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Abstract—Multiple Kernel Clustering (MKC) has emerged as a prominent research domain in recent decades due to its capacity to
exploit diverse information from multiple views by learning an optimal kernel. Despite the successes achieved by various MKC
methods, a significant challenge lies in the computational complexity associated with generating a consensus partition from the optimal
kernel matrix, typically of size n× n, where n represents the number of samples. This computational bottleneck restricts the practical
applicability of these methods when confronted with large-scale datasets. Furthermore, certain existing MKC algorithms derive the
consensus partition matrix by fusing all base partitions. However, this fusion process may inadvertently overlook critical information
embedded in individual base kernels, potentially leading to inferior clustering performance. In light of these challenges, we introduce an
innovative and efficient multiple kernel k-means approach, denoted as FAMKKM. Notably, FAMKKM incorporates two approximated
partition matrices instead of the original individual partition matric for each base kernel. This strategic substitution significantly reduces
computational complexity. Additionally, FAMKKM leverages the original kernel information to guide the fusion of all base partitions,
thereby enhancing the quality of the resulting consensus partition matrix. Finally, we substantiate the efficacy and efficiency of the
proposed FAMKKM through extensive experiments conducted on six benchmark datasets. Our results demonstrate its superiority over
state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/FAMKKM.

Index Terms—Multi-view clustering, partition learning, multiple kernel k-means, data fusion.
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1 INTRODUCTION

C LUSTERING is a fundamental algorithm for assigning
each object to its corresponding class, widely used in

machine learning and computer vision communities [1]–[7].
With the increasing availability of data from diverse sources,
object data can be represented by heterogeneous features,
making it necessary to develop advanced multi-view clus-
tering methods to handle this kind of datasets effectively
[8]–[15]. Although these methods have shown potential for
multi-view data clustering, capturing the intrinsic critical
information of large-scale datasets in the era of big data
remains a challenging problem.

K-means based clustering has been widely used in
clustering analysis due to its simplicity and mathematical
tractability. Over the past decades, many variants of k-
means clustering methods have been proposed in the litera-
ture, such as [16]–[22]. In order to handle complex multi-
view datasets, multiple kernel k-means based algorithms
(MKKM) have been proposed. For example, Li et al. [23]
developed a local kernel alignment method to improve the
clustering performance by utilizing the variation among

The work was partly supported by the National Natural Science Foundation
of China (NO. 62076228, 62325604, and 62376252), and partly support-
ed by Natural Natural Science Foundation of Shandong Province (NO.
ZR2021LZH001). (Corresponding author: Chang Tang).
J. Wang, X. Zheng, X. Liu and E, Zhu are with the School of Computer,
National University of Defense Technology, Changsha 410073, China (E-mail:
wang jun, zhengxiao, xinwangliu, enzhu@nudt.edu.cn)
C. Tang is with the School of Computer Science, China University of Geo-
sciences, Wuhan 430074, China. He is also with the State Key Laboratory
of Integrated Services Networks (Xidian University), Xi’an, 710071, China.
(E-mail: tangchang@cug.edu.cn).
W. Zhang is with Shandong Provincial Key Laboratory of Computer Net-
works, Shandong Computer Science Center (National Supercomputing Center
in Jinan), Qilu University of Technology (Shandong Academy of Sciences),
Jinan 250000, China (E-mail: wzhang@qlu.edu.cn).
X. Zhu is with the School of Computer Science and Technology (School of
Artificial Intelligence), Zhejiang Normal University, Jinhua 321004, China.
(E-mail: zxz@zjnu.edu.cn).

samples. Since multiple kernel clustering aims to utilize a
group of pre-defined kernel matrices to explore the multi-
view data structure, the selected kernels may become re-
dundant as the number of views increases. To capture
the correlations among multiple kernel matrices, Liu et al.
[24] integrated a matrix-induced regularization term into
the proposed method. In most existing MKKM methods, a
common assumption is taken that the unified optimal kernel
matrix is generated by using a linear combination of all base
kernel matrices [10], [25], [26]. Although this assumption re-
duces the computational complexity, the representation ca-
pability of the unified kernel may be limited. To address this
issue, an optimal neighborhood kernel clustering method
is proposed in [27] to improve the representability of the
unified kernel matrix. Moreover, several MKKM methods
have been developed to handle incomplete views, where
the rows or columns of base kernels are absent in some
scenarios, e.g., [28]–[30].

In the multiple kernel k-means clustering algorithms
mentioned above, the objective functions differ in various
aspects, but they all need to generate a consensus clus-
tering partition matrix. Based on the stage of clustering
information exploitation, existing MKKM methods can be
broadly categorized into two categories: early-fusion [31]–
[35] and late-fusion [28], [36]–[39]. The first category jointly
optimizes the kernel coefficient and the consensus cluster-
ing partition matrix based on all kernel matrices, resulting
in a better unified partition matrix with the guidance of
original kernel information. However, this approach in-
creases computational complexity significantly due to the
eigen-decomposition of the kernel matrix with the size of
n × n. The second category generates all base partitions
independently from each kernel and then fuses them to
obtain the consensus partition matrix. This approach derives
the consensus partition matrix at the partition level rather
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than the kernel level, significantly alleviating computational
complexity by introducing a group of smaller base partition
matrices. However, the final clustering performance highly
depends on the quality of each base partition without the
interaction of original kernel information.

