is to copy with Problem ii.
The latter two modifications aim to emphasize the importance
of minority samples in the competent level estimation of com-
ponent classifiers. However, the Problems i, iii, iv, v men-
tioned above have not been addressed by existing dynamic
ensemble solutions, thereby seriously depreciating the perfor-
mance of dynamic ensemble way in learning imbalanced data.

E. Motivation and Contributions

Considering that dynamic ensemble has the substantial poten-
tial to enhance the performance of imbalanced data classifica-
tion, while existing imbalanced dynamic ensemble schemes still
have significant limitations, we propose an imbalanced Dynamic
Ensemble Framework (imDEF) to release the full potential of
dynamic ensemble by solving Problems i, ii, iii, iv, and v.

Our major contributions are highlighted as follows:
a) We deeply analyze the classification behavior characteris-

tics of dynamic ensemble when copying with imbalanced
data, and dig out several rallying points for improving
dynamic ensemble schemes.

b) We use a data generation method OREMG to create
artificial synthetic datasets from original training data.
The generated synthetic datasets and original training
data are utilized to train the component classifiers and
learn their competence regions, respectively (alleviating
Problem i). In addition, the synthetic datasets are gener-
ated with diverse class distributions by reducing majority
samples and increasing minority samples, so as to correct
the bias towards the majority classes in the classifier pool
(overcoming Problem ii).

c) We design a classification error-aware self-paced sampling
ensemble SPSECE to create the component classifiers
based on each synthetic dataset. SPSECE uses a self-paced
procedure to gradually enhance the learning of the samples
with high difficulty levels, thus increasing the number of
positive classifiers for the difficult test samples (solving
Problem iii).

d) Our imDEF builds a referee committee for each compo-
nent classifier to accomplish its competence estimation,
rather than using a neighborhood-based way (avoiding
Problem iv). Specifically, an ensemble margin-aware
self-paced sampling ensemble SPSEEM is designed to
construct the referee system based on the original training
data. A self-paced procedure is utilized in SPSEEM to
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Fig. 2. The overall workflow of imDEF. imDEF contains classifier pool generation, referee system construction, and dynamic prediction. C(x) is the prediction
vector of all component classifiers on a test sample x. RC(x) is the competence level vector of all component classifiers w.r.t x. The prediction of each component
classifier is weighted by its corresponding competent level to obtain the final result of x (i.e., ŷ).

gradually focus on the samples with large negative en-
semble margins, so that the learning of hard-to-classify
samples could be emphasized, and more accurate compe-
tence estimations could be provided for the hard samples
(addressing Problem v).

e) The effectiveness of imDEF is evaluated on 30 two-class
and 18 multiclass imbalanced datasets, respectively. The
experimental results demonstrate that imDEF can statisti-
cally outperform both state-of-the-art static and dynamic
ensemble solutions in terms of F1 (/marco-F1), G-mean
(/MG), and AUC (/MAUC).

II. RELATED WORKS

Given that ensemble solutions are our interest, we only
provide here a brief overview of imbalanced static ensemble
methods and dynamic ensemble schemes. A detailed review on
existing ensemble solutions are presented in Section S2 of the
supplementary material.

Standard ensemble algorithms adhere to an accuracy-oriented
design. They need to be combined with resampling techniques
or cost-sensitive methods to combat imbalance problems, which
leads to two types of static ensemble solutions, i.e., resampling
techniques-combined ensemble [2], [18] and cost-sensitive en-
semble [10]. In addition, some works veered away from standard
ensemble learning frameworks, and develop innovative imbal-
anced ensemble algorithms by utilizing intelligent optimization
techniques [19], deep learning approaches [20], or self-paced
learning strategies [3], [21]. In Table S3 of the supplementary
material, we summarize five main types of static ensemble
solutions, where their ideas and major flaws are listed.

In dynamic ensemble, a key issue is how to dynamically select
the component classifiers to predict a test sample, i.e., the design
of DSTs. Existing DSTs include two main steps: 1) finding the

RoC in DSEL for the considered test sample; 2) evaluating the
competent level of each component classifier based on the RoC
by utilizing a competence measure, then selecting those most
competent classifiers to predict. To facilitate the presentation and
comparison of existing DSTs, Table S4 of the supplementary
material summarizes the most representative ones, including
their process descriptions, and RoC definitions. A DST can be
combined with a static ensemble method to form a dynamic
ensemble scheme, where the static ensemble method is used to
generate classifier pool.

To deal with imbalanced data classification, traditional dy-
namic ensemble schemes are improved by constructing the
classifier pool with low bias, modifying imbalanced DSEL, or
designing skew-insensitive DSTs. In [22], [23], [24], the classi-
fier pools are generated by using the imbalanced static ensemble
methods BRF [25], EasyBoost [7], and SMOTEBoost [6] to
alleviate the bias of component classifiers. In [22], [24], [26],
DSEL is balanced via resampling techniques such as RUS,
RAMO [8], and RB [9]. Note that the balanced class distribution
in DSEL is important for handling class imbalance problems.
The reason is that imbalanced DSEL could result in the majority
samples have significantly high probabilities of occurring in
the RoC of the test samples, then DSTs would prefer to select
those component classifiers which perform well on the major-
ity classes. Hence, the ensemble performance in the minority
classes would be depreciated. In addition, a few DSTs have been
proposed to accommodate the learning from imbalanced data.
For example, DES-MI [27] counts the frequency of occurrence
for the samples of each class within RoC, and assigns higher
weights to the lower-frequency classes. Then, the competent
level of a component classifier is the weighted accuracy over the
samples in RoC. RMkNN [22] uses a distance reduction function
to pull the minority samples closer to the test sample, so as to
increase the number of minority samples in RoC.
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III. METHOD

imDEF has three stages: generation of classifier pool, con-
struction of referee system, and dynamic prediction. We first
provide an overview of imDEF, then introduce each stage of
imDEF in detail.

