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 A B S T R A C T

We proposed FSF-ViT, a Vision Transformer (ViT)-based model integrating image augmentation and adaptive 
global-local feature fusion, for Few-Shot Food (FSF) classification. The proposed method focused on training 
with limited food images to reduce data collection and annotation costs. This approach achieved the highest 
classification accuracy of 95.1% on the test set. Compared to the ViT model, FSF-ViT improved average 
accuracy by 12.8%, 15.1%, 4.6%, and 8.3% on our constructed Food-30 and three benchmark datasets, 
respectively. Furthermore, this study visualized the classification results and verified the validity of FSF-
ViT. This study provided low-cost and efficient technical support for rapid online dietary recording using 
smart devices, advancing the development of dietary management and health. (The Food-30 dataset and 
implementation code: https://github.com/HZAI-ZJNU/FSF-ViT; dataset DOI: 10.5281/zenodo.15619141).
1. Introduction

Dietary factors contribute to reducing risks of chronic diseases such 
as diabetes, cardiovascular disease, obesity, and cancer (Key et al., 
2020). Dietary management serves as an important tool in managing 
weight and preventing weight gain or support weight loss. Food classi-
fication technology enables automatic food recognition and recording, 
which is an essential technology for dietary management applica-
tions (Konstantakopoulos et al., 2023; Nadeem et al., 2023; Xiao et al., 
2025a). This technology has diverse applications, including food qual-
ity control (Das et al., 2025; Minho et al., 2025; Xiao et al., 2025), 
nutrition estimation (Kaushal et al., 2024; Shao et al., 2023), and food 
safety (Feng et al., 2023; Nath et al., 2024; Yang et al., 2025). For 
instance, it helps determine the market value of agricultural products 
like apples through automated quality assessment (Hu et al., 2021).

Deep learning enables advanced image processing through highly 
effective feature extraction (de Oliveira et al., 2023; Deng et al., 2024). 
Deep learning-based approaches substantially outperform traditional 
handcrafted feature-based methods in food classification (Konstanta-
kopoulos et al., 2024; Liu, 2019; VijayaKumari et al., 2022). Min 
et al. (2023) proposed a deep progressive region enhancement network 
for food recognition, achieving 83.8% accuracy on Food2K, which is 
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currently the largest food image dataset containing over one million im-
ages. Xiao et al. (2024) developed a method that integrates global fea-
tures from Swin Transformer with local features from deep convolution 
modules, achieving 82.8% accuracy on UEC Food-256 dataset. Liu et al. 
(2024) proposed a convolution-enhanced dual-branch adaptive trans-
former, comprising a local fine-grained branch and a global coarse-
grained branch, to explore local and global semantically-aware regions 
across different input images. Their method achieved classification 
accuracy of 92.4% and 91.6% on ETH FOOD-101 and Vireo Food-
172 datasets, respectively. Gao et al. (2024) proposed AlsmViT, an 
improved Vision Transformer architecture that enhances food classifi-
cation accuracy among visually similar but distinct categories through 
data augmentation and feature enhancement, achieving classification 
accuracy of 95.1% and 94.3% on ETH FOOD-101 and Vireo Food-
172 datasets, respectively. Xiao et al. (2025a) introduced DiffAugment 
data augmentation technology and a local feature enhancement mod-
ule to improve the model’s feature representation capability, achiev-
ing validation accuracy of 85.7% and 94.1% on ChineseFoodNet and 
VireoFood-172 datasets, respectively.

Despite the excellent accuracy of deep learning-based food clas-
sification methods, they possess substantial limitations. First, these 
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methods rely on large-scale, labeled training samples, which refer to 
large amounts of categorized food images, requiring manual annotation 
of food images into their respective categories. These costly and time-
intensive methods fail to meet the growing demand for efficient and 
economical identification techniques. Second, training data class imbal-
ance limits the performance of these deep learning methods. Existing 
classification methods tend to overlook food categories with limited 
training samples while focusing primarily on well-represented ones. 
This bias leads to poor performance in classifying under-represented 
food categories. Therefore, these methods show limited scalability with 
imbalanced datasets. This data imbalance phenomenon is prevalent 
across mainstream food image datasets. Specifically, the large-scale 
Food2k dataset (Min et al., 2023) exhibits substantial class imbalance 
with image counts per category ranging from 153 to 1999, while the 
Vireo Food-172 dataset (Chen & Ngo, 2016) shows a disparity from 191 
to 1061 images per category, and the ChineseFoodNet dataset (Chen 
et al., 2017) ranges from 41 to 1198 images per category. Develop-
ing low-cost, effective, and scalable food classification methods for 
online dietary recording is crucial. This approach promotes dietary 
management and health.

In this study, we proposed a Few-Shot Food image classification 
method based on Vision Transformer (ViT) (Dosovitskiy et al., 2021) 
with image augmentation and adaptive global-local feature fusion (FSF-
ViT). The proposed method focused on training with limited food 
images to achieve accurate food classification, thereby substantially 
reducing data collection and annotation costs. Unlike existing food 
classification methods that treated augmented images as ordinary train-
ing samples, we explored the complementary relationship between 
features from augmented and original images to enhance feature learn-
ing. Specifically, the image augmentation module consisted of two 
components: CutCenter and CornerMix, where the CutCenter method 
extracted and magnified subtle local regions to enhance fine-grained 
feature learning, and the CornerMix method identified and erased irrel-
evant areas to reduce noise interference in food images. Based on these 
augmented images, we proposed an adaptive weighting method to learn 
the complementary relationship between features from augmented and 
original images. The learned weights then guided the feature fusion 
process to generate comprehensive representations that capture both 
global and fine-grained local features. In addition, we constructed a 
high-quality Chinese food dataset with limited samples to validate 
our method. The images were collected from real-world scenarios and 
accurately labeled with food categories. This research aimed to develop 
a low-cost, effective, and scalable food classification method to support 
online dietary recording, thereby facilitating dietary management and 
health improvement.