Considering that the generation of base partitions from
each corresponding kernel matrix results in the loss of
complementary information, we propose a joint framework
for fusing all base partitions and kernel matrices. This
aims to produce a more representative and unified partition
matrix, which can enhance the final clustering performance.
However, the current challenge lies in obtaining the base
partitions from the original kernel matrices with reasonable
computational overhead. The typical approach for generat-
ing base partitions is through eigen-decomposition, which
requires O(n3) computational complexity and is challeng-
ing to apply to large-scale multi-view datasets. To overcome
this, we introduce two approximated partition matrices in
the partition generation step and propose a simple and ef-
fective multiple kernel k-means clustering method. Further-
more, we theoretically establish the conceptual equivalence
between approximated partition generation and existing
partition generation. Our proposed method can achieve
superior clustering performance with less computational
overhead than other state-of-the-art MKKM, as demonstrat-
ed by subsequent experimental results.

In summary, the main contributions of this paper in-
clude:

• We develop a unified framework that combines par-
tition fusion and kernel fusion, allowing the two
steps to complement each other. This approach en-
ables us to generate a more effective partition matrix
that incorporates valuable information from the orig-
inal kernel matrices.

• We propose the use of two approximated partition
matrices to mitigate the computational complexity of
our proposed method from O(n2) or O(n3) to O(n).
We present theoretical proof that optimizing the two
approximated partitions is conceptually equivalent
to optimizing the original partition derived from
each kernel independently.

• An alternating iterative optimization algorithm is
developed to solve the formulated model, and exten-
sive experimental results demonstrate the efficiency
and effectiveness of the proposed method on six
benchmark datasets.

The structure of this paper is as follows. Section II pro-
vides a brief review of k-means clustering and its variant,
multiple kernel k-means clustering. The proposed method
and its corresponding optimization solutions are presented
in Section III and Section IV, respectively. To demonstrate the
effectiveness of the proposed method, Section V describes
extensive experiments. Finally, concluding remarks are pro-
vided in Section VI.

2 RELATED WORK

2.1 Kernel K-means Clustering
Given a single-view data matrix X = [x1, ..., xn] ∈ Rn×d,
characterized by n samples and d features. We assume

that it can be segmented into k clusters denoted as X =
[X1, ..., Xk], where k represents the number of clusters, and
Xi = [xi1, ..., x

i
si ] signifies the i-th cluster comprising si

samples. In this context, the objective function for the k-
means clustering algorithm can be formally expressed as
follows [40]:

min
k∑
i=1

si∑
j=1

∥∥∥xij − ci∥∥∥2 . (1)

where ci =
∑si
j=1 x

i
j/si represents the centroid of the i-th

cluster. Let us introduce the vector ei = [1, ..., 1]> ∈ Rsi ,
enabling us to derive ci = Xiei

si
. Subsequently, we formulate

the following expression:

min
si∑
j=1

∥∥∥xij − ci∥∥∥2 = min ||Xi(Isi − eie>i /si)||2F . (2)

Due to (Isi − eie
>
i /si)

2 = (Isi − eie
>
i /si), the following

equations hold:

min ||Xi(Isi − eie>i /si)||2F
= min Tr(X>i (Isi − eie>i /si)Xi)
= min Tr(X>i Xi)− Tr(X>i (eie

>
i /si)Xi).

(3)

By introducing an orthogonal matrix H that satisfies:

H =


e1√
s1

e2√
s2

. . .
ek√
sk

 , (4)

the Eq. (1) can be reformulated as follows:

min
H

Tr(X>X)− Tr(X>HH>X) s.t.H>H = Ik, (5)

where Ik represents the identity matrix with the size of k×k.
Additionally, for ease of expression, H is referred to as the
partition matrix in our paper.

Considering that the data distribution can not be suf-
ficiently depicted in the original feature space for some
complex datasets, a feature mapping ϕ(·) is introduced
to map samples into a reproducing kernel Hilbert space
(RKHS) H, i.e., φi = ϕ(xi). Since the mapping ϕ(·) is im-
plicitly defined in most cases, we often construct the kernel
matrix as K(xi,xj) = φ(xi)

>φ(xj), and the corresponding
objective function of k-means is formulated as [41], [42]:

min
H

Tr(K(In −HH>)) s.t.H>H = Ik. (6)

Although Eq. (6) has demonstrated satisfactory perfor-
mance in data clustering, the quality of the selected kernels
greatly affects the final clustering results, and determining
the optimal kernel in realistic scenarios is challenging. To
address this issue, several kernel k-means based multi-
view clustering algorithms have been proposed, based on
the assumption that the optimal kernel is represented by a
combination of pre-defined base kernels. This topic will be
further discussed in the next section.

2.2 Multiple Kernel K-means Clustering

Given an optimal kernel Kγ =
∑v
i=1 γ

2
iK

(i), the multiple k-
ernel version of objective function in Eq. (6) can be rewritten
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Fig. 1. Framework of FAMKKM. Firstly, according to the feature mapping function ϕ(·), the kernel matrices {K(i)}vi=1 are constructed from the
multi-view data. Secondly, approximated partition matrices {H(i)}vi=1 and {G(i)}vi=1 are simultaneously generated from each kernel and then the
proposed method is adopted to obtain the consensus partition matrix F with fusing these approximated partition matrices. Finally, the k-means
clustering algorithm is applied on F to produce the final clustering results.

as:
min
H,γ

Tr(Kγ(In −HH>))

s.t.H>H = Ik, γ
>1v = 1, γv ≥ 0,∀v.

(7)

For Eq. (7), a two-step alternate optimization algorithm
is usually adopted to obtain the unified kernel matrix H, on
which the standard k-means is performed to generate the
final clustering results [43].