For ease of reference, Table I lists major notations used
throughout this paper along with their mathematical meanings.

A. Framework Overview

Fig. 2 shows the workflow of imDEF, and the pseudocode of
imDEF is presented in Algorithm 1.

In the stage of classifier pool generation (lines 1–7 of Al-
gorithm 1), the original training data is fed to OREMG to
yield �√n�3 synthetic datasets with different class distribu-
tions (lines 2–3). Based on each of the generated synthetic
datasets, SPSECE is used to create a classifier set of size about
n/�√n� (lines 4–5). These classifier sets are eventually united
into a classifier pool of size n (line 6). Note that the exact
size of each classifier set is calculated from line 4. In line 4,
condition? expression 1 :expression 2 is a C-style ternary
operator, which returns expression 1 if condition is true, expres-
sion 2 otherwise. In the stage of referee system construction
(lines 8–9), the competence label of each component classifier
on the original training data Xtr is first obtained by predicting
Xtr and contrasting its true label Ytr (line 8), then SPSEEM

is utilized to build a referee system based on Xtr and the
competence labels of all component classifiers (line 9). From
Fig. 2, one can see that the constructed referee system consists
of several generational referee collectives from a vertical view,
and is comprised ofn referee committees from a horizontal view.
Each referee committee is specialized to provide the competence
estimation for a component classifier. In the last stage of dynamic
prediction (lines 10–15), each component classifier Ct and its
corresponding referee committee RCt are applied to predict
x, respectively (lines 11–13). To obtain the final result of x,
the predictions of the component classifiers are weighted by
their competent levels which are estimated by the corresponding
referee committees (line 14).

B. Generation of Classifier Pool

In contrast to the traditional dynamic ensemble schemes,
which build n component classifiers based on the original
training data, we use OREMG to generate �√n� artificial syn-
thetic datasets with different class distributions, then create a
SPSECE ensemble on each artificial dataset.

The class distribution of rth synthetic dataset is acquired from
(1) (r = 1, 2, . . ., �√n�).

dpr = normalization
(
dpcfr

0

)

=

(
pcfr1∑|L|
j=1 p

cfr
j

,
pcfr2∑|L|
j=1 p

cfr
j

, . . .,
pcfr|L|∑|L|
j=1 p

cfr
j

)
, (1)

3An explanation is provided in the Section S3 of supplementary material, for
why �√n� synthetic datasets are generated.

Algorithm 1: imDEF (Tr, Te, n, q, b, α1, α2, β).

Input: Training data Tr = [Xtr, Ytr] = {(xi, yi)}|Tr|
i=1 ,

yi ∈ L; testing data Te; number of component
classifiers n; OREMG’s parameter q; self-paced
sampling ensemble’s parameters α1, α2, b, and β.

Output: The prediction result of Te
1: for r ← 1 : �√n� do
2: Acquire a class distribution dpr using (1)
3: Generate a dataset, Trr ←OREMG(Tr,dpr, q)
4: nr ← (r ≤ n− �√n� × � n

�√n� �)?� n
�√n� �+ 1 :

� n
�√n� �

5: Create a classifier set, Pr ← SPSECE(Trr, nr, α1, b)
6: P ← P ∪ Pr

7: end for
8: Obtain the competence labels of all component

classifiers, CL← isequal(predict(P,Xtr), Ytr)
9: Build referee systemRS ←

SPSEEM(Xtr, Ytr,CL, α2, b, β)
10: for all x ∈ Te do
11: for all Ct ∈ P do
12: Use Ct and its corrsponding referee committeeRCt

inRS to predict x
13: end for
14: Use (13) to obtain the final prediction of x
15: end for

where pj is the proportion of the samples of class lj in the
whole original training data; cfr is an adjustment factor of class
distribution, its value actually determines the class distribution.
We use (2) to update the value of cfr:

cfr = 1− 2× (r − 1)

�√n� − 1
. (2)

From (2), we can see that cfr decreases from 1 to −1 as
r increases. It means that the majority (/minority) classes in
the original training data would be generated fewer and fewer
(/more and more) synthetic samples, and the majority (/minority)
classes would be gradually transformed into the actually weak
(/strong) classes in the synthetic datasets.

There are several advantages to adopting such a way to
create component classifiers. First, the component classifiers
are trained using synthetic data rather than original training
data. It can mitigate the overestimation problem of competent
level (alleviating Problem i). If the original training data is
used to construct both classifier pool and referee system, the
true competence regions of the component classifiers would be
difficult to be identified. Second, the average proportion of the
samples in each class is close to be equal over the synthetic

datasets {Trr}�
√
n�

r=1 . It could be expected that the generated
classifier pool is low biased towards the majority classes (recti-
fying Problem ii). Third, the strong classes and their degrees

of dominance are different over {Trr}�
√
n�

r=1 . It can encourage
the diversity of SPSECE ensembles, and facilitate the creation
of a certain number of positive classifiers for the test samples
from any classes. Finally, we would see that SPSECE makes
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Fig. 3. (a) Figure illustrating xi’s candidate generation region. (b) Figure
illustrating the subregions within xi’s candidate generation region; Two clean
subregions are shaded with gray background.

the component classifiers gradually focus more on the difficult
samples, which could increase the ratios of positive classifiers
on the difficult-to-learn samples (handling Problem iii).

Below, we introduce the two key algorithms OREMG and
SPSECE.

1) Interpolated Data Generation With Reliable Generaliza-
tion (OREMG): The synthetic data for training component clas-
sifiers needs to obey the underlying distribution of the original
training data, so that the constructed component classifiers could
be generalized to the original classification task. To this end, a
qualified data generation method should be capable of producing
diversified synthetic samples to fully cover the representative
samples of original data, and simultaneously reduce the gener-
ation of noisy samples as much as possible.