2. Materials and methods

2.1. Sample preparation

The samples in this study referred to food images. We constructed a 
small Chinese food dataset, Food-30, for few-shot food image classifica-
tion. All food images were collected from real-world dining scenarios. 
We manually recognized the type of food displayed in these images and 
grouped them according to their types to create a high-quality dataset. 
This dataset comprised 30 Chinese food categories, with 110 images 
per category. Fig.  4 showed representative samples from each category. 
The Food-30 dataset was divided into the training set and test set with 
a ratio of 1:10, where each category contained 10 and 100 images in 
the training and test sets, respectively. To evaluate the generalization 
ability of the model, images in the training and test sets were collected 
from different restaurants.

To further validate the effectiveness of our method, we also con-
ducted experiments on three other open-source food image datasets: 
ChineseFoodNet (Chen et al., 2017), Sushi-50 (Qiu et al., 2019), and 
Vireo Food-172 (Chen & Ngo, 2016). ChineseFoodNet is a benchmark 
2 
Chinese food image dataset containing 208 categories of common 
Chinese cuisine across diverse culinary styles. The dataset presents 
challenges owing to high intra-class variation in appearance caused 
by varying cooking techniques. We sampled 2080 training images and 
approximately 17,000 test images from the original ChineseFoodNet 
dataset of 208 categories for our experiments. Sushi-50 consists of 50 
sushi categories. The dataset contains approximately 4000 images, with 
40–100 images per category, from which we sampled 500 training 
images and around 3000 test images. The Vireo Food-172 dataset 
contains 172 Chinese food categories. We selected 1720 training images 
and approximately 33,000 test images from this dataset.

2.2. Methods

We proposed a novel ViT-based few-shot food image classification 
method with image augmentation and adaptive global-local feature 
fusion. As shown in Fig.  1, it consisted of three modules: the image aug-
mentation module, feature extractor module and global-local feature 
fusion module.

2.2.1. Image augmentation module
In food images, subtle differences among categories are typically 

reflected in subtle local regions, which play a crucial role in food 
classification. Furthermore, some original food images contain complex 
backgrounds, which often include dining environments and irrelevant 
food items that do not belong to the target food category. It is, hence, 
essential to eliminate background interference from original images, 
particularly those that contain irrelevant food items. As shown in Fig. 
2, the central region of the image typically contains rich food details, 
whereas the four corner regions often contain distracting backgrounds.

Accordingly, we proposed the CutCenter and CornerMix methods, 
which were designed to extract and magnify local regions that contain 
rich food details and erase irrelevant areas, respectively, thereby giving 
more attention to subtle local regions and the principal regions of target 
food. Specifically, CutCenter selected a central rectangular region in the 
original image 𝐼 and cropped it to a new augmented image 𝐼𝐶𝐶 , with 
dimensions half of those of the original image. The augmented image 
contains less backgrounds whereas food details are magnified, which 
facilitate the ability of the model to extract fine-grained local features. 
In addition, to reduce interfering information in the four corner regions 
of the original image, such as non-target food items and irrelevant 
objects, CornerMix randomly selected rectangle regions in these areas 
and erases them. The area 𝑆𝑟 of each erasing rectangle 𝐼𝑟𝑒 ranges from 
0.02 to 0.1 times the original image area 𝑆𝑜. Following Zhong et al. 
(2020), the aspect ratio 𝑟 of the erasing rectangle is randomly sampled 
from [0.3, 1/0.3]. The height 𝐻𝑝 and width 𝑊𝑝 of 𝐼𝑟𝑒 are determined 
as follows: 

𝑆𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚(0.02, 0.1) ∗ 𝑆𝑜, (1)

𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚(0.3, 1∕0.3), (2)

𝐻𝑝 =
√

𝑆𝑟 ∗ 𝑟, (3)

𝑊𝑝 =
√

𝑆𝑟∕𝑟. (4)

The augmented image 𝐼𝐶𝑀 , generated through CornerMix, had 
fewer distracting backgrounds than the original image, because of 
which the principal regions of the target food were more easily at-
tended to and learned by the model. In summary, our method enhanced 
global-local feature representations at the image-level.
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Fig. 1. The framework of FSF-ViT model. The FSF-ViT model is primarily composed of the image augmentation module, the feature extractor module, and the global-local feature 
fusion module.
Fig. 2. Some examples of food images from Food-30, Sushi-50, ChineseFoodNet, and Vireo Food-172 datasets.
2.2.2. Feature extractor module
The ViT effectively captures relationships between arbitrary regions 

in an image, making it particularly suitable for addressing challenges 
of high class diversity and high shape similarity in food images. Con-
sequently, we adopted ViT as our feature extraction network mod-
ule. In particular, the image set (𝐼, 𝐼𝐶𝐶 , 𝐼𝐶𝑀 ) outputted by the image 
augmentation module served as input for this module. For an input 
3 
image with size 𝑊 ×𝐻 × 3, we divided it into 𝑁 non-overlapping 
patches 𝑝𝑖 ∈ R𝑃×𝑃×3, where 𝑁 = 𝑊 ×𝐻∕𝑃 2. These patches were flat-
tened and linearly projected to patch embeddings 𝑉 ∈ R𝑁×𝑑 . A class 
token 𝑉𝐶𝐿𝑆 ∈ R𝑑 was added as the learnable parameter to gather global 
information, after which it was concatenated with 𝑉  to obtain the 
expanded embeddings 𝑉𝑃 ∈ R(𝑁+1)×𝑑 . In addition, to encode position 
information, we incorporated learnable embedding parameters 𝑉 ∈
𝑃𝑜𝑠
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R(𝑁+1)×𝑑 by adding them to 𝑉𝑃 . The combined representation that was 
fed into the transformer encoder is expressed as: 
𝑉𝑇𝐸 = 𝑉𝑃 + 𝑉𝑃𝑜𝑠 = [𝑉𝐶𝐿𝑆 ;𝑉 ] + 𝑉𝑃𝑜𝑠, 𝑉𝑇𝐸 ∈ R(𝑁+1)×𝑑 . (5)

The transformer encoder module consists of 𝐿 stacked encoder 
blocks, each primarily consisting of layer normalization, multi-head 
attention, and mlp block. The input to the 𝑗-th encoder block, de-
noted by 𝑆𝑗−1 ∈ R(𝑁+1)×𝑑 , where 𝑗 ∈ [1, 𝐿], is the output from 
the (𝑗 − 1)-th encoder block. In addition, the dimension of the out-
put of each encoder block remains consistent with that of its input. 
Finally, the transformer encoder produces features that assume the 
form 𝑆𝐿 = [𝑆𝐶𝐿𝑆