Based on the objective function outlined above, sev-
eral variants have been developed to enhance clustering
performance, including those presented in [26], [44], [45].
Although these variants demonstrate promising results, we
have observed that many suffer from cubic complexity,
primarily due to eigen-decomposition on the unified kernel
matrix. As a result, the following section will propose a
straightforward yet effective method for reducing the com-
putational complexity associated with eigen-decomposition.

3 PROPOSED METHOD

3.1 Notations
In this section, we briefly introduce the notations adopted in
this paper. To differentiate between variables, matrices, and
vectors are represented by bold uppercase and lowercase
letters, respectively, while scalars are denoted in non-bold
italic font. Let M ∈ Rn×d be a matrix with n samples
and d features, where Tr(M) and M> denote its trace
and transpose, respectively, and Mij represents its (i, j)-th
element. The identity matrix of size n× n is represented by
In, and mi denotes the i-th element of vector m.

3.2 Overview
The proposed FAMKKM follows the flowchart shown in
Fig. 1. Firstly, the original multi-view data matrices undergo
a transformation into kernel matrices, denoted as {K(i)}vi=1,
facilitated by the kernel space mapping ϕ(·), commonly
referred to as kernel generation. Secondly, we concurrently
generate approximated partition matrices {H(i)}vi=1 and
{G(i)}vi=1 for each kernel, derived directly from their cor-
responding kernel matrices. Subsequently, the proposed fu-
sion method is employed to consolidate these approximated

partition matrices, ultimately yielding the unified partition
matrix F. Finally, we employ the standard k-means cluster-
ing algorithm on the consensus partition matrix F to derive
the final clustering results.

3.3 Approximated Multiple Kernel K-means Clustering

As discussed above, the computational complexity of mul-
tiple kernel clustering methods primarily lies in conduct-
ing eigen-decomposition on the original kernel matrices,
incurring a computational complexity ofO(n3). To this end,
we develop a novel strategy to alleviate this computational
overhead on the basis of Theorem 1. Specifically, we intro-
duce two approximated partition matrices, denoted as H
and G, to address the computational intricacies associated
with extant multiple kernel clustering techniques. Instead
of relying solely on the original single partition matrix,
our proposed method incorporates these two approximated
partition matrices throughout the entire optimization pro-
cess. This strategic shift serves to mitigate the complexity
of partition matrix optimization. Notably, this reduction is
particularly pronounced when the parameter k, represent-
ing the number of clusters, is considerably smaller than n. In
this context, the computational burden is notably lightened,
as only an n × k matrix size is involved in the eigen-
decomposition, as opposed to the original n × n kernel
matrix.

Theorem 1. Minimizing Eq. (6) is conceptually equivalent to
maximize Tr(H>KG) with constraints H>H = G>G = Ik.

Proof. Suppose the semi-positive definite kernel matrix K
can be represented by K = U

∑
U>, according to singular

value decomposition (SVD), the following inequality can be
obtained:

Tr(H>KG)
= Tr(H>U

∑
U>G)

≤ 1
2 (||H>U

∑ 1
2 ||2F + ||G>U

∑ 1
2 ||2F )

= 1
2 (Tr(H>KH) + Tr(G>KG))

≤ 1
2 (Tr(H>KH) +

k∑
i=1

σi)

(8)
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where {σi}ki=1 are the top k largest eigenvalues of kernel
matrix K. When H = G, the inequality holds. Noticed
that if we consider the comprehensive proof of Theorem
1 purely from a mathematical standpoint, it is essential
to acknowledge that the minimization of Eq. (6) may not
be entirely conceptually equivalent to the maximization of
Tr(H>KG) under the constraints H>H = G>G = Ik.
However, within the context of our proposed method,
where partition matrices H and G are both introduced to
represent the same original partition, it becomes imperative
that they maintain conceptual equivalence. This represents
a foundational constraint that must be rigorously satisfied
in our proposed method. To ensure this strict obeys the
conceptual equivalence, our proposed method exclusively
considers scenarios where the equality condition in Eq.
(8) holds. In this light, Theorem 1 stands as a reasonable
and accurate representation of our proposed approach, i.e.,
maximizing Tr(H>KG) is conceptually equivalent to the
minimize of Eq. (6).

As stated in Theorem 1, we establish a more efficient
approach for generating partitions from individual kernel
matrices when compared to prior methods. Leveraging this
advancement, we proceed to formulate the initial objective
function as follows:

max
H,G

v∑
i=1

Tr(H(i)>K(i)G(i)) + λ1Tr(H(i)>G(i))

s.t.H(i)>H(i) = Ik,G
(i)>G(i) = Ik.

(9)

where λ1 is a trade-off parameter introduced into the formu-
lation. Since partition matrices H and G are both employed
to represent the same original partition, it is imperative that
they remain as similar as possible. To achieve this goal,
we impose a maximize alignment constraint on them, as
denoted by the second term in Eq. (9). Noticed that either of
these matrices can be effectively employed to generate the
final clustering results, as they assume equivalent roles as
the original single partition matrix.

Once the base partitions H and G have been derived for
all views, the question naturally arises: how can we generate
an improved consensus partition for subsequent clustering
tasks? The intuitive approach might involve averaging all
base partitions. However, this method fails to account for
the distinctions among these base partitions, particularly the
significance of each kernel partition. Inspired by the previ-
ous work in [43], our proposed method adopts a straightfor-
ward yet highly effective multiple partitions fusion strategy
to integrate the information of all partition matrices into a
consensus one, and the specific formulation is outlined as
follows:

max
F,R,W,γ

Tr((F>
v∑
i=1

γiH
(i)R(i)) + Tr(F>

v∑
i=1

γiG
(i)W(i)))

s.t. R(i)>R(i) = Ik,W
(i)>W(i) = Ik,

F>F = Ik,
v∑
i=1

γi
2 = 1, γi ≥ 0.

