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 a b s t r a c t

Detecting small objects in aerial images taken by unmanned aerial vehicles (UAVs) has become a crucial re-
search challenge in the field of computer vision. This challenge is attributable to the following primary factors: 
the small size of the targets, the complexity of the background and the inadequate feature fusion, which makes 
small targets more susceptible to limited effective information and inferior detection performance. To address 
this issues, we propose a collaboration network that integrates Kolmogorov-Arnold Networks (KAN) and State 
Space Model (SSM) to improve the small target detection performance from UAV imagery. Specifically, we em-
ploy the KAN inserted into original YOLO11 architecture as primary backbone for feature extraction, which is 
sufficient to decompose complex high-dimensional data into simple one-dimensional function combinations so 
as to efficiently explore features with strong expressive power. We design Semantic Aggregation Network (SAN) 
to perform highly-effective multiscale feature fusion of global patterns. The SSM module plays a crucial role in 
SAN, which has been demonstrated to exhibit a superior capacity to adapt to a variety of input data types through 
its distinctive scanning strategy and dynamic weighting mechanism, especially for the complicated UAV images. 
An efficient Depthwise Channel Attention (DCA) is developed to reduce the aliasing effect generated from fused 
feature via lightweight channel dimension refinement. Extensive experiments on the public UAV datasets have 
been conducted to validate the effectiveness of KSCNet. Concretely, KSCNet performs 0.844 𝑚𝐴𝑃@50 and 0.691 
𝑚𝐴𝑃@50∶ 95 on the SIMD dataset, achieving 1.69% and 2.22% accuracy improvement compared with baseline. 
Moreover, KSCNet also accomplishes 4.82% and 5.11% accuracy increase on the VisDrone validation set and 
4.43% and 6.16% boost on the VisDrone test set at 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶ 95 respectively, indicating that 
the KSCNet demonstrates excellent performance in the UAV small object detection task, providing substantial 
technical support for applications in related domains.

1.  Introduction

Recent years have seen a rapid development of UAV technology, 
the UAV remote sensing platform is assuming a progressively crucial 
role across diverse domains, including agricultural monitoring (Zhang 
et al., 2024b), search and rescue (Martinez-Alpiste et al., 2021), traf-
fic managing (Wu et al., 2021), environmental monitoring (Motlagh 
et al., 2023), satellite monitoring (Gagliardi et al., 2023) etc. The ad-
vantages of this technology include its flexibility and mobility, low cost 
and high resolution of acquired data. The UAV platform can quickly 
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acquire large-scale surface information, providing timely and accurate 
data support for decision-making in related fields (Zhang et al., 2021). 
However, the intrinsic attributes of UAV images, characterized by their 
extensive coverage, diminutive target scale and dense spatial distribu-
tion, present formidable challenges to conventional object detection 
methodologies, especially when it comes to the detection of small tar-
gets (Zhang et al., 2024a). This can be attributed to the limitations 
in the available information regarding target features, the presence 
of substantial background interference and the suboptimal detection
accuracy.
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In the field of computer vision, small object detection in UAV remote 
sensing imagery has attracted considerable research attention due to its 
critical role in various applications (Li et al., 2017). This task remains 
highly challenging, primarily owing to three major obstacles: the small 
size of objects, complex environmental conditions such as varying il-
lumination, and the stringent demand for computational efficiency in 
real-world deployment. Small objects in UAV-captured images often oc-
cupy only minimal pixel regions, making them easily indistinguishable 
from background clutter and texture noise. Moreover, inconsistent light-
ing conditions-including shadows, overexposure, and weather-related 
variations-further degrade the discernibility of such objects. These issues 
collectively hinder the performance of conventional detection models, 
necessitating more robust and adaptive feature extraction techniques 
(Wang et al., 2020). In addition to these perceptual challenges, the in-
herent limitations of UAV platforms-such as constrained computational 
resources and the need for real-time processing-impose strong require-
ments for lightweight and efficient model architectures. It is essential 
to develop detection systems that not only achieve high accuracy un-
der challenging visual conditions, but also maintain low computational 
overhead. Therefore, the integration of deep learning approaches that 
balance performance and efficiency becomes imperative for enabling 
reliable on-board detection in UAV applications.

In recent years, object detection task has witnessed remarkable 
progress through advances in deep learning (LeCun et al., 2015), partic-
ularly with the development of convolutional neural network (CNN)-
based detection architectures. Prominent examples include Faster R-
CNN (Ren et al., 2016), YOLO (Redmon, 2016), and SSD (Liu et al., 
2016), which have demonstrated remarkable performance on general-
purpose object detection datasets. These algorithms are capable of auto-
matically extracting target features and achieving outstanding localiza-
tion and classification through an end-to-end learning approach. How-
ever, they usually encounter the some critical issues when directly ap-
plied to small target detection in UAV remote sensing images: the insuf-
ficient process of feature extraction and the presence of extreme small 
targets within image results in a reduced number of pixels, thereby lim-
iting the amount of feature information used for the subsequent deep 
neural networks.