OREMG is an interpolated data generation method, i.e., the
synthetic samples are the interpolation points between two orig-
inal samples. It calculates the number of the synthetic samples
that need to be generated for each class according to dpr , then
applies the oversampling method OREM [18] to generate the
synthetic samples for each class. The final synthetic datasetTrr
is the union of the synthetic samples of all classes.

OREM includes three steps when generating the synthetic
samples for any sample, xi, of a class l (l ∈ L). In the first
step, OREM finds the candidate assistant seed set C(xi) for xi.
C(xi) is comprised of xi’s p-nearest neighbors, where p is the
minimum value when none of the subsequent q neighbors (i.e.,
xi(p+1), xi(p+2), . . . ,xi(p+q)) are from the class l. This step
explores the Candidate Generation Region (CGR) near xi. Such
a CGR is either a region of class overlapping or a pure region of
class l.

Fig. 3(a) illustrates an example of identifying a CGR of class
l around xi. The circular area R(xi, x6) centered on xi, with
the distance between xi and x6 as the radius, can be considered
as a possible region of class l, because a certain number of the
samples of class l are distributed in this region with a form
of class overlapping. In addition, an abundance of neighbor
samples subsequent to x6 are all from the other classes, which
suggests that the samples of class l would have a low probability
of appearing in the adjacent area outside R(x1, x6). Therefore,
R(x1, x6) could be regarded as a maximal consecutive CGR
around xi.

Algorithm 2: SPSECE(Trt, nt, α1, b).

Input: Synthetic dataset Trr; number of classifiers nr;
Self-paced adjusting parameter α1; number of bins b.

Output: The classifier set Pr

1: S0 ← RandomSampleReplacement(Trr, |Trr|)
2: C0 ← TrainAClassifier(S0)
3: Pr ← Pr ∪ {C0}
4: for t← 1 : nr do
5: Use (3) to computeH(xi, yi,Pr) for each sample
6: Cut Trr into b bins through (4): B1, B2, . . ., Bb

7: dj =
∑

i∈Bj
(H(xi, yi,Pr)/|Bj |), ∀j = 1, 2, . . ., b

8: Update self-paced factor:
st = 1− (t− 1)/(α1(nr − 1))

9: Acquire sampling weight of jth bin: swj = (1/dj)
st

10: Obtain a sample set St by randomly selecting
|Trr| · (swj/

∑
l swl) samples from Bj , ∀j = 1, . . ., b

11: Ct ← TrainAClassifier(St)
12: Pr ← Pr ∪ {Ct}
13: end for
14: Pr ← Pr \ {C0}

The second step of OREM is to further identify xi’s those
reliable assistant seeds, A(xi), from C(xi). The identification
rule is that if the hypersphere area between a sample in C(xi)
and xi does not contain any sample from the other classes, this
sample could be considered a reliable assistant seed. This step
aims to discover the clean subregions within xi’s CGR, and
use them to place the synthetic samples of class l. The reason
behind is that the clean subregions would have a low probability
of occurring the test samples from non-l classes. Fig. 3(b) shows
an example of finding the clean subregions near xi. Obviously,
two circular shaded regions S(xi, x1) and S(xi, x5) are the
clean subregions. It is safe to fill these two subregions with the
synthetic samples of class l. x1 and x5 belong to the assistant
seed set of xi.

The final step of OREM is to generate the synthetic samples
for xi. Each synthetic sample is a random interpolation point
between xi and its an arbitrary assistant seed.

The assistant seed sets in OREM could contain the sam-
ples of different classes, and their sizes are variable. In tradi-
tional interpolation generation methods, the assistant seeds of
a considered sample are often the k-nearest neighbors from the
same class. Hence, OREM can generate more diverse synthetic
samples compared to traditional interpolation approaches, and
the limitation, that the synthetic samples of a class are only
created within the convex hull formed by the original samples
of this class, could be broken. In addition, OREM only generates
synthetic samples in the clean subregions within CGR. It could
effectively prevent the synthetic samples from falling into those
controversial subregions, and thus reduce the generation of noisy
samples.

The pseudocode description of OREMG is given in Section
S4 of the supplementary material. More details on OREM could
be found in [18].
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2) Classification-Error-Aware Self-Pace Sampling Ensemble
(SPSECE): As analyzed in Section I-C, the ensemble methods
building classifier pool should reinforce the learning of difficulty
samples, and increase the percentages of the positive classifiers
on these samples. Inspired by self-paced ensemble [3], we pro-
pose a classification-error-aware self-paced sampling ensemble
method SPSECE to train the component classifiers.

Algorithm 2 presents the details of SPSECE. In lines 1–3,
SPSECE collects a bootstrap replica S0 from the synthetic
dataset Trr , and trains a component classifier C0 with S0,
then uses C0 to initialize the classifier set Pr. In lines 4–13,
SPSECE generates nr component classifiers iteratively. First,
the classification difficulty of each sample is measured by its
classification error w.r.t the current ensemble Pr (line 5). It is
calculated as (3):

H(xi, yi,Pr) = (1/|Pr|)
|Pr |−1∑
t=0

(1− Ct(xi, yi)), (3)

where Ct(xi, yi) is the confidence degree that the classifier Ct

predicts xi into the true label yi. Based on the difficulty levels
of samples, SPSECE can divide Trr into b bins, i.e., {Bj}bj=1.
Bj is defined as

Bj =
{
(xi, yi)|(j − 1)/b ≤ Ĥ(xi, yi,Pr) < j/b

}
, (4)

where Ĥ is the normalization form ofH, i.e.,

Ĥ(xi, yi,Pr) =
H(xi, yi,Pr)− min

xl∈Trr

H(xl, yl,Pr)

max
xl∈Trr

H(xl, yl,Pr)− min
xl∈Trr

H(xl, yl,Pr)
.