(10)
For Eq. (10), the critical problem is how to efficiently mea-
sure the difference between these partition matrices and the
consensus one, such that the complementary information of
each partition matrix can be fully captured and preserved.
Accordingly, two partition matrices R and W are employed

to ensure that each partition matrix is closer to the consensus
one by encoding the difference between them. Furthermore,
considering that each partition contributes to the consensus
one differently, weight coefficient γ is introduced to store
the prior information in the proposed method.

It is well-recognized that partition matrices are derived
from the original kernel matrices, a process that inherently
entails the loss of some information. In acknowledgment
of this inherent limitation, we undertake the endeavor of
integrating partition information and kernel information
within a unified framework, facilitating mutual information
enhancement. Consequently, the final objective function is
constructed through the joint optimization of Eq. (9) and
Eq. (10), as formulated below:

max
H,G,F,
R,W,γ

v∑
i=1

Tr(H(i)>K(i)G(i)) + λ1
v∑
i=1

Tr(H(i)>G(i))

+λ2Tr((F>
v∑
i=1

γiH
(i)R(i)) + Tr(F>

v∑
i=1

γiG
(i)W(i)))

s.t.H(i)>H(i) = Ik,G
(i)>G(i) = Ik,R

(i)>R(i) = Ik,

W(i)>W(i) = Ik,F
>F = Ik,

v∑
i=1

γi
2 = 1, γi ≥ 0.

(11)
where λ2 is also a trade-off parameter.

Similar to the conventional multiple kernel k-means
clustering method, the first term within Eq. (11) charac-
terizes the process of partition generation for each kernel,
with the primary divergence is that two approximated
partition matrices are introduced to significantly reduce
computational costs by virtue of Theorem 1. As mentioned
above, two approximated partition matrices are employed
to represent the same original one, which prompts the intro-
duction of the second term to keep the consistency between
them. Following the construction of partitions associated
with each kernel matrix, the task of generating the optimal
consensus partition is addressed through the application
of an adaptive weighted partition fusion mechanism, em-
bodied in the final two terms of Eq. (11). Consequently,
our proposed method, by employing the above strategies
to formulate the overall objective function, simultaneously
integrates the fusion of partition information and kernel
information within a unified framework. This integration is
beneficial to enhance clustering performance, surpassing the
outcomes attainable through partition fusion or kernel fu-
sion alone. Furthermore, a notable advantage of Eq. (11) lies
in its capacity to significantly reduce overall computational
complexity, a benefit attributed to the introduction of two
approximated partition matrices. A detailed analysis of this
reduction in computational complexity will be elaborated in
the subsequent section.

4 OPTIMIZATION

As observed in Eq. (11), the proposed method contains six
variables, i.e., H, G, F, R, W, and γ. Since all variables are
coupled together in Eq. (11), it is difficult to directly solve
them in one step. Thus, an iterative optimization algorithm
is designed to solve it in this section, and the specific process
is shown as follows.
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Update F: When the variables H, G, R, W, and γ are
held constant, Eq. (11) can be rendered in a simplified form:

max
F

Tr

(
F>λ2

v∑
i=1

γi(H
(i)R(i) + G(i)W(i))

)
s.t. F>F = Ik.

(12)

Update H: When considering the fixed variables F, G,
R, W, and γ, we can express Eq. (11) in the following form:

max
H

v∑
i=1

Tr
(
H(i)>(K(i)G(i) + λ1G

(i) + λ2γiFR
(i)>)

)
s.t.H(i)>H(i) = Ik.

(13)
Update G: With variables F, H, R, W, and γ being

fixed, Eq. (11) is equivalent to:

max
G

v∑
i=1

Tr
(
G(i)>(K(i)>H + λ1H

(i) + λ2γiFW
(i)>)

)
s.t.G(i)>G(i) = Ik.

(14)
Update R: With variables F, H, G, W, and γ being

fixed, Eq. (11) can be denoted as:

max
R

v∑
i=1

Tr
(
R(i)>(λ2γiH

(i)>F)
)
s.t. R(i)>R(i) = Ik.

(15)
Update W: With variables F, H, G, R, and γ being

fixed, Eq. (11) is reformulated as:

max
W

v∑
i=1

Tr
(
W(i)>(λ2γiG

(i)>F)
)
s.t.W(i)>W(i) = Ik.

(16)
The above objective functions, from Eq. (12) to Eq. (16),

are all can be generalized as:

max
U

Tr(U>V) s.t. U>U = Ik. (17)

For example, if we define V = λ2
∑v
i=1 γi(H

(i)R(i) +
G(i)W(i)) and U = F, the objective function of Eq. (17)
is equivalent to the problem (12). When we replace U and
V with the other variables, a similar optimization problem
can also be obtained, thereby the details of them are not
introduced here. In the context of Eq. (17), the optimal
solution for U can be readily obtained by performing a
singular value decomposition (SVD) on the matrix V. To
be specific, assuming that the matrix V takes the form
V = M

∑
N>, where M ∈ Rn×k,

∑
∈ Rk×k, N ∈ Rk×k,

then the closed-form solution for U can be expressed as
U = MN>. The specific proof process can refer to [46].

Update γ: With variables F, H, G, R, and W being
fixed, Eq. (11) can be expressed as:

max
γ

v∑
i=1

γiβi s.t.
v∑
i=1

γi
2 = 1, γi ≥ 0. (18)

where βi = Tr(F>(H(i)R(i) + G(i)W(i))). According to
[43], the optimal solution of Eq. (18) is γi = βi√∑v

i=1 βi
2

.