It is evident that conventional neural networks typically employ 
downsampling operations to expand the sensory field. However, this 
process concomitantly results in the loss of small target presentation 
(Chen et al., 2025b). Additionally, the capacity to detect targets across 
multiple scales is inadequate. The scale of objects in UAV remote sens-
ing images varies significantly and existing algorithms are challenging 
to utilize for the accurate detection of both large and small targets. Al-
beit the substantial advancements in deep learning methodologies for 
small object detection, several critical challenges remain unresolved. 
Foremost among these is the development of a network architecture 
that enables effective multi-scale perception, which is essential to ac-
commodate the wide range of sizes exhibited by small targets. Secondly, 
the intricate nature of image backgrounds, the high degree of similar-
ity between targets and their surroundings and the frequent occlusion 
of targets collectively exacerbate the complexity of the detection task. 
Furthermore, the lack of effective feature fusion is a key factor that de-
grades small objects detection performance. Due to their limited pixel 
coverage, small targets have sparse and fragile feature representations 
that are easily overshadowed by background noise. This makes it dif-
ficult for models to accurately extract features and distinguish small 
targets from the background, thereby reducing detection accuracy (Yue 
et al., 2024).

To tackle the significant challenges in UAV small object detection 
and boost the detection performance in complex scenarios, we have 
developed an innovative detection network called KSCNet. This net-
work leverages the hybrid collaboration of KAN and SSM to achieve 
remarkable detection performance especially for small objects. Notably, 
KAN doesn’t hold fixed activation functions but with learnable univari-
ate functions, allowing it to excel in data fitting and complex feature 

learning tasks. SSM exhibits greate potential for managing long-range 
dependencies with linear computational complexity, and also enables 
model to filter out irrelevant information while retaining necessary and 
relevant feature indefinitely through effective selection mechanism. Be-
sides, we also design a new FPN variants named Semantic Aggregation 
Networks (SAN), which consists aggregation and expansion step to fully 
explore and utilize multiscale features. Finally, a depthwise channel at-
tention (DCA) mechanism was introduced to mitigate the aliasing effect 
for fused features. In summary, we conclude our contribution of this 
work as follows,

• We propose a innovative high performance UAV small object de-
tection architecture named KSCNet, which collaborates prevalent 
methodologies KAN and SSM, enabling effective modeling of the in-
tricate relationship between small targets and their background in 
detection tasks, while simultaneously facilitating flexible feature ex-
traction and largely improve the UAV small object detection perfor-
mance.

• Several strategies were adopted to build KSCNet, including KAN-
based backbone for efficient feature extraction, Semantic Aggrega-
tion Network (SAN) for processing multiscale features, SSM acts 
as core function within SAN as its superior cost-effective ability 
for long range dependancy relation, a channel pattern Depthwise 
Channel Attention (DCA) to reduce the aliasing effect for fused
features.

• Extensive experiments conducted on the public UAV datasets SIMD 
and VisDrone demonstrate that KSCNet achieves superior detection 
performance in comparison with mainstream object detectors, ex-
hibiting a consistent improvement in accuracy across various object 
detection metrics, particularly for small targets.

2.  Related works

2.1.  Deep learning object detectors

In the field of deep learning, detection algorithms can be classi-
fied into two categories: two-stage and one stage types based on the 
workflow and complexity of the involved processing tasks. The typi-
cal representative algorithms of the two stage methods are RCNN (Gir-
shick et al., 2014), Faster RCNN (Ren et al., 2016), FPN (Lin et al., 
2017a), Mask RCNN (He et al., 2017) and so on. Meanwhile, for the 
one stage counterpart like SSD (Liu et al., 2016), RetinaNet (Lin et al., 
2017b), CenterNet (Duan et al., 2019), EfficientDet (Tan & Le, 2019) 
and YOLO series algorithms. Particularly, the YOLO family techniques 
have been developed to the YOLOv12 (Tian et al., 2025) version after 
continuous updating and iteration since its introduction. The network 
structure has been extensively optimized to significantly enhance the 
performance and efficiency of object detection, garnering considerable 
attention from numerous researchers and scholars. DETR (Zhao et al., 
2024) is notable for introducing the transformer encoder-decoder ar-
chitecture into the detection task for the first time, and replacing the 
traditional anchor and NMS with the global attention mechanism and 
end-to-end design. These represents a significant innovation in the de-
tection paradigm. Subsequent models, including Deformable DETR (Zhu 
et al., 2020), DINO (Zhang et al., 2022) and others, leading to substan-
tial improvements in training efficiency and detection accuracy. These 
models have been shown to combine both global context modeling capa-
bility and end-to-end simplicity, with outstanding performance in dense 
occlusion and small target scenes. Conventional object detection meth-
ods often fail to deliver satisfactory performance when applied to UAV 
small object detection due to the unique challenges of this domain. 
We propose KSCNet, a detection framework specifically designed for 
UAV scenarios, achieves superior detection performance by enhancing 
feature extraction and localization accuracy for small objects in aerial
imagery.
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2.2.  Optimized strategies for UAV detectors