𝐿 ;𝑆1
𝐿,… , 𝑆𝑁

𝐿 ], where 𝑆𝐶𝐿𝑆
𝐿 ∈ R𝑑 is generated from 

the trainable class token 𝑉𝐶𝐿𝑆 . Herein, an image set (𝐼, 𝐼𝐶𝐶 , 𝐼𝐶𝑀 ) was 
simultaneously input into the transformer encoder module, generating 
a set of class tokens, denoted by (𝐶𝑂 , 𝐶𝐶𝐶 , 𝐶𝐶𝑀 ). By extracting features 
from both the original images and augmented images, we obtained 
multi-feature that captured both global and local characteristics. The 
relationships among these features were further explored in subsequent 
stages.

2.2.3. Global-local feature fusion module
The effective integration of features extracted from both origi-

nal and augmented images can enhance feature performance, which 
is essential for food image classification. We selected four images 
from four different datasets and generated their corresponding aug-
mented versions. Fig.  3 showed the attention maps of both original and 
augmented images generated via gradient-weighted class activation 
mapping (Grad-CAM) (Selvaraju et al., 2017). Using the ViT model, 
we separately trained on original and augmented datasets. Fig.  3 
showed that while the activated regions (highlighted in warm colors) 
in original images only partially covered the regions within red dashed 
boxes, these areas were almost fully covered by the activated regions 
in augmented images. Augmented images were capable of capturing 
additional food details that complemented those in the original im-
ages, indicating that features from augmented and original images had 
a complementary relationship. Therefore, fusing these two types of 
features could enhance feature representation. For food image classifi-
cation, some discriminative features should have been assigned higher 
weights owing to their crucial role in distinguishing similar categories. 
To address this issue, we proposed an adaptive weighting method 
with theoretical guarantee to learn the weight relationships between 
different features. Specifically, the fused feature 𝐶𝐹𝐹 ∈ R𝑑 , denoted as 
𝛽 for simplicity, was computed from multiple latent representations 
𝐶1,… , 𝐶𝐿 by minimizing the following adaptive feature fusion loss: 

𝓁𝐹 = min
𝒂𝑙

𝐿
∑

𝑙=1
𝑎𝑙‖𝛽 − 𝐶 𝑙

‖

2
𝐹 , 𝛽 =

𝐿
∑

𝑙=1
𝑎𝑙𝐶 𝑙 , 𝑠.𝑡.,

𝐿
∑

𝑙=1
𝑎𝑙 = 3, 𝑎𝑙 > 0. (6)

where 𝐶 = [𝐶𝑂 , 𝐶𝐶𝐶 , 𝐶𝐶𝑀 ] and 𝑎𝑙 denotes the weight of 𝐶 𝑙, with 𝐿 = 3. 
Considering the constraint on 𝑎𝑙, we solved this optimization prob-
lem using the Lagrange multiplier method. By introducing a Lagrange 
multiplier 𝜂, Eq. (6) can be re-formulated as: 

min𝓁𝐹 (𝑎𝑙 , 𝜂) =
𝐿
∑

𝑙=1
(𝑎𝑙)𝑝‖𝛽 − 𝐶 𝑙

‖

2
𝐹 + 𝜂(

𝐿
∑

𝑙=1
𝑎𝑙 − 3). (7)

For simplicity, we define 𝑒𝑙 = ‖𝛽 − 𝐶 𝑙
‖

2
𝐹 . Given 𝐿 = 3, the partial 

derivatives of 𝓁𝐹 (𝑎𝑙 , 𝜂) with respect to 𝑎𝑙 and 𝜂 are derived as: 

⎧

⎪

⎨

⎪

⎩

𝜕𝓁𝐹
𝜕𝑎𝑙 = 𝑝(𝑎𝑙)𝑝−1𝑒𝑙 + 𝜂

𝜕𝓁𝐹
𝜕𝜂 =

∑𝐿
𝑙=1 𝑎

𝑙 − 3
⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝓁𝐹
𝜕𝑎1

= 𝑝(𝑎1)𝑝−1𝑒1 + 𝜂
𝜕𝓁𝐹
𝜕𝑎2

= 𝑝(𝑎2)𝑝−1𝑒2 + 𝜂
𝜕𝓁𝐹
𝜕𝑎3

= 𝑝(𝑎3)𝑝−1𝑒3 + 𝜂
𝜕𝓁𝐹
𝜕𝜂 = 𝑎1 + 𝑎2 + 𝑎3 − 3

(8)

Therefore, we set the partial derivatives to zero, obtaining 
⎧

⎪

⎪

⎨

⎪

⎪

𝑎1 = ( 𝑒
2

𝑒1
)

1
𝑝−1 𝑎2

𝑎3 = ( 𝑒
2

𝑒3
)

1
𝑝−1 𝑎2

𝑎1 + 𝑎2 + 𝑎3 = 3

(9)
⎩
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where 𝑎𝑙 is updated to the following form: 

𝑎𝑙 =
(𝑒𝑙)

1
1−𝑝

∑𝐿
𝑙=1 (𝑒𝑙)

1
1−𝑝

(10)

Therefore, the fused features 𝛽 can be represented as 
𝛽 = 𝑎1𝐶𝑂 + 𝑎2𝐶𝐶𝐶 + 𝑎3𝐶𝐶𝑀 . (11)

2.2.4. Multi-loss function
We designed a multi-loss function to guide the learning of features 

from original and augmented images, and their feature fusion.
Cross-entropy loss is widely utilized in image recognition, served 

as the loss function for the ViT model. For highly similar samples from 
different classes, the network was compelled to extract features with 
higher confidence to minimize the cross-entropy loss. This led to feature 
learning based on specific samples, resulting in a poor generalization 
capability. Owing to the high inter-class similarity among food images, 
using only the cross-entropy loss led to overfitting. The cross-entropy 
is defined as 

𝐿𝐶𝐸 (𝑋, 𝑌 ) = −1
𝑛

𝑛
∑

𝑖=1

𝐶
∑

𝑗=1
𝑦𝑖𝑗 log 𝑓𝑗 (𝑥𝑖). (12)