In a nutshell, the details for solving FAMKKM are out-
lined in Algorithm 1.

4.1 Convergence Analysis

As aforementioned, the proposed method is not a joint
convex problem and we adopt an alternate optimization

Algorithm 1 Fast Approximated Multiple Kernel K-means

Input: base kernel matrices {K(i)}vi=1, parameter λ1 and
λ2.
1: Initialize {H(i)}vi=1, {G(i)}vi=1, {R(i)}vi=1, {W(i)}vi=1,
t = 1.
2: while not converged do
3: Update F via solving Eq. (12).
4: Update {H(i)}vi=1 via solving Eq. (13).
5: Update {G(i)}vi=1 via solving Eq. (14).
6: Update {R(i)}vi=1 via solving Eq. (15).
7: Update {W(i)}vi=1 via solving Eq. (16).
8: Update {γ}vi=1 via solving Eq. (18).
9: t = t+ 1.
10: end while
Output: Optimal partition F.

algorithm to solve it. Based on the above optimization pro-
cess, the optimal solution of each sub-problem can be easily
obtained, thereby the whole algorithm converges obviously.
The detailed convergence analysis of each sub-problem is
shown as follows:

Updating F. Suppose Y =
∑v
i=1 λ2γiH

(i)R(i), accord-
ing to section 4.4 in [47], we can obtain the inequality as
Tr(F>Y) ≤ 1

2 (Tr(F>F) + Tr(Y>Y)) ≤ λ2

2 (k + kv2), and
the inequality also holds when Y =

∑v
i=1 λ2γiG

(i)W(i).
Thus, the sub-problem in Eq. (12) is upper-bounded. Ad-
ditionally, since the first-order derivation of Eq. (12) with
respect to F is fixed, the whole objective function is mono-
tonic. Accordingly, this sup-problem can reach convergence.

Updating H, G, R, W, γ. These sup-problems are
similar to the problem in Eq. (12), and we do not introduce
them in detail here.

In summary, when the expression of Eq. (11) is simplified
as:

max
H,G,F,
R,W,γ

Θ(H,G,R,W,γ,F), (19)

the following inequality holds:

Θ(Ht,Gt,Rt,Wt,γt,Ft)
≤ Θ(Ht+1,Gt+1,Rt+1,Wt+1,γt+1,Ft+1)

(20)

where superscript t represents the t-th iteration in the whole
optimization. Therefore, Eq. (11) monotonically increases at
each iteration. Additionally, since each independent sub-
problem is upper-bounded, the whole objective function
is upper-bounded. Accordingly, the proposed method can
reach convergence.

4.2 Time Complexity Analysis
The proposed method contains six variables, i.e., F, H, G,
R, W, and γ. Thus, the complexity of FAMKKM mainly
lies in solving them. According to the above optimization
processes, we can find that the complexity of updating F,
H, G, R and W are allO(nk2) since the optimal solution of
each variable is generated by adopting eigen-decomposition
on the matrix with the size of n × k. Additionally, for
updating γ, the time complexity isO(v). Therefore, the total
computational complexity of the proposed method for each
iteration is O(6nk2 + v), which is linear with the number of
samples n.
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TABLE 1
Summary of six benchmark multiple kernel datasets.

Dataset #Samples #Views #Classes

Pollen 249 12 11
Caltech102-10 1020 48 102
Caltech102-20 2040 48 102
Caltech102-30 3060 48 102

flower102 8189 4 102
ALOI-100 10800 4 100

5 EXPERIMENTS

In this section, extensive experiments are conducted to
verify the effectiveness of the proposed method.

5.1 Datasets
Similar to [39], we evaluate the proposed method FAMKKM
on six widely used multiple kernel datasets, including
Pollen [48], Caltech102-101, Caltech102-201, Caltech102-301,
flower1022, and ALOI-1003, and the detailed information
about these datasets are shown in Table 1.

5.2 Compared Methods
In the experiments, we compare the proposed method with
the following multiple kernel clustering methods to verify
its effectiveness and efficiency.

AMKKM: Average Kernel k-means.
MKKM [49]: Multiple Kernel Fuzzy Clustering.
ONKC [27]: Optimal Neighborhood Kernel Clustering

with Multiple Kernels.
MKMR [24]: Multiple Kernel k-means Clustering with

Matrix-induced Regularization.
MKC NKSS [50]: Multiple Kernel Clustering with

Neighbor-kernel Subspace Segmentation.
SMSC [51]: A Spectral Clustering with Self-weighted

Multiple Kernel Learning Method for Single-cell RNA-seq
Data.

SimpleMKKM [52]: SimpleMKKM: Simple Multiple K-
ernel k-means.

MKKM-SR [53]: Multiple Kernel K-Means Clustering
with Simultaneous Spectral Rotation.