Researchers have proposed numerous enhanced approaches to ad-
dress the critical challenges for small objects and boost the detection 
performance in UAV imagery, primarily encompassing the following 
domains: The enhancement of feature extraction backbone, the de-
sign of deeper network structures, the introduction of attention mech-
anisms and other optimization techniques. To address extreme varia-
tion of small target scale faced in the UAV aerial images, Chen (Chen 
et al., 2025a) 𝑒𝑡.𝑎𝑙 proposed semantic information guided fusion mod-
ule through high-level semantic information to guide and align texture 
patterns for enhancing the representation of small targets, significantly 
improve the detection performance. Xiao (Xiao et al., 2024) 𝑒𝑡.𝑎𝑙 intro-
duced lightweight fusion strategy by rethinking interlayer feature cor-
relation within FPN architecture and proposed grouped feature focus 
unit and multi-level feature reconstruct module to improve small detec-
tion performance in the complex backgrounds and densely populated 
areas. Jing (Jing et al., 2024) 𝑒𝑡.𝑎𝑙 proposed Feature Aggregation Net-
work to fully explore different scale features by introducing top-down 
pathway and feature-aware modules, which contribute to narrow se-
mantic information gap within architecture and boost the small object 
detection. Xu (Xue et al., 2024) 𝑒𝑡.𝑎𝑙 introduced EL-YOLO aimed for 
low-altitude aerial small object detectors, by developing sparsely con-
nected asymptotic FPN and cross stage multi-head self attention mech-
anism, EL-YOLO realized excellent performance on NVIDIA Jetson har-
ware platform with lightweight model pattern. Fan (Fan et al., 2025) 
𝑒𝑡.𝑎𝑙 introduced LUD-YOLO to improve the unmanned aerial vehicle de-
tection by designing new feature fusion mode and dynamic sparse at-
tention into C2f to achieve flexible computation location and content 
awareness of features with excellent detection accuracy. Nevertheless, 
the existing methods still exhibit certain limitations in feature fusion, 
leading to features of small objects to be submerged in the complex 
background, thereby diminishing detection accuracy. We propose the 
SAN feature fusion network. The SAN network employs the SSM unit 
as its core component to model the features of small objects over long 
distances with linear modol complexity, achieving substantial improve-
ments in UAV small detection performance.

2.3.  Feature enhancement of small object detection

In the field of small object detection, the inherent challenges posed 
by diminutive target sizes and limited pixel representation often hinder 
conventional detection approaches from effectively capturing discrimi-
native features. To address these limitations, contemporary methodolo-
gies employ sophisticated multi-scale feature fusion architectures that 
integrate high-resolution spatial details from early network layers with 
semantically rich information from deeper levels, thereby constructing 
more robust feature representations of multi-scale features (Lin et al., 
2017a)(Ghiasi et al., 2019)(Tan et al., 2020)(Hu et al., 2021).

The incorporation of attention mechanisms has proven particularly 
valuable, as these modules automatically identify and emphasize the 
most salient channels and spatial regions while suppressing irrelevant 
background interference (Hassanin et al., 2024). Furthermore, context 
augmentation techniques (Liu et al., 2018a), including expanded re-
ceptive fields through dilated convolutions or global relationship mod-
eling via Transformer architectures, establish crucial connections be-
tween small targets and their surrounding environment to compensate 
for their inherently weak semantic signatures (Wu et al., 2022). To 
counteract the inevitable information degradation caused by progressive 
downsampling, modern approaches implement various high-resolution 
preservation strategies (Noh et al., 2019). These include maintaining 
shallow feature maps throughout the network hierarchy and integrat-
ing super-resolution reconstruction modules to enhance feature clarity. 
During model optimization, carefully designed data augmentation pro-
tocols work in concert with specialized loss functions to address class 
imbalance issues and refine localization precision.