We considered a 𝐶-class classification problem. Let 𝑆 = {𝑠1, 𝑠2,… ,
𝑠𝑛} denote a dataset. Let 𝑋 ∈ R𝑛×𝑑 denote the feature space, and let 
𝑌 = {1,… , 𝐶} denote the label space. There exists a set {(𝑠𝑖, 𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, 
where each (𝑠𝑖, 𝑥𝑖, 𝑦𝑖) ∈ (𝑆 ×𝑋 × 𝑌 ). The classifier was defined as a 
function 𝑓 ∶ 𝑋 → R𝑛×𝐶 that mapped the feature space to the class 
probability space. Here, 𝑓𝑗 (𝑥𝑖) represents the probability of feature 𝑥𝑖
being classified as that of class 𝑗, and 𝑦𝑖𝑗 corresponds to the 𝑗-th element 
of the one-hot encoded label of sample 𝑠𝑖.

Pairwise confusion loss was introduced into the loss function as 
an additional regularization term. This function encouraged the model 
to learn more generalized features rather than sample-specific ones, 
thereby addressing the overfitting problem caused by solely relying 
on the cross-entropy loss alone. The pairwise confusion function is 
formulated as follows: 
𝐷𝐸𝐶 (𝑥𝑖, 𝑥𝑘) = ‖𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑘)‖22, (13)

where 𝑓 (𝑥𝑖) denotes the class probability of the sample 𝑥𝑖, and 𝑓 (𝑥𝑘)
the class probability of the sample 𝑥𝑘, (𝑘 ≠ 𝑖).

𝐋𝐕𝐅, combining cross-entropy loss and pairwise confusion loss, was 
proposed as our loss function to better supervise multi-feature learning. 
The proposed loss algorithm was developed in three sequential stages. 
First, we focused on the cross-entropy loss of the fused features 𝐶𝐹𝐹 . 
Let 𝑋𝐹 ∈ R𝑛×𝑑 denote the 𝐶𝐹𝐹  space. By substituting 𝑋𝐹  for 𝑋 in Eq. 
(12), the cross-entropy loss 𝐿𝐹𝐹

𝑐𝑒  of 𝐶𝐹𝐹  is formulated as follows: 

𝐿𝐹𝐹
𝑐𝑒 = −1

𝑛

𝑛
∑

𝑖=1

𝐶
∑

𝑗=1
𝑦𝑖𝑗 log 𝑓𝑗 (𝑥𝐹𝑖 ). (14)

Subsequently, we computed the pairwise confusion loss for the fused 
features 𝐶𝐹𝐹 . For each pair of features (𝑥𝐹𝑖 , 𝑥𝐹𝑖+[𝑛∕2]) and their corre-
sponding class probability (𝑓 (𝑥𝐹𝑖 ), 𝑓 (𝑥𝐹𝑖+[𝑛∕2])), the pairwise confusion 
loss 𝐿𝐶𝐹𝐹  of 𝐶𝐹𝐹  was incorporated into the loss of our model as 
follows: 

𝐿𝐶𝐹𝐹 = −1
𝑛

𝑛
∑

𝑖=1

𝐶
∑

𝑗=1
𝑦𝑖𝑗 log 𝑓𝑗 (𝑥𝐹𝑖 ) +

[𝑛∕2]
∑

𝑖=1
‖𝑓 (𝑥𝐹𝑖 ) − 𝑓 (𝑥𝐹𝑖+[𝑛∕2])‖

2
2. (15)

Finally, we incorporated the loss of features from both the original 
and augmented images to supervise feature learning, thereby obtaining 
better pre-fusion features, which in turn improved the fused feature 
representation. We computed the cross-entropy and pairwise confusion 
loss for four class tokens (𝐶𝑂 , 𝐶𝐶𝐶 , 𝐶𝐶𝑀 , 𝐶𝐹𝐹 ). Let 𝑋𝑂 ∈ R𝑛×𝑑 de-
note the class token 𝐶𝑂 space, 𝑋𝐶𝐶 ∈ R𝑛×𝑑 denote the class token 
𝐶𝐶𝐶 space, 𝑋𝐶𝑀 ∈ R𝑛×𝑑 denote the class token 𝐶𝐶𝑀  space, and 
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Fig. 3. Visualization results of ViT on original and augmented images (the warmer the color of the overlay image, the more discriminative that pixel is). All these augmented 
images are resized into the same fixed size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝑋𝐹 ∈ R𝑛×𝑑 denote the fused features 𝐶𝐹𝐹  space. There exists a 
set {(𝑠𝑖, 𝑥𝐹𝑖 , 𝑥𝑂𝑖 , 𝑥𝐶𝐶

𝑖 , 𝑥𝐶𝑀
𝑖 , 𝑦𝑖)}𝑛𝑖=1, where each (𝑠𝑖, 𝑥𝐹𝑖 , 𝑥𝑂𝑖 , 𝑥𝐶𝐶𝑖 , 𝑥𝐶𝑀𝑖 , 𝑦𝑖) ∈

(𝑆×𝑋𝐹 ×𝑋𝑂×𝑋𝐶𝐶 ×𝑋𝐶𝑀 ×𝑌 ). 𝑓 (𝑥𝑂𝑖 ), 𝑓 (𝑥𝐶𝐶
𝑖 ), 𝑓 (𝑥𝐶𝑀

𝑖 ), and 𝑓 (𝑥𝐹𝑖 ) sepa-
rately represent the class probability of the feature 𝑥𝑂𝑖 , 𝑥𝐶𝐶

𝑖 , 𝑥𝐶𝑀
𝑖 ,  and 

𝑥𝐹𝑖 . We defined 𝑇  as (𝑂,𝐶𝐶, 𝐶𝑀,𝐹 ). Our final loss function 𝐿𝑉 𝐹  is 
formulated as 

𝐿𝑉 𝐹 =
𝑇
∑

𝑘=𝑂
(−1

𝑛

𝑛
∑

𝑖=1

𝐶
∑

𝑗=1
𝑦𝑖𝑗 log 𝑓𝑗 (𝑥𝑘𝑖 )) +

𝑇
∑

𝑘=𝑂

[𝑛∕2]
∑

𝑖=1
‖𝑓 (𝑥𝑘𝑖 ) − 𝑓 (𝑥𝑘𝑖+[𝑛∕2])‖

2
2.