5.3 Experimental Settings
For all compared methods, we have downloaded their pub-
lic source codes from the corresponding websites, and the
hyper-parameters involved in their methods are tuned to
make them achieve optimal clustering results in the experi-
ments. Additionally, for the proposed method FAMKKM, it
contains two parameters, i.e., λ1 and λ2. Since the optimal
parameter values are difficult to determine for each dataset,
a grid-searching strategy is adopted in the experiments.
Specifically, we tune λ1 and λ2 in a range of [0.01, 0.1, 1],
respectively. Furthermore, to effectively evaluate the perfor-
mance of all compared methods on the above-mentioned

1. http://www.vision.caltech.edu/archive.html
2. http://www.robots.ox.ac.uk/vgg/data/flowers/
3. http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView

(a) Pollen (b) Caltech102-10

(c) Caltech102-20 (d) Caltech102-30

(e) flower102 (f) ALOI-100

Fig. 3. Parameter sensitivity of the proposed method in terms of ACC.

multiple kernel datasets, seven clustering metrics are se-
lected in the experiments, including F1 measure (Fscore),
Precision, Recall, Normalized Mutual Information (NMI),
Adjusted Rand Index (ARI), Accuracy (ACC), and Purity.
For all competitors, we repeat them 50 times with random
initialization to mitigate the impact of k-means on the
final clustering results, and the corresponding averages and
standard deviation of the above metrics are reported in
Table 2. Since all methods use Matlab in their experiments,
our experiments are also conducted on a PC with an Intel
Core-i7-7700 CPU and 24GB RAM, Matlab R2020a.

5.4 Results and Analysis
In Table 2, the best clustering results on each dataset are
bolded, and N/A denotes out-of-memory failure. According
to the results, we can obtain the following observations.

• Across all evaluation metrics, FAMKKM consistent-
ly demonstrates superior performance when com-
pared to alternative methods, particularly outper-
forming existing MKKM algorithms. For instance,
on the ALOI-100 dataset, FAMKKM exhibits notable
improvements, surpassing the second-best method
(MKMR) by 4.87% and 3.61% in terms of F-score and
ACC, respectively. These performance differentials
are consistently observed across the various dataset-
s listed in Table 2, presenting the efficacy of the
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TABLE 2
Clustering results on six benchmark multiple kernel datasets in terms of seven metrics. N/A denotes out-of-memory failure. The best result in

terms of each metric is bolded.

Datasets Methods Fscore Precision Recall NMI ARI ACC Purity

Pollen

AMKKM 93.25±0.39 92.57±0.16 93.93±0.63 94.47±0.33 92.46±0.43 92.05±0.32 95.30±0.19
MKKM 93.77±0.88 91.89±1.34 95.73±0.38 95.40±0.44 93.03±0.99 92.53±0.85 95.74±0.63
ONKC 94.85±0.00 93.73±0.15 96.00±0.00 95.40±0.21 94.25±0.00 93.21±0.13 96.39±0.00
MKMR 93.78±0.75 94.62±1.08 94.45±0.63 94.74±0.33 93.06±0.84 92.41±0.64 95.50±0.17

MKC NKSS 81.27±1.57 72.10±2.91 93.23±1.13 89.67±0.37 78.78±1.82 83.29±1.65 84.42±1.27
SMSC 91.54±2.16 87.67±4.25 97.88±0.13 95.08±0.79 90.48±2.44 91.97±1.69 93.33±2.30

SimpleMKKM 83.44±1.26 79.56±2.28 87.77±1.62 89.81±0.63 81.41±1.43 84.62±2.09 86.91±1.19
MKKM-SR 92.57±0.00 91.12±0.00 94.73±0.00 94.11±0.00 91.70±0.00 91.57±0.00 94.78±0.00

Ours 94.84±0.00 93.66±0.21 96.13±0.11 95.62±0.00 94.24±0.00 93.41±0.51 96.39±0.00

Caltech102-10

AMKKM 15.81±0.53 14.88±0.51 16.87±0.60 62.35±0.39 15.02±0.54 31.91±0.55 33.88±0.55
MKKM 6.05±0.46 4.85±0.45 8.03±0.49 53.45±0.63 5.00±0.48 21.05±0.87 22.59±0.89
ONKC 16.20±0.84 15.17±0.75 17.40±0.98 62.54±0.42 15.41±0.84 32.51±1.09 34.47±0.89
MKMR 17.02±0.69 15.96±0.65 18.23±0.75 63.01±0.72 16.23±0.70 33.26±0.83 35.32±1.42

MKC NKSS 12.96±0.55 10.33±0.71 18.49±0.89 59.64±0.40 11.98±0.58 27.84±0.54 29.34±0.45
SMSC 7.21±0.49 4.49±0.37 20.85±1.20 51.55±0.78 5.87±0.52 24.52±0.45 28.11±0.48

SimpleMKKM 16.93±1.31 15.86±1.34 18.15±1.28 63.05±0.87 16.13±1.33 33.28±1.43 35.25±1.26
MKKM-SR 4.45±0.00 13.47±0.00 15.58±0.00 61.67±0.00 13.63±0.00 32.25±0.00 34.51±0.00

Ours 18.13±0.69 16.94±0.77 19.51±0.63 63.89±0.47 17.35±0.70 34.87±0.94 37.16±0.91

Caltech102-20

AMKKM 16.70±0.68 15.80±0.67 17.70±0.72 54.69±0.48 15.87±0.69 29.84±0.89 31.70±0.89
MKKM 6.57±0.33 5.60±0.37 7.95±0.33 44.22±0.42 5.53±0.35 17.88±0.48 19.51±0.38
ONKC 16.84±0.77 15.94±0.75 17.85±0.82 54.76±0.53 16.01±0.78 29.96±0.89 31.75±0.66
MKMR 18.25±0.62 17.24±0.56 19.40±0.71 56.23±0.34 17.44±0.63 31.85±0.68 33.86±0.60

MKC NKSS 12.88±0.50 10.42±0.33 17.05±0.75 50.91±0.38 11.86±0.52 24.13±0.67 25.66±0.66
SMSC 4.64±0.28 2.62±0.18 21.94±1.61 37.68±0.82 3.04±0.30 15.88±0.59 18.92±0.75