(5)
Hence, Ĥ(xi, yi,Pr) ∈ [0, 1]. Then, the average difficulty level
dj is calculated for the samples within Bj (line 7). Obviously,
d1 and db have the lowest and highest average difficulty levels,
respectively. Finally, we use a self-paced procedure to collect
a sample set St from {Bj}bj=1, where St is used to train
tth component classifier (lines 8–11). The key is to control
the sampling weight of each bin through a self-paced factor
st. st is updated in the way of line 8. We can see that as t
increases, st decreases gradually from 1 to 1− 1/α1, where α1

is a self-paced adjusting parameter (note: we would detail the
role of α1 in Section IV-A5). Initially, the sampling weight of
each bin, swj , is inversely proportional to its average difficulty
level (line 9, st = 1, then swj = 1/dj). The low-difficulty bins
would have higher sampling weights compared to the ones with
high difficulty levels. As the iteration progresses (i.e., decreasing
st), the sampling weights of high-difficulty bins are increased. In
particular, st could become negative whenα1 < 1. It implies that
the bins with high difficulty levels would obtain higher sampling
weights compared to those low-difficulty bins. Since a higher
sampling weight means that more samples would be selected
from the corresponding bin, the number of difficult-to-learn
samples would be progressively increased in St (line 10). In
this way, SPSECE could gradually strengthen the learning of the
difficult samples.

Although AdaBoost family can also focus more on the diffi-
cult samples, the noisy samples is inevitable in synthetic dataset.

The training mechanism of AdaBoost could make the weights
being excessively concentrated on difficult-to-learn noise, even-
tually degrading the qualities of component classifiers. Several
boosting methods have been developed to enhance the robust-
ness of AdaBoost. They usually design and optimize new robust
loss functions [28]. However, the boosting methods based on
convex loss functions are vulnerable to the effects of random
noise [29], and the use of nonconvex loss functions could lead to
unreliable and unstable solutions. In addition, the base classifier
of AdaBoost family is not suitable for the strong classifiers,
while self-paced ensemble is able to work with any kind of
classifiers [3], [21].

C. Construction of Referee System

1) Preliminary: As discussed in Section I-C, neighborhood-
based DSTs inherently suffer from the problem of competence
conflict on the difficult samples. To cope with this problem,
we build a referee system to accomplish the competence esti-
mation (avoiding Problem iv). In fact, a few works have used
referee-based idea to estimate the competent levels of compo-
nent classifiers [30]. In these works, each referee is associated
with a component classifier. A referee learns the area of exper-
tise of its associated component classifier, and estimates how
much accurate (i.e., competent level) the component classifier
is for a test sample. In our imDEF, however, we build a multi-
generational referee committee for each component classifier.
The multi-generational referee committee consists of multiple
referees which are sequentially trained. The motivation behind
is to gradually enhance the accuracy of competence estimation
on the samples with small dynamic ensemble margins (i.e., those
hard-to-classify samples; thereby handling Problem v).

The dynamic ensemble margin is defined as (6):

M(xi,RS,CL) =

n∑
t=1

RCt(xi)I(CL[i, t] = 1)

−
n∑

t=1

RCt(xi)I(CL[i, t] = 0), (6)

where RCt is the referee committee associated with the com-
ponent classifier Ct; RS is the set of all referee committees;
RCt(xi) is RCt’s competence estimation for Ct on xi; I(·) is
an indicator function, which returns 1 if its argument is true, and
0 otherwise; CL is the competent label set of all component
classifiers; CL[i, t] represents the competent label of Ct on xi

(i.e., CL[i, t] is 0 if Ct(xi) �= yi, and 1 otherwise).
The dynamic ensemble margin shown in (6) is the difference

of the weighted votes between the component classifiers that
correctly predict xi and wrongly classify xi. A large positive
(/negative) margin value could be interpreted as a highly con-
fident correct (/incorrect) classification on xi w.r.t the classifier
pool and the current referee system.

In the existing literature, various types of margins have been
used in the construction of generalization bounds and the design
of machine learning algorithms. It has been shown that the im-
provement of margin distribution could enhance the robustness
and performance of classification system [31].
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In this work, the samples with low dynamic ensemble mar-
gins can be linked to those most important samples w.r.t the
construction of referee system. For example, Table II shows the
prediction results of five component classifiers on five samples.
We can see that dynamic ensemble way would be likely to
correctly classify the samples in the set A with high dynamic
ensemble margins, even if a referee system provides random
values for the competent levels of component classifiers. This
is because most of the classifiers can deliver the correct results
for the samples in A. In contrast, the referee system needs to
provide accurate competence estimations on the samples in B,
i.e., the positive (/negative) component classifiers should obtain
high (/low) competent levels. This is the only way to correct
the errors delivered by most of the component classifiers, and
produce positive dynamic ensemble margins (i.e., correct col-
lective results). Therefore, the accuracy requirement regarding
the competence estimation is different for classifying different
samples. The referee system should pay more attention to the
learning of the samples with low dynamic ensemble margins, so
as to provide the highly accurate competence estimations on the
hard-to-classify samples. In this way, the advantage of dynamic
ensemble could be fully exploited.

2) Ensemble-Margin-Aware Self-Paced Sampling Ensemble
(SPSEEM): To construct an effective referee system, we pro-
pose an ensemble-margin-aware self-paced sampling ensemble
method, SPSEEM. The main process of SPSEEM is as follows.

a) SPSEEM computes the Cumulative Negative dynamic En-
semble Margin (CNEM) for each training sample w.r.t
the current referee system (note: CNEM is positively
correlated with the importance of samples regarding the
construction of current referee system).

b) The training samples are divided into several bins accord-
ing to their values of CNEM.

c) A self-paced procedure combined with a class weight dis-
tribution is used to select the samples from each bin, which
gradually increases the number of the samples chosen from
the bins having high CNEM values.

d) The selected sample set is applied to construct a gen-
erational referee collective that consists of the referee
classifier associated with each component classifier.

e) Return to step a), until a desired number of referee collec-
tives have been constructed.