(16)

The detailed model training procedure was outlined in Algorithm 1.

 Algorithm 1 Training Algorithm of the FSF-ViT Model  
 𝐈𝐧𝐩𝐮𝐭: Data 𝐷 = {(𝑠𝑖, 𝑦𝑖)}𝑛𝑖=1  
 Initialize weights 𝑎𝑙 = 1  
 𝐟𝐨𝐫 𝑒𝑝𝑜𝑐ℎ ∈ [0, 𝑒𝑝𝑜𝑐ℎ𝑠] 𝐝𝐨  
 ∑𝐿

𝑙=1 𝐷
𝑙 ⇐ 𝐷, through the image augmentation module 

 ∑𝐿
𝑙=1 𝐶

𝑙 ⇐
∑𝐿

𝑙=1 𝐷
𝑙, through the ViT module  

 Compute 𝛽 =
∑𝐿

𝑙=1 𝑎
𝑙𝐶 𝑙  

 Update 𝐚𝐥 = (𝑒𝑙)
1

1−𝑝

∑𝐿
𝑙=1 (𝑒

𝑙 )
1

1−𝑝
 and 𝛽 =

∑𝐿
𝑙=1 𝑎

𝑙𝐶 𝑙  

 𝑇 = [
∑𝐿

𝑙=1 𝐶
𝑙 , 𝛽]  

 Compute Loss: 𝐿 =
∑𝑛

𝑖=1
∑𝑇

𝑡=𝐶1 𝐿𝑉 𝐹 (𝑡𝑖)  

 𝐞𝐧𝐝 𝐟𝐨𝐫  
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2.3. Experimental setup

Few-shot image classification follows 𝐾-shot setting with K labeled 
images per class. Typically, 𝐾 denotes a small number, e.g. 𝐾=1, 
5, or 10 (Song et al., 2023; Xu et al., 2022). Achieving satisfactory 
accuracy by using a limited number of labeled samples is challenging, 
which requires strong feature extraction capabilities. We evaluated 
four datasets: Food-30, Sushi-50, ChineseFoodNet, and Vireo Food-
172, where we selected 𝑘 samples per category to form the training 
sets for 𝑘-shot experiments, with test sets of 3000, 3258, 16,867, and 
33,154 images, respectively. The diverse scales of test sets strengthened 
the reliability of our experimental validation. All experiments were 
conducted on PyTorch with an NVIDIA RTX 3090 GPU. Top-1 accuracy 
(Top-1 Acc.) was adopted as the evaluation criterion. Images were 
resized to 224 × 224 pixels and were trained for 100 epochs with a 
batch size of 8. To address concerns about potential bias in training, 
we conducted experiments with multiple random seeds. Specifically, all 
reported results represented the average performance across three in-
dependent runs with different random initializations, and we included 
the standard deviations to demonstrate the robustness of our method.

3. Results

3.1. Quantitative evaluation

Conventional data augmentation techniques achieve enhancement 
at the data level by means of methods such as flipping and scaling. 
These approaches typically regard augmented images only as nor-
mal training samples, without considering the relationship between 
features from original and augmented images. However, our method 
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Table 1
Performance comparison on different methods (%). (1) The OG method only utilizes original images for training. (2) The OA method uses original and augmented images for 
training. (3) Building upon OA, our method combines features from both augmented and original images to enhance feature extraction capability.
 Method Food-30 Sushi-50 ChineseFoodNet Vireo Food-172
 10-shot 5-shot 1-shot 10-shot 5-shot 1-shot 10-shot 5-shot 1-shot 10-shot 5-shot 1-shot  
 OG 87.2 ± 0.3 83.2 ± 0.4 64.8 ± 0.4 65.2 ± 0.0 55.5 ± 0.7 25.2 ± 0.3 48.8 ± 0.1 41.3 ± 0.2 29.1 ± 0.1 61.8 ± 0.1 54.2 ± 0.1 33.5 ± 0.5  
 OA 88.7 ± 0.0 87.4 ± 0.2 73.3 ± 1.0 69.3 ± 0.1 62.1 ± 0.3 31.5 ± 0.2 53.2 ± 0.1 46.6 ± 0.1 30.4 ± 0.2 66.5 ± 0.1 59.8 ± 0.1 37.1 ± 0.2  
 FSF-ViT (Ours) 95.1 ± 0.1 94.0 ± 0.0 84.6 ± 0.1 80.3 ± 0.1 73.1 ± 0.4 37.7 ± 0.7 54.0 ± 0.1 47.6 ± 0.2 31.3 ± 0.1 68.5 ± 0.0 63.8 ± 0.2 42.2 ± 0.0 
Table 2
Comparison of FSF-ViT and other models on Food-30, Sushi-50, ChineseFoodNet, and Vireo Food-172 datasets (%).
 Method Mixing 