SimpleMKKM 18.06±0.63 17.07±0.55 19.19±0.76 56.07±0.57 17.25±0.63 31.60±0.77 33.53±0.79
MKKM-SR 14.94±0.00 14.28±0.00 15.66±0.00 53.49±0.00 14.10±0.00 29.22±0.00 31.08±0.00

Ours 19.06±0.62 18.10±0.59 20.13±0.68 56.74±0.54 18.26±0.63 32.77±0.89 34.90±0.99

Caltech102-30

AMKKM 16.62±0.57 15.73±0.54 17.62±0.63 50.61±0.61 15.78±0.58 28.90±0.75 30.72±0.88
MKKM 6.87±0.21 6.01±0.24 8.03±0.29 39.41±0.36 5.85±0.22 16.28±0.48 17.68±0.33
ONKC 16.59±0.59 15.79±0.58 17.58±0.67 50.59±0.50 15.75±0.60 28.85±0.90 30.84±0.51
MKMR 17.83±0.45 16.87±0.44 18.91±0.49 52.00±0.36 17.00±0.45 31.31±0.65 32.84±0.55

MKC NKSS 12.91±0.41 11.09±0.33 15.73±0.19 47.14±0.37 11.93±0.43 23.37±0.33 24.97±0.39
SMSC N/A N/A N/A N/A N/A N/A N/A

SimpleMKKM 17.87±0.75 16.93±0.77 18.93±0.74 51.98±0.60 17.04±0.76 30.54±0.76 32.59±0.67
MKKM-SR 14.35±0.00 13.76±0.00 15.01±0.00 48.60±0.00 13.50±0.00 27.45±0.00 28.99±0.00

Ours 18.95±0.52 17.97±0.54 20.05±0.53 53.17±0.29 18.13±0.52 31.87±0.90 34.08±0.87

flower102

AMKKM 16.59±0.61 18.36±0.73 15.13±0.52 46.55±0.37 15.62±0.62 27.23±0.77 32.37±0.67
MKKM 12.98±0.32 14.46±0.39 11.78±0.27 43.12±0.16 11.98±0.32 22.43±0.40 27.87±0.49
ONKC 26.55±0.34 28.64±0.46 24.74±0.31 57.14±0.44 25.68±0.34 40.17±0.86 46.34±0.87
MKMR 26.59±0.53 28.59±0.61 24.85±0.49 57.20±0.42 25.72±0.53 40.27±0.78 46.52±0.85

MKC NKSS N/A N/A N/A N/A N/A N/A N/A
SMSC N/A N/A N/A N/A N/A N/A N/A

SimpleMKKM 28.92±0.81 31.25±1.07 26.92±0.63 58.82±0.39 28.08±0.82 42.29±1.03 48.41±0.45
MKKM-SR 17.08±0.00 18.99±0.00 15.52±0.00 47.07±0.00 16.13±0.00 29.03±0.00 34.46±0.00

Ours 30.37±0.66 33.57±0.87 27.73±0.57 57.67±0.46 29.56±0.67 42.84±0.98 49.21±0.84

ALOI-100

AMKKM 51.93±1.60 47.84±2.14 56.82±0.97 78.42±0.51 51.40±1.63 65.22±1.67 66.99±1.43
MKKM 3.41±0.00 2.98±0.00 3.97±0.00 25.69±0.18 2.30±0.00 6.70±0.11 7.56±0.00
ONKC 54.42±1.22 50.83±1.66 58.59±1.06 79.15±0.57 53.93±1.24 66.79±1.29 68.55±1.65
MKMR 55.10±1.20 51.80±1.47 58.87±1.25 79.15±0.67 54.62±1.22 67.63±1.70 69.13±1.54

MKC NKSS N/A N/A N/A N/A N/A N/A N/A
SMSC N/A N/A N/A N/A N/A N/A N/A

SimpleMKKM 52.24±0.89 48.19±1.25 56.91±0.86 78.48±0.42 51.69±0.90 65.69±1.33 67.50±1.09
MKKM-SR 32.35±0.00 31.91±0.00 32.80±0.00 62.86±0.00 31.66±0.00 46.14±0.00 48.66±0.00

Ours 59.97±0.84 56.42±1.27 64.63±0.63 81.60±0.33 59.55±0.85 71.24±1.21 73.21±0.95
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Fig. 2. Running Time comparison of different methods on all multiple kernel datasets.

TABLE 3
Clustering performance of different level information fusion on six benchmark datasets. The best result in terms of each metric is bolded.

Datasets Methods Fscore Precision Recall NMI ARI ACC Purity Time(s)

Pollen
MKKM PF 94.54±0.38 93.49±0.15 95.60±0.62 95.39±0.32 93.89±0.42 93.09±0.41 96.27±0.19 2.09
MKKM KF 93.77±0.88 91.89±1.34 95.73±0.38 95.40±0.44 93.03±0.99 92.53±0.85 95.74±0.63 1.12

Ours 94.84±0.00 93.66±0.21 96.13±0.11 95.62±0.00 94.24±0.00 93.41±0.51 96.39±0.00 0.55

Caltech102-10
MKKM PF 17.53±0.95 16.38±0.93 18.86±1.00 63.61±0.56 16.75±0.96 34.04±0.93 36.60±0.90 76.10
MKKM KF 6.05±0.46 4.85±0.45 8.03±0.49 53.45±0.63 5.00±0.48 21.05±0.87 22.59±0.89 69.51

Ours 18.13±0.69 16.94±0.77 19.51±0.63 63.89±0.47 17.35±0.70 34.87±0.94 37.16±0.91 32.86