Algorithm 3 presents the details of SPSEEM. SPSEEM

first calculates the initial Negative dynamic Ensemble Margin
(NEM) for each training sample based on (7) (line 1):

M0(xi,CL) = −
n∑

t=1

(I(CL[i, t] = 1)− I(CL[i, t] = 0)).

(7)

As there are no referee classifiers at the beginning, we simply
assume that the competent levels of all component classifiers are
1. This step is to obtain the original classification hardness of
the sample w.r.t the classifier pool.

SPSE EM constructs multi-generational referee collectives
iteratively. After constructed p th generational referee collec-
tive (p ≤ β), a sample xi’s CNEM is the sum of xi’s NEM

Algorithm 3: SPSEEM(Xtr, Ytr,CL, α2, b, β).

Input: Feature part of training set Xtr; label part of
training set Ytr; competent label set of the component
classifiers CL; self-paced adjusting parameter α2;
number of bins b; number of generations β;

Output: The referee committee setRS = {RCt}nt=1

1: For each xi ∈Xtr , computeM0(xi,CL) via (7)
2: For each xi ∈Xtr , initialize CM(xi)←M0(xi,CL)
3: For each xi ∈Xtr , assign its class weight w(xi) via

(10)
4: For each component classifier, initialize its associated

referee committee:RCt ← ∅, t = 1, . . ., n.
5: Initialize all referee collectives: GCg ← ∅, g = 1, . . ., β
6: for g ← 1 : β do
7: For each xi ∈Xtr , normalize CM(xi) into ˆCM(xi)

using (11).
8: Use (12) to cut Xtr into b bins w.r.t ˆCM:{Bj}bj=1

9: dj =
∑

xi∈Bj
( ˆCM(xi)/|Bj |), ∀j = 1, 2, . . ., b

10: Update self-paced factor:
sg = 1− (g − 1)/(α2(β − 1))

11: Acquire sampling weight of jth bin: swj = (1/dj)
sg

12: δj ← (swj/
∑

l swl)× |Xtr|, ∀j = 1, . . ., b
13: ŵj(xi)← w(xi)/

∑
xl∈Bj

w(xl), ∀j = 1, . . ., b
14: for t← 1 : n do
15: Obtain a sample set Sg

t by weighting sampling δj
samples from Bj according to ŵj , ∀j = 1, . . ., b

16: Extract Sg
t ’s competence label Lg

t from CL[:, t]
17: Rg

t ← TrainAClassifier((Sg
t , L

g
t ))

18: GCg ← GCg ∪ {Rg
t }

19: RCt ← RCt ∪ {Rg
t }

20: end for
21: For each xi ∈Xtr , compute itsMg(xi,GCg,CL)

according to (9)
22: For each xi ∈Xtr , update its CM(xi): CM(xi)←

CM(xi) +Mg(xi,GCg,CL)
23: end for

values over these p generational referee collectives, denoted by
CM(xi):

CM(xi) =M0(xi,CL) +

p∑
g=1

Mg(xi,GCg,CL), (8)

where GCg is gth referee collective;Mg(xi,GCg,CL) is xi’s
NEM w.r.t GCg , and is defined as follows.

Mg (xi,GCg,CL) =
∑

Rg
t ∈GCg

Rg
t (xi)I(CL[i, t] = 0)

−
∑

Rg
t∈GCg

Rg
t (xi)I(CL[i, t] = 1).

(9)

In (9), Rg
t is the referee classifier in GCg built for Ct. Initially,

CM(xi) isM0(xi,CL) (line 2).
Given that the original class distribution is imbalanced, we

assign each training sample, xi, a class-dependent weight w(xi)
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(line 3):

w(xi) =
maxk

√
mk∑

lk∈L I(yi = lk)
√
mk

, (10)

where mk is the number of the samples of class lk in Xtr . The
class weights are used for weighted sampling within each bin.
The higher the class weight, the higher the likelihood that the
sample is selected. In the imbalanced learning field, rebalancing
strategies such as resampling and reweighting, usually assign
the sample weights inversely proportional to the class frequency.
However, it could result in poor performance as the importance
of minority samples might be overemphasized [32]. Hence, we
use a moderate version in SPSEEM that the class weight of the
sample is inversely proportional to the square root of the class
frequency [32].

Our referee system is comprised of n referee committees cor-
responding to the component classifiers from a horizontal view,
and consists of several generational referee collectives from a
vertical view. At the beginning, each referee committee and all
referee collectives are initialized to be empty (lines 4–5). The
key part of SPSEEM is the iterative training of multi-generational
referee collectives (lines 6–23). For each training sample xi,
CM(xi) is normalized into ˆCM(xi) (line 7):

ˆCM(xi) =
CM(xi)−minxl∈Tr CM(xl)

maxxl∈Tr CM(xl)−minxl∈Tr CM(xl)
. (11)

ˆCM(xi) ranges from 0 to 1. The whole training set could be
divided into b bins, i.e., {Bj}bj=1. Bj is defined as (line 8):

Bj = {xi|(j − 1)/b ≤ ˆCM(xi) < j/b}. (12)