type
Params (M) Food-30 Sushi-50 ChineseFoodNet Vireo Food-172

 10-shot 5-shot 1-shot 10-shot 5-shot 1-shot 10-shot 5-shot 1-shot 10-shot 5-shot 1-shot  
 EfficientNet-L Conv 117.27 95.2 ± 0.4 91.2 ± 0.4 68.2 ± 1.8 78.2 ± 0.4 67.6 ± 0.4 30.8 ± 1.2 48.4 ± 0.3 36.9 ± 0.2 18.0 ± 0.3 61.6 ± 0.4 51.7 ± 0.1 22.5 ± 0.6 
 ResNet-152 Conv 58.21 95.9 ± 0.3 92.1 ± 0.1 56.5 ± 2.3 76.8 ± 0.6 66.6 ± 0.3 25.2 ± 0.4 29.4 ± 0.6 23.8 ± 1.2 14.8 ± 0.2 42.9 ± 0.2 39.6 ± 5.3 20.4 ± 0.1 
 RegNetY-16G Conv 80.66 91.2 ± 2.3 88.1 ± 1.4 61.9 ± 3.6 80.8 ± 0.1 68.0 ± 0.2 23.1 ± 1.3 46.0 ± 0.3 33.3 ± 0.2 12.7 ± 0.3 61.7 ± 0.1 49.4 ± 0.6 17.1 ± 0.8 
 ConvNeXt-B Conv 87.54 88.9 ± 2.4 89.4 ± 2.3 68.9 ± 5.6 70.9 ± 1.7 58.2 ± 2.9 25.6 ± 2.6 34.3 ± 0.5 24.7 ± 0.6 12.8 ± 0.4 51.0 ± 0.0 41.7 ± 1.0 16.5 ± 1.3 
 FocalNet-B Conv 87.94 83.6 ± 2.1 75.0 ± 4.0 13.7 ± 1.4 63.5 ± 1.0 45.7 ± 0.4 8.6 ± 0.6 39.4 ± 0.2 28.7 ± 0.0 8.6 ± 0.1 53.8 ± 0.2 43.0 ± 0.1 10.1 ± 0.3 
 InceptionNeXt-B Conv 83.69 76.1 ± 0.9 73.4 ± 1.4 13.8 ± 1.1 55.4 ± 0.1 42.2 ± 1.7 8.6 ± 0.3 7.8 ± 0.3 7.2 ± 0.4 6.4 ± 0.3 22.5 ± 0.9 23.3 ± 1.3 8.4 ± 0.2  
 DeiT-B Attn 86.57 93.9 ± 0.5 92.8 ± 1.9 56.5 ± 0.9 81.8 ± 0.0 69.8 ± 0.2 24.0 ± 0.4 51.0 ± 0.2 38.8 ± 0.0 16.5 ± 0.1 67.7 ± 0.1 57.6 ± 0.2 22.6 ± 0.1 
 PVT-Large Attn 60.87 93.2 ± 0.9 91.4 ± 0.8 61.1 ± 0.1 82.5 ± 0.2 69.7 ± 0.1 24.8 ± 0.7 50.2 ± 0.5 37.5 ± 0.2 16.0 ± 0.1 64.4 ± 0.2 54.4 ± 0.2 21.8 ± 0.3 
 ViT-Base/16 Attn 85.67 87.2 ± 0.3 83.2 ± 0.4 64.8 ± 0.4 65.2 ± 0.0 55.5 ± 0.7 25.2 ± 0.3 48.8 ± 0.1 41.3 ± 0.2 29.1 ± 0.1 61.8 ± 0.1 54.2 ± 0.1 33.5 ± 0.5 
 Swim-B Attn 86.71 88.8 ± 0.9 87.5 ± 2.2 73.9 ± 1.6 72.1 ± 0.4 60.3 ± 2.6 24.3 ± 1.3 39.0 ± 1.0 29.5 ± 0.7 13.1 ± 1.1 54.3 ± 0.9 42.2 ± 5.9 17.4 ± 3.1 
 T2T-ViT-24 Attn 63.50 88.5 ± 1.4 87.3 ± 0.9 46.0 ± 4.2 65.9 ± 0.2 52.4 ± 0.9 17.1 ± 0.5 37.2 ± 0.0 25.2 ± 0.2 11.0 ± 0.2 54.5 ± 0.2 41.5 ± 0.2 12.2 ± 2.2 
 TNT-B Attn 64.81 86.2 ± 0.7 85.6 ± 0.2 58.3 ± 1.0 76.1 ± 0.2 62.0 ± 0.4 20.9 ± 0.1 47.1 ± 0.0 36.6 ± 0.2 14.6 ± 0.2 64.9 ± 0.2 54.0 ± 0.0 21.8 ± 0.1 
 BEiT-B Attn 85.79 86.2 ± 0.3 88.1 ± 0.5 70.9 ± 0.7 70.5 ± 0.2 65.7 ± 0.7 29.9 ± 0.9 20.5 ± 0.3 22.2 ± 0.3 16.3 ± 0.1 36.2 ± 0.0 34.6 ± 0.1 25.2 ± 0.0 
 Hiera-B+ Attn 69.04 86.4 ± 0.5 80.4 ± 0.6 69.6 ± 0.5 57.6 ± 1.1 50.2 ± 1.0 28.6 ± 0.5 32.3 ± 0.6 28.7 ± 0.4 19.1 ± 0.0 46.9 ± 0.1 39.1 ± 1.0 23.6 ± 0.4 
 GC ViT-B Attn 89.51 89.7 ± 1.3 83.9 ± 2.7 59.7 ± 6.4 66.8 ± 5.4 59.0 ± 1.6 24.3 ± 0.5 22.8 ± 1.9 27.0 ± 1.3 13.0 ± 3.6 36.6 ± 3.7 39.9 ± 3.0 19.2 ± 1.0 
 FSF-ViT (Ours) Attn 85.67 95.1 ± 0.1 94.0 ± 0.0 84.6 ± 0.1 80.3 ± 0.1 73.1 ± 0.4 37.7 ± 0.7 54.0 ± 0.1 47.6 ± 0.2 31.3 ± 0.1 68.5 ± 0.0 63.8 ± 0.2 42.2 ± 0.0 
explored and leveraged feature relationships between original and aug-
mented images. We designed the following comparative experiments to 
evaluate the above-mentioned operations:

• OG: The baseline approach utilized only original images for train-
ing.

• OA: This method used original and augmented images for train-
ing.

• FSF-ViT: Building upon OA, our method combined features from 
both augmented and original images to enhance feature extrac-
tion capability.

Experimental evaluations were conducted on four datasets. Notably, 
augmented images used for OA were generated by our proposed Cut-
Center and CornerMix methods. As shown in Table  1, both OA and 
FSF-ViT outperformed the baseline OG, with FSF-ViT achieving the best 
performance across all datasets. Compared to OA, FSF-ViT achieved av-
erage accuracy improvements of 8.1%, 9.4%, 0.9%, and 3.7% on Food-
30, Sushi-50, ChineseFoodNet, and Vireo Food-172, respectively. These 
experimental results validated the following: (1) the complementary 
relationship between features from original and those from augmented 
images, and (2) the effectiveness of FSF-ViT in feature fusion for 
improving the performance of few-shot food image classification.