3.  The methodology of KSCNet

Our proposed framework follows the overall architecture of efficient 
typical YOLO methods, shown in Fig. 1, including backbone, neck and 
detection head. For an input image, the KSCNet architecture employs 
specifically designed CKN blocks as its primary computational compo-
nents. This strategic integration significantly enhances the feature dis-
cernment capabilities of the conventional C3k2 module that is utilized in 
YOLO11. During the neck stage, the SSM act as core along with channel 
attention DCA for driving the basic features into high advanced seman-
tic information, producing feature maps at three distinct scales: 80×80, 
40×40 and 20×20. These hierarchically structured semantic features 
are then employed for the final object detection task.

3.1.  KAN-based feature extractor

Recent advancements in Kolmogorov-Arnold Networks (KAN) have 
catalyzed a paradigm shift in machine learning, offering novel solutions 
for integrating domain-specific knowledge into deep learning models. 
KAN (Kolmogorov, 1961) offer a compelling alternative to Multi-Layer 
Perceptrons (MLP) (Hornik et al., 1989) by leveraging the Kolmogorov-
Arnold theorem. These theorem proves that any continuous multivariate 
function can be decomposed into a finite composition of single-variable 
functions. This principle underpins KANs, which replace traditional neu-
ral networks’ fixed linear weights with learnable univariate activation 
functions. With this paradigm, KANs gain superior flexibility in model-
ing complex patterns and enhanced interpretability through their math-
ematically structured architecture.

Unlike conventional MLPs that employ fixed linear transformations, 
KANs implement parametric spline functions as their fundamental com-
putational units, shown in Fig. 2. This architectural innovation achieves 
dual advantages: significant parameter efficiency through optimized 
function representation and enhanced network generalization by en-
coding smoothness priors in the spline formulations. The Kolmogorov-
Arnold representation theorem considers that a continuous multivariate 
function 𝑓 (x1,… , x𝑛) can be presented as,

𝑓
(

x1,… , x𝑛
)

=
2𝑛+1
∑

𝑞=1
Φ𝑞

( 𝑛
∑

𝑝=1
𝜙𝑞,𝑝

(

x𝑝
)

)

(1)

Here, the Φ𝑞 and 𝜙𝑞,𝑝 are a set of continues univariate functions.
Each layer in the KANs can be regarded as a matrix of these learnable 

1D functions:
Φ = 𝜙𝑞,𝑝, 𝑝 = 1, 2,… , 𝑛𝑖𝑛, 𝑞 = 1, 2,… , 𝑛𝑜𝑢𝑡 (2)

The 𝜙𝑞,𝑝 can be defined as a B-spline, which is a type of function defined 
by a linear combination of basis splines. 𝑛𝑖𝑛 denotes the number of input 
features to a particular layer, while 𝑛𝑜𝑢𝑡 is the number of output features 
generated by that layer. The activation functions 𝜙𝑙,𝑗,𝑖 in this metric are 
such learnable spline functions,
spline(𝑥) =

∑

𝑖
𝑐𝑖𝐵𝑖(x) (3)

𝑐𝑖 are trainable coefficients.
With stacking of the complex functional mapping, we can get the 

overall structural of KAN,
𝐾𝐴𝑁(x) = (Φ𝐿−1◦Φ𝐿−2◦… ◦Φ0)(x) (4)

where Φ𝑙 acts on the input 𝑥𝑙 to produce the next layer’s input 𝑥𝑙+1, 
presented as,

𝑥𝑙+1 = Φ𝑙
(

𝑥𝑙
)

=
⎛

⎜

⎜

⎝

𝜙𝑙,1,1(⋅) ⋯ 𝜙𝑙,1,𝑛𝑙 (⋅)
⋮ ⋱ ⋮

𝜙𝑙,𝑛𝑙+1 ,1(⋅) ⋯ 𝜙𝑙,𝑛𝑙+1 ,𝑛𝑙 (⋅)

⎞

⎟

⎟

⎠

𝑥𝑙 (5)

In this work, we employ KAN convolution (Bodner et al., 2024) into 
C3K2 (Khanam & Hussain, 2024) architecture shown in Fig. 3(b) to build 
CKN block as the fundamental backbone in Fig. 1. The KAN convolution 

Expert Systems With Applications 299 (2026) 130240 

3 



Y. Li et al.

Fig. 1. Main architecture of proposed KSCNet for UAV small object detection. KAN-style integrated convolution backbone for elementary feature extraction. Semantic 
Aggregation Network with core VSS within neck for efficient multiscale feature fusion. A channel attention DCA for reducing aliasing effect for fused features. Finally, 
3 scales detection head 80 × 80, 40 × 40, 20 × 20 to execute final classification and localization.