Once n bins have been obtained, we compute the average ˆCM
on the samples within each bin, i.e., dj , j = 1, . . ., b (line 9). dj
is combined with a self-paced factor sg to calculate the number
of the samples selected from each bin. The self-paced factor
sg is updated in the way of line 10. With the increase of g,
sg diminishes from 1 to 1− 1/α2, where α2 is an adjusting
parameter similar to α1. According to the calculation of sam-
pling weight (line 11), the reduction of sg would lead to higher
sampling weights for the bins with high CNEM values (i.e., high
dj). Hence, as the iteration progresses, an increasing number of
samples would be selected from those bins with high CNEM
values (line 12). Different from SPSE CE, SPSEEM performs a
weighted sampling to select the samples from each bin according
to the class weight distribution of the samples within each bin
(lines 13 and 15). The reason behind is to increase the frequency
of selecting minority samples, and combat the class imbalance
problem in training data. Finally, g th generational referee col-
lective GCg is constructed, which tth referee Rg

t is trained on
the sampled data Sg

t and its corresponding competence label
Lg
t (lines 15–17). Rg

t is added into both GCg and the referee
committee RCt associated with the component classifier Ct

(lines 18–19). After GCg is constructed, we could compute the
NEM of each training sample w.r.tGCg according to (9) (line 21).
Then, the CNEM of each training sample is updated to be used
for building next generational referee collective (line 22).

D. Dynamic Prediction

The dynamic prediction in our imDEF could be expressed as:

ŷ = argmax
lk∈L

n∑
t=1

RCt(x)Ct(x, lk), (13)

wherex is the considered test sample;Ct(x, lk) is the probability
that x is predicted into class lk by Ct;RCt(x) is the competent
level of Ct at x estimated by the referee committee RCt. It is
actually the average of the competence estimations provided by
all the referees inRCt, i.e.,RCt(x) = (1/β)

∑β
g=1 R

g
t (x).

IV. EXPERIMENTAL STUDY

To evaluate the effectiveness of imDEF, imDEF is compared
with state-of-the-art imbalanced static ensemble methods, and
existing imbalanced dynamic ensemble schemes over two-class
and multiclass imbalanced datasets, respectively. In addition, we
compare imDEF with its variants to verify the usefulness of each
key ingredient of imDEF.

It should be highlighted that due to space constraints, only
the essential ingredients of experimental study are presented
in the paper. Lots of important content is placed in a 70-page
supplementary material. The content includes, but not limited
to, the computational complexity analysis and running time
comparison for the compared algorithms (Section S5), the per-
formance comparisons of imDEF and non-ensemble imbalance
learning methods (Section S6), an experimental investigation
on large-scale imbalanced datasets (Section S7), and the param-
eter optimization analysis of imDEF (Section S8). We highly
recommend readers to refer to these elements that enhance the
completeness of our work.

A. Experiments on Two-Class Imbalanced Datasets

1) Experimental Setting: Dataset. 30 two-class datasets are
selected in this experiment. A few of them (LEVT, ERA1, ERA2,
and ESLT) are the widely-used ordinal regression benchmark
data [33], and the others are available from UCI [34]. These sets
are chosen in such a way that they exhibit diversity in terms of
sample size, feature dimension, and imbalance ratio. Table III
shows the detailed characteristics of the selected datasets.
Assessment Measures. F1, G-mean, and AUC4 are often

used together to evaluate the performance of imbalanced learn-
ing methods [10], [18], [24]. To erase the effects of random
factors, all the methods are run 10 times on each dataset with
stratified 5-fold cross validation. The final performance on each
dataset is the average of 50 testing results.
Base Classifier.Classification regression tree is adopted as

base classifier for all the compared ensemble methods, because
it is most frequently used in existing ensemble solutions [2]. The
number of base classifiers is set to 100.
Statistical Analysis. It is important to verify whether there

is a significant performance difference between imDEF and each
of the other compared algorithms. We apply the commonly-used

4A simple description regarding the calculation of AUC is provided in Section
S9 of the supplementary material.
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TABLE IV
THE STATIC ENSEMBLE SOLUTIONS USED IN THE EXPERIMENTAL STUDY

TABLE V
PARAMETER SETTINGS OF THE IMBALANCED STATIC ENSEMBLE METHODS

Wilcoxon signed rank test to accomplish the significance tests
for each pair of algorithms [35].

2) Comparison With Typical Static Ensemble Solutions:
We compare the proposed imDEF with nine state-of-the-art
unbalanced static ensemble methods. They are the resam-
pling techniques-combined ensemble solutions SMOTEBoost
(SMOTEB) [6], OREMBoost (OREMB) [18], EasyEnsem-
ble (EasyE) [7], BalanceCascade (BalanceC) [7], RBBoost
(RBB) [9], and ASE [36], the self-paced ensemble solutions
SPE [3] and DAPS [21], and the cost-sensitive ensemble ap-
proach AdaCC1 [10]. A brief description of these methods is
summarized in Table IV. All the parameters in them use the
default settings (see Table V).

Due to space constraints, we put the F1, G-mean, and AUC
results of imDEF and the other compared static ensemble solu-
tions in Table S25 of the supplementary material. From this table,
one can see that our imDEF achieves the best performances on
8, 12, and 15 out of 30 datasets in terms of F1, G-mean, and
AUC, respectively. We further perform the Wilcoxon signed-
rank significance tests on the performance values of Table S25.
Table VI shows the results of significance tests. We can find that
imDEF can achieve statistically superior performance on all the
comparison terms, except for the comparisons with EasyE and
SPE in G-mean. It demonstrates that imDEF is highly effec-
tive compared to the representative imbalanced static ensemble
approaches.

3) Comparison With Existing Imbalanced Dynamic Ensem-
ble Schemes: Four existing imbalanced dynamic ensemble
schemes are selected here. They are B+RM100+KNU [24],
OLP+ENN+KNNE [37], [38], BR+RM+KNU [26], and
EE+MCB [23]. Given that imDEF needs to produce 100 com-
ponent classifiers (n = 100) and 500 referees (β = 5), we
derive two versions for each of these compared schemes except
for OLP+ENN+KNNE, in which the classifier pools of size
100 and 600 are generated for them, respectively. Note that
OLP+ENN+KNNE creates a local pool of linear hyperplane
classifiers when predicting a test sample. Each hyperplane is
trained on the test sample’s neighboring samples within a certain
neighborhood size. It is inappropriate to generate a local pool of
size 100 or 600 for OLP+ENN+KNNE. Table VII summarizes
the configurations of these schemes, including classifier pool
generation, DSEL, and DST. The default parameter settings of
them are listed in Table VIII.