3.2. Comparison with the state-of-the-art methods

We evaluated our method against state-of-the-art self-supervised 
classification approaches, which can be categorized into two types: 
CNNs and attention networks. The CNNs-based models include Incep-
tionNeXt (Yu et al., 2024), ConvNeXt (Liu et al., 2022), FocalNet (Yang 
et al., 2022), EfficientNet (Tan & Le, 2021), RegNet (Radosavovic et al., 
2020), and ResNet (He et al., 2016), while the attention networks 
comprise GC ViT (Hatamizadeh et al., 2023), Hiera (Ryali et al., 2023), 
BeiT (Bao et al., 2021), Swin Transformer (Liu et al., 2021), ViT (Doso-
vitskiy et al., 2021), DeiT (Touvron et al., 2021), T2T-ViT (Yuan 
et al., 2021), TNT (Han et al., 2021), and PVT (Wang et al., 2021). 
As shown in Table  2, our method achieved superior performance on 
all four datasets, with two exceptions. In the 10-shot experiment on 
the Food-30 dataset, ResNet-152 achieved the best Top-1 accuracy, 
while our method ranked third with only a 0.8% lower accuracy. In 
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the 10-shot experiments on the Sushi-50 dataset, PVT achieved the 
highest accuracy, outperforming our method by 2.2%. Across all experi-
ments, compared to the best results among other methods, our method 
demonstrated significant performance improvement, with an average 
Top-1 accuracy increase of 3.7%, 2.7%, 3.8%, and 5.2% on Food-30, 
Sushi-50, ChineseFoodNet, and Vireo Food-172, respectively. Notably, 
FSF-ViT demonstrated increasingly superior performance relative to 
other approaches as the number of training samples decreased. FSF-ViT 
showed remarkable performance on the Food-30 dataset, achieving a 
10.7% improvement over the second-best method in the 1-shot setting, 
validating its effectiveness for few-shot food image classification.

3.3. Qualitative evaluation

We further validated the effectiveness of FSF-ViT by showing rep-
resentative cases. Fig.  5 showed comparative examples for FSF-ViT 
and the baseline, ViT. The baseline misclassified some challenging 
samples, such as images with small-scale target objects or peripheral in-
terference. However, FSF-ViT achieved accurate classification through 
effectively magnifying detailed areas and erasing corner regions. These 
results further validated that the image augmentation module was capa-
ble of enhancing feature representations, which consequently improved 
the generalization ability of FSF-ViT.

3.4. Ablation experiments

Ablation experiments are systematic studies to evaluate the con-
tribution of each component in our proposed model. By selectively 
removing or replacing specific components while keeping others un-
changed, we can quantitatively assess how each component affects the 
model’s overall performance.

Effectiveness of the image augmentation module: We evalu-
ated the effectiveness of CutCenter and CornerMix methods in the 
image augmentation module through ablation experiments. We con-
ducted experiments across four datasets: Food-30, Sushi-50, Chinese-
FoodNet, and Vireo Food-172. The experimental results based on ViT 
were presented in Table A.1. Applied independently, the CutCenter 
method achieved average Top-1 accuracy improvements of 11.6%, 
14.8%, 3.7%, and 6.9% on these datasets, while the CornerMix method 
yielded improvements of 9.5%, 11.2%, 2.3%, and 6.2%, respectively. 
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Fig. 4. Some samples of the Food-30 dataset, one sample is shown for each class.
Fig. 5. Predicted results of the baseline and our proposed FSF-ViT from the Food-30, Sushi-50, ChineseFoodNet, and Vireo Food-172 datasets. We use the Vision Transformer as 
the baseline.
These significant performance improvements demonstrated that both 
methods enhanced discriminative feature learning through magnifying 
detailed regions and randomly erasing corner regions where non-target 
objects may appear. The remarkable ability of the CutCenter method 
validated its effectiveness in capturing crucial detail information for 
distinguishing subtle inter-class differences. By combining the two 
methods, our method achieved optimal performance across all datasets, 
yielding average Top-1 accuracy improvements of 12.8%, 15.1%, 4.6%, 
and 8.3%.

Effect of the different loss functions: Using FSF-ViT as the base-
line, we conducted ablation studies on four datasets to analyze the 
effects of various loss functions. Fig. A.1 showed two loss functions: 
𝐿𝐶𝐶𝐹 , integrating the cross-entropy and pairwise confusion losses for 
fused features, and 𝐿𝑉 𝐹 , which, based on 𝐿𝐶𝐶𝐹 , adds both losses for 
pre-fusion features. Experimental results showed that 𝐿𝑉 𝐹  improved 
the average Top-1 accuracy by 1.6%, 1.8%, 0.6%, and 0.8% on Food-
30, Sushi-50, ChineseFoodNet, and Vireo Food-172, respectively. These 
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experimental results demonstrated that 𝐿𝑉 𝐹  could strengthen the final 
fused class feature representations by supervising pre-fusion feature 
learning.

Different weighting methods: We conducted ablation experiments 
to evaluate the effect of different weighting methods on the four 
datasets: Food-30, Sushi-50, ChineseFoodNet, and Vireo Food-172. The 
experimental results of FSF-ViT with different weighting approaches 
were presented in Table A.2. The Uniform Fixed Coefficient (UFC) 
method employed uniform weighting with fixed coefficients of 1. The 
Learnable Parameter Coefficient (LPC) method introduced three learn-
able parameters as weight coefficients, initialized to 1 with a sum 
constraint of 3. Table A.2 showed that our method yielded the best 
results in the majority of cases with only two instances of second-
best performance. These experimental results demonstrated that our 
adaptive weighting method effectively learned complementary feature 
relationships, and thus enhanced the feature learning capability of 
FSF-ViT.
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3.5. Parameter sensitivity and visualization

To further confirm the feature clustering capability of our method, 
we visualized the feature distributions of ViT and FSF-ViT with t-
distributed stochastic neighbor embedding (t-SNE) (Van der Maaten & 
Hinton, 2008) on the four datasets. Compared with ViT, our method 
achieved more compact intra-class aggregations and more distinct 
inter-class separations in Fig. A.2. These results indicated that FSF-
ViT could learn more subtle features, which formed better-separated 
clusters for different categories, facilitating the few-shot food image 
classification.