Caltech102-20
MKKM PF 18.32±1.08 17.26±1.08 19.52±1.09 56.24±0.59 17.50±1.10 32.25±1.08 34.40±0.96 209.23
MKKM KF 6.57±0.33 5.60±0.37 7.95±0.33 44.22±0.42 5.53±0.35 17.88±0.48 19.51±0.38 288.48

Ours 19.06±0.62 18.10±0.59 20.13±0.68 56.74±0.54 18.26±0.63 32.77±0.89 34.90±0.99 109.96

Caltech102-30
MKKM PF 18.08±0.78 17.14±0.79 19.13±0.78 52.52±0.66 17.25±0.79 30.83±1.13 33.08±1.14 346.85
MKKM KF 6.87±0.21 6.01±0.24 8.03±0.29 39.41±0.36 5.85±0.22 16.28±0.48 17.68±0.33 744.01

Ours 18.95±0.52 17.97±0.54 20.05±0.53 53.17±0.29 18.13±0.52 31.87±0.90 34.08±0.87 213.26

flower102
MKKM PF 30.32±1.18 33.45±1.47 27.72±0.97 57.65±0.45 29.51±1.20 42.78±1.37 49.28±0.65 506.26
MKKM KF 12.98±0.32 14.46±0.39 11.78±0.27 43.12±0.16 11.98±0.32 22.43±0.40 27.87±0.49 883.92

Ours 30.37±0.66 33.57±0.87 27.73±0.57 57.67±0.46 29.56±0.67 42.84±0.98 49.21±0.84 251.90

ALOI-100
MKKM PF 54.69±1.90 49.41±2.49 61.27±1.09 80.42±0.57 54.18±1.93 68.81±1.37 70.83±0.97 449.82
MKKM KF 3.41±0.00 2.98±0.00 3.97±0.00 25.69±0.18 2.30±0.00 6.70±0.11 7.56±0.00 702.02

Ours 59.97±0.84 56.42±1.27 64.63±0.63 81.60±0.33 59.55±0.85 71.24±1.21 73.21±0.95 347.53

proposed FAMKKM and its associated optimization
algorithm

• An additional major advantage of our proposed
method is the interactive fusion of partition infor-
mation and kernel information, a feature that dis-
tinguishes it from existing multiple kernel cluster-
ing algorithms. This fusion capability constitutes a
primary reason for FAMKKM’s consistently supe-
rior performance across all benchmark datasets. In
contrast, other multiple kernel clustering methods,
such as SimpleMKKM and MKKM-SR, either focus

solely on fusing latent information at the partition
level or the kernel matrix level. Our experimental re-
sults affirm that our proposed approach significantly
outperforms these other methods. This advantage
stems from the inherent qualities of partition-level
information, which tends to exhibit less noise and
feature redundancy, and kernel matrix information,
which is often more informative. By exploiting both
forms of information, our approach efficiently gen-
erates an improved unified kernel partition, thereby
enhancing the final clustering performance.
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Fig. 4. Convergence curves of FAMKKM on all multiple kernel datasets.

• As seen in Fig. 2, our proposed method also has
the advantage in terms of running time efficiency
compared to other methods. This advantage can be
attributed to the introduction of two approximated
partition matrices. Like many other methods, our
proposed method also needs to conduct SVD on
the original kernel matrix to generate the cluster-
ing partition in each iteration. However, FAMKKM
specifically conducts SVD on a smaller matrix with
the size of n×k, resulting in a substantial reduction in
computational complexity, fromO(n3) toO(n). Con-
sequently, compared with the other competitors, our
proposed method is more readily applied to large-
scale multiple kernel datasets in terms of clustering
performance and efficiency.

5.5 Model Evaluation

This section presents ablation experiments designed to as-
sess the impact of utilizing different levels of information
on the performance of multiple kernel k-means clustering.
To be specific, partition level information and the original
kernel information are adopted separately to compare with
the proposed method, and the corresponding clustering
results on six benchmark datasets are presented in Table 3.
For ease of expression, the method with only involves
partition fusion is referred to as MKKM PF, and the other

one is referred to as MKKM KF. As illustrated in Table 3,
it is evident that our proposed method outperforms other
techniques. This highlights the efficacy of simultaneously
exploiting partition-level and kernel-level information in
multiple kernel clustering. Moreover, by introducing two
approximated partition matrices, our proposed method can
further reduce computational complexity. Based on these
clustering results, we conclude that our proposed method is
a straightforward yet highly effective approach to multiple
kernel clustering.

5.6 Parameter and Convergence Study

According to Eq. (11), it can be observed that the proposed
method contains two parameters, i.e., λ1 and λ2. To further
study the parameter sensitivity of FAMKKM on all multiple
kernel datasets, we conduct the parameter sensitivity analy-
sis experiments in this section, and the experimental results
in terms of ACC are given in Fig. 3. As seen in the figures,
we can find that the proposed method is not sensitive to
two parameters on all datasets. Within the given range of
parameters, FAMKKM can achieve satisfying performance.

In the aforementioned section, we have theoretically
proved the convergence property of the proposed method.
Now the experiments are conducted to further verify its
convergence, and the corresponding results are shown in
Fig. 4. As can be seen, the proposed method reaches con-
vergence quickly, usually within several iterations, which
can be attributed to the fact that we solve each sub-problem
optimally.

6 CONCLUSION

In this paper, a simple yet effective multiple kernel k-means
clustering method is developed to address the large-scale
data clustering problem, namely, FAMKKM. By introducing
two approximated partition matrices and coupling the par-
tition fusion and kernel fusion into a unified framework,
the computational complexity of the proposed method is
significantly reduced, as well as improving the final clus-
tering performance. Results from experiments validate the
superiority of the proposed method compared with the
other algorithms.
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