In Section S10 of the supplementary material, we present
an explanation for why these imbalanced dynamic ensemble
schemes are chosen to compare imDEF. The complete exper-
imental results are provided in Table S26 of the supplemen-
tary material, where imDEF obtains the best F1, G-mean, and
AUC values on 15, 14, and 15 out of 30 datasets, respectively.
Table IX summarizes the results of the Wilcoxon significance
tests between imDEF and each of the compared schemes. We
can observe that the significant differences exist on almost all
of the comparison items. It shows that imDEF can outperform
these schemes significantly.

4) Comparison With imDEF’s Variants: imDEF contains
three key ingredients: 1) OREMG generates artificial synthetic
datasets; 2) SPSECE creates the classifier pool based on the
generated datasets; and 3) SPSEEM constructs a referee system.
In this subsection, we validate the usefulness of these three
ingredients for imDEF. To this end, several imDEF variants are
derived by modifying these ingredients. These variants are as
follows.
� imDEF w SM: the synthetic datasets are generated by

SMOTEG (note: SMOTEG utilizes SMOTE to create the
synthetic samples of each class). The class distributions of
these synthetic datasets are {dpr}�n�r=1.

� imDEF w/o Gen: SPSECE is trained based on the sample
sets randomly selected from the original training data.
Their class distributions are {dpr}�n�r=1.
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TABLE VI
p-VALUES OF THE WILCOXON SIGNED-RANK TESTS FOR THE COMPARISONS BETWEEN IMDEF AND EACH OF THE STATIC ENSEMBLE SOLUTIONS

TABLE VII
THE IMBALANCED DYNAMIC ENSEMBLE SCHEMES USED IN THE EXPERIMENTAL STUDY

TABLE VIII
PARAMETER SETTINGS OF THE IMBALANCED DYNAMIC ENSEMBLE SCHEMES

TABLE IX
p-VALUES OF THE WILCOXON SIGNED-RANK TESTS FOR THE COMPARISONS

BETWEEN IMDEF AND EACH OF THE COMPARED IMBALANCED DYNAMIC

ENSEMBLE SCHEMES OVER 30 TWO-CLASS IMBALANCE DATASETS

� imDEF w Bag: it replaces SPSECE with Bagging to create
classifier pool.

� imDEF w AdaB: it replaces SPSECE with AdaBoost.M2
to create classifier pool.

� imDEF w/o DS: SPSEEM is abandoned. All component
classifiers are used to predict test samples.

� imDEF w Sig: SPSEEM is abandoned. The competence
region of each component classifier is learned by a single
classification regression tree.

The F1, G-mean, and AUC values of these variants are
summarized in Table S24 of the supplementary material. We
conduct the Wilcoxon signed-rank significance tests based on
Table S24. The corresponding results are shown in Table X.
From this table, we can observe that imDEF is often statistically
superior to all the variants. A detailed analysis is provided in
Section S11 of the supplementary material w.r.t the perfor-
mance differences between imDEF and each of the variants,
which is highly recommended for understanding imDEF in
depth.

In addition to imDEF w Sig, we can also replace SPSEEM

with existing DSTs to accomplish dynamic prediction. imDEF
w KNE, imDEF w KNU, imDEF w desP, imDEF w KnoP,
imDEF w desRRC, imDEF w desKL, and imDEF w METADES
are implemented to fully verify the usefulness of SPSEEM,
which KNE [5], KNU [5], desP [15], KnoP [16], desRRC [14],
desKL [15], and META-DES.H [4] are used to replace SPSEEM,
respectively. Note that the training data would be divided into
two parts for imDEF w METADES, i.e., 50% for meta-training

Authorized licensed use limited to: Zhejiang Normal University. Downloaded on January 16,2026 at 12:48:09 UTC from IEEE Xplore.  Restrictions apply. 



2468 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 5, MAY 2025

Fig. 4. Figure illustrating how the mean ACCmin, ACCmaj , and G-mean rankings of imDEF varies with the parameters α1, α2, and β.

TABLE X
p-VALUES OF THE WILCOXON SIGNED-RANK TESTS FOR THE COMPARISONS

BETWEEN IMDEF AND EACH OF THE COMPARED VARIANTS

process and 50% for dynamic selection [4]. The complete exper-
imental results are provided in Table S27 of the supplementary
material. Based on Table S27, the corresponding results of the
Wilcoxon signed-rank tests are presented in Table X. We could
see that imDEF shows the significance advantages on almost all
of the comparisons.

Based on the above comparisons, it could be summarized that
the three key ingredients OREMG, SPSEEM, and SPSEEM all
play a positive role for the performance of imDEF. They together
contribute to the effectiveness of imDEF.

5) Parameter Sensitivity Analysis: imDEF involves five pa-
rameters, i.e., q, b, α1, α2, and β. q and b can refer to the
corresponding settings in OREM and SPE, respectively. We only
discuss here how the performance of imDEF varies with different
α1, α2, and β.

Eight datasets in Table III are selected in this experiment. They
are Diabetes, Vehicle, Laryngeal-3, Voice91, Win-red, Voice92,
ESLT , Cervical cancer. We vary α1 = {0.3, 0.5, 0.7, 0.9, 1.1},
α2 = {0.4, 0.6, 0.8, 1, 1.2}, and β = {5, 15, 25, 35, 45}. Fig. 4
shows the mean rankings of imDEF over different parameter
values in terms of ACCmin (the classification accuracy in the
minority class), ACCmaj (the accuracy in the majority class),
and G-mean. The detailed experimental results are given in Table
S28 of the supplementary material.