We conducted a three-dimensional statistical graph of Top-1 accu-
racy by adjusting the value of 𝑝, as described in Section 2.2.3. The 
statistical results obtained from the Food-30, Sushi-50, ChineseFood-
Net, and Vireo Food-172 datasets were shown in Fig. A.3. The results 
clearly demonstrated that FSF-ViT achieved excellent performance with 
𝑝 in the range of [3,8]. Based on these experimental results, we selected 
𝑝 = 5 on these four datasets, which achieved the best Top-1 accuracy 
performance with the proposed FSF-ViT.

The attention maps of both the baseline and FSF-ViT were visualized 
using Grad-CAM. Fig. A.4(a) showed that FSF-ViT captured richer 
food information. FSF-ViT covered more comprehensive areas of food, 
whereas ViT only covered partial regions, neglecting some food details. 
Fig. A.4(b) demonstrated that FSF-ViT exhibited more prominent at-
tention to discriminative characteristics. Compared with ViT, FSF-ViT 
emphasized the textural features of a cauliflower, facilitating differen-
tiation between it and other categories with similar appearances. Fig. 
A.4(c) and Fig. A.4(d) showed that FSF-ViT effectively mined category-
specific regions and mitigated the influence of interfering food items. 
However, ViT predominantly focused on the edge regions of the plate 
in Fig. A.4(c) and attended regions containing extraneous food in Fig. 
A.4(d). FSF-ViT maintained attention solely on regions containing the 
target food. In summary, FSF-ViT improved classification performance 
through more comprehensive and accurate attention coverage.

3.6. Experimental evaluation on other types of images

To further evaluate the robustness and versatility of our proposed 
method beyond food images, we conducted experiments on the
Flower102 dataset (Nilsback & Zisserman, 2008). This dataset com-
prises 102 different flower species. We divided the dataset into 1020 
training images and 6149 testing images. The images were captured 
under various resolutions, lighting conditions, and environments. The 
dataset presents unique challenges in distinguishing between flower 
species with subtle inter-class differences, such as similar petal arrange-
ments, color patterns, and structural features, making it an excellent 
benchmark for evaluating feature extraction techniques and attention 
mechanisms.

As shown in Fig. A.5, our method outperformed other state-of-the-
art approaches on the Flower102 dataset. Specifically, it achieved a 
peak accuracy of 99%, and maintained high performance (above 94%) 
across all experimental settings (1-shot, 5-shot, and 10-shot). These 
results demonstrated that our method was effective not only for food 
images but also for the classification of other types of images. The 
superior performance could be attributed to our method’s enhanced 
ability in fine-grained feature extraction and representation learning.

4. Discussion

4.1. Challenges in few-shot food image classification

The challenges of few-shot food image classification are two-fold: 
First, food images belong to fine-grained visual data (Fu et al., 2017; 
Zhang et al., 2014). The subtle differences between food categories 
pose substantial classification challenges. Second, the distinguishing 
characteristics between food categories are primarily found in subtle 
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local regions. However, global image representations often overlook 
these critical local features that are essential for food classification.

To address these challenges, we proposed a Vision Transformer-
based few-shot food image classification method with image augmen-
tation and adaptive global-local feature fusion. Specifically, the image 
augmentation method extracted and magnified discriminative local 
regions for enhanced fine-grained feature learning, while the adaptive 
weighting method facilitated the fusion of global-local representations.

4.2. Advantages of ViT in food image classification

Transformer leverages self-attention mechanisms to focus on salient 
regions instead of processing all features uniformly (Han et al., 2023). 
This mechanism directs attention to discriminative local regions, en-
hancing fine-grained feature extraction for food image classification. 
Experimental results demonstrated that Transformer-based approaches 
were generally superior to CNN-based methods, with FSF-ViT exhibit-
ing superior performance among Transformer variants.

4.3. Limitations and future improvement directions

We proposed FSF-ViT for few-shot food image classification. Despite 
its superior classification performance, the model exhibited several 
limitations. Our method was primarily designed for Chinese cuisine, 
which may limit the applicability of the model to cuisines from other 
regions. Future work needs to incorporate diverse culinary categories 
to enhance model applicability across different regional cuisines. We 
aim to develop a comprehensive open-source food image dataset to 
facilitate future research in the deep learning-based food industry. 
Classification accuracy decreases with increasing category numbers, ne-
cessitating future research on advanced feature extraction techniques. 
For example, mining rich food-specific knowledge, especially ingredi-
ent information, improved classification performance (Liu et al., 2024; 
Luo et al., 2023). Serving as general and intermediate food attributes, 
ingredient-oriented features provided complementary information to 
category-oriented features, thereby enhancing feature learning (Jiang 
et al., 2020). Moreover, multi-scale algorithms can be integrated (Jing 
et al., 2023; Zhang et al., 2023). Compared to single-scale represen-
tation, multi-scale approaches enhance global feature representation, 
as larger scales with wider receptive fields provide richer informa-
tion (Ren et al., 2024). In conclusion, future research directions focus 
on model optimization to enhance food recognition accuracy, thereby 
strengthening intelligent food applications. Such advancements can 
promote effective dietary management and health.

5. Conclusions

In this paper, we proposed a ViT-based deep learning method com-
bining image augmentation and adaptive global-local feature fusion for 
few-shot food image classification. This method focused on training 
with limited samples, in which each category contained only 10, 5, 
or 1 food images, making our approach more economical in time and 
cost. We constructed a small dataset by collecting real-world images of 
30 Chinese food categories. We performed experiments on our dataset 
and three benchmark food datasets to validate the effectiveness of 
the proposed method. The results demonstrated that FSF-ViT outper-
formed mainstream deep learning classification models and achieved 
the highest classification accuracy of 95.1% on the test set. Compared 
with ViT, FSF-ViT showed a significant performance improvement, with 
average accuracy improvements of 12.8%, 15.1%, 4.6%, and 8.3% on 
the Food-30, Sushi-50, ChineseFoodNet, and Vireo Food-172 datasets, 
respectively. In summary, we proposed a novel method for recognizing 
the category of food displayed in an image. This method provided 
low-cost and effective technical support for online dietary recording, 
facilitating dietary management and health.
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