In Fig. 4(a) and (b), the performance of imDEF in ACCmin

is deteriorated, while the performance in ACCmaj is improved
with the decrease of α1 or α2. We deem the reason for this
phenomenon is that the number of synthetic minority (/majority)
samples in {Trr}�n�r=1 is more (/less) than the number of original
minority (/majority) samples, especially for r > �n�/2. That is,
the synthetic datasets are derived from the original imbalanced
data by oversampling the minority class and undersampling the
majority class. Hence, the borderline majority samples might be
easily misclassified, and become the hard samples. From line 8
of Algorithm 2 (/line 10 of Algorithm 3), we can know that the
decrease of α1 (/α2) implies the self-paced factor st (/sg) can
be diminished to a lower value. Hence, more attention would
be focused on those difficult samples (/hard-to-classify samples
w.r.t the classifier pool). This could explain why their decrease
could improve ACCmaj . On the contrary, ACCmin would be
depreciated, as relatively less attention is paid to the minority
samples. From Fig. 4(a) and (b), we can find that α1 and α2

could achieve the best tradeoff between ACCmaj and ACCmin

(i.e., a good G-mean) around 0.7 and 1.0, respectively.
β is the number of referees in a referee committee. A larger β

means that more referees would be created for each component
classifier to learn its competence region. Intuitively, increasingβ
is conducive to obtaining more accurate competence estimation.
As shown in Fig. 4(c), the G-mean of imDEF is improved with
the increase of β, and 35 is a good setting. In this experimental
study, we used a small β (i.e., 5). Nevertheless, imDEF could
still outperform the other ensemble solutions significantly.

B. Experiments on Multiclass Imbalanced Datasets

Most imbalanced learning methods are specifically designed
for two-class imbalance scenarios. They cannot combat mul-
ticlass imbalance problems directly. However, multiclass data
is more prone to occur skewed class distributions than binary
data, and multiclass imbalance is highly challenging due to
the presence of multi-majority classes, multi-minority classes,
and severe data difficulty factors (e.g., multiclass overlap-
ping) [18], [39]. Therefore, it is highly meaningful that the
proposed imbalance approach has the ability to deal with multi-
class imbalance problems. In this subsection, we would eval-
uate the effectiveness of imDEF over multiclass imbalanced
datasets.
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TABLE XI
DESCRIPTION OF CHARACTERISTICS OF EXPERIMENTAL

MUTLICLASS DATASETS

1) Experimental Setting: Eighteen multiclass imbalanced
datasets are used in this experiment. They include the com-
mon ordinal regression benchmark datasets [33] and UCI
datasets [34]. These datasets are selected by considering the
diversities in sample size, feature dimension, number of classes,
and application domain. Table XI summarizes the charac-
teristics of them. We still choose classification regression
tree as base classifier, and use the Wilcoxon signed rank
test to conduct the statistical analysis of significance. For
assessment measures, macro-F1, MG [40], and MAUC [41]
are used together. They are the multiclass extension versions of
F1, G-mean, and AUC, respectively.

2) Comparison With Existing Multiclass Imbalanced Ensem-
ble Approaches: Given that there are only a few imbalanced
ensemble methods for solving multiclass imbalance problems,
our imDEF is compared with both static and dynamic ensemble
solutions simultaneously. In the static ensemble methods, Ad-
aBoost.M2 (AdaB) [12], SMOTEB, MBSB [42], OREMB, and
AdaBoost.AD (AdaAD) [43] are chosen. The descriptions and
default parameter settings of them are listed in Tables IV
and V, respectively. In each iteration of SMOTEB, MBSB [42],
and OREMB, all the classes (except the largest class) are over-
sampled to achieve complete class balance. In the dynamic en-
semble solutions, we select B+RM100+KNU, OLP+KNN [37],
[38], BR+RM+KNU, and BR+KNU+RMkNN [22]. The
classifier pools of size 100 and 600 are generated for
B+RM100+KNU, BR+RM+KNU, and BR+KNU+RMkNN, re-
spectively. Tables VII and VIII present the configurations and
parameter settings of them, respectively.

The macro-F1, MG, and MAUC values of all the compared
algorithms are summarized in Table S29 of the supplementary

TABLE XII
p-VALUES OF THE WILCOXON SIGNED-RANK TESTS FOR THE COMPARISONS

BETWEEN IMDEF AND EACH OF THE COMPARED STATIC AND DYNAMIC

ENSEMBLE SOLUTIONS OVER 18 MULTICLASS IMBALANCED DATASETS

material. According to Table S29, imDEF acquires the best
macro-F, MG, and MAUC performances on 9, 8, and 7 out of
the 18 datasets, respectively. The results of the significance tests
are given in Table XII. We can observe that imDEF is almost
significantly better than all the compared methods. It suggests
that imDEF is also highly competitive in dealing with complex
multiclass imbalance problems.

V. CONCLUSION

imDEF involves three key tasks: generation of artificial syn-
thetic datasets, creation of classifier pool, construction of referee
system. In this paper, our imDEF uses OREMG, SPSECE,
and SPSEEM to yield synthetic datasets, build classifier pool,
and construct referee system, respectively. To further enhance
imDEF’s performance, future research works could be devoted
to designing more effective algorithms to replace OREMG,
SPSECE, or SPSEEM. For example, OREMG requires the dis-
tance calculations between any two samples, and can only deal
with numerical data. A more efficient and universal data gener-
ation method can be developed to handle imbalanced massive
mixed data. In addition, self-paced boosting algorithms could be
attempted to create classifier pool, which focuses on the insuf-
ficiently learned but reliable synthetic samples, and suppresses
the effects of noisy synthetic samples.
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