integrates a basis functions 𝑏(𝑥) and the output 𝑂(𝑥) can been concluded 
the sum of 𝑏(𝑥) and spline function 𝑠𝑝𝑙𝑖𝑛𝑒(𝑥), defined as,

𝑂(x) = 𝑤(𝑏(x) + 𝑠𝑝𝑙𝑖𝑛𝑒(x))
𝑏(x) = 𝑆𝑖𝐿𝑈 (x)

𝑠𝑝𝑙𝑖𝑛𝑒(x) =
∑

𝑖
𝑐𝑖𝐵𝑖(x)

(6)

where w is the training weight of the network, 𝑐𝑖 is the coefficient to 
optimize the training loss function, 𝐵𝑖(x) is B-spline function.

CKN apply kernels composed of learnable non-linear functions, al-
lowing each kernel element to adapt dynamically during training, en-
abling greater flexibility and expressiveness. Furthermore, CKN share 
fundamental architectural similarities with conventional CNNs, while 
they incorporate two key modifications to the standard CNN framework: 
(1) The replacement of traditional convolutional layers with parametric 
KAN-based convolutional layers.(2) The option to employ either a KAN 
layer or a standard MLP following the flattening operation.

The principal advantage of CKN lies in their superior parameter ef-
ficiency compared to conventional architectures. This efficiency stems 
from the network’s unique construction, particularly its utilization of 
B-spline basis functions to model activation patterns. Unlike fixed ac-

tivation functions such as ReLU that employ piecewise linear approxi-
mations, B-splines enable the smooth representation of complex, non-
linear activation functions through learnable parameters. This adaptive 
approach allows for more efficient function approximation while main-
taining strong representational capacity, enabling the convolution ker-
nel to learn optimized, smooth functions that are highly effective at en-
coding the complex textures and structures found in UAV imagery.

3.2.  Semantic aggregation network

The Feature Pyramid Networks (FPN) (Lin et al., 2017a) has been 
identified as a seminal innovation in the domain of object detection, 
playing a pivotal role in enhancing the robustness of the model to scaling 
variations via the multi-scale feature fusion mechanism, particularly in 
the case of small targets. Basic FPN architecture, shown in Fig. 4(a), con-
structs a feature pyramid with both high-resolution details and strong 
semantic expression through top-down semantic propagation and cross-
layer fusion with lateral connection. PAFPN (Liu et al., 2018b) notably 
improved information flow while keeping the framework simple and 
generalizable, shown in Fig. 4(b), the core innovation lies in its dou-
ble bidirectional (top-down + bottom-up) multi-scale feature fusion

Expert Systems With Applications 299 (2026) 130240 

4 



Y. Li et al.

Fig. 2. Comparison of multilayer perception (MLP) and Kolmogorov-Arnold 
Network (KAN).

Fig. 3. Architecture of C3K2 and CKN.

approach, which became influential in subsequent detection architec-
tures. While FPN and PAFPN effectively propagate semantic informa-
tion, their fixed fusion pathways (e.g., simple addition or complex con-
catenation) struggle to adaptively model the non-linear relationships 
and semantic gaps between features from vastly different scale.

We introduces a redesigned FPN architecture, the Semantic Aggre-
gation Network, which implements an enhanced feature fusion mech-
anism for combining multi-scale representations from various network 
stages, shown in Fig. 4(c). Through hierarchical feature aggregation and 
semantically guided feature expansion, the SAN network significantly 
improves the characterization of the feature pyramid while maintain-
ing computational efficiency. SAN consists of two steps: Aggregation
and Expansion. The Aggregation step is designed to construct a central-
ized, multi-scale feature context by hierarchically integrating informa-
tion from different backbone levels. This is achieved through a set of par-
allel adaptive average pooling operations, which systematically gather 
and unify feature representations across varying spatial resolution. The 
Expansion step aims to semantically and structurally enrich the aggre-
gated multi-scale features through a guided upsampling and refinement 
process. This step utilizes the globally-aware context obtained from the 
Aggregation phase to intelligently guide the feature reconstruction and 
enhancement across resolutions. By integrating holistic semantic guid-
ance with local feature refinement, the Expansion step effectively gener-
ates a new pyramid of enhanced features that possess both high spatial 
fidelity and strong semantic consistency. The resulting feature context 
serves as a rich, globally aware foundation for subsequent processing, ef-
fectively mitigating the semantic fragmentation and scale misalignment 
issues commonly encountered in complex scenes such as UAV imagery. 
The whole process is easy to follow and can be implemented with 2 

steps,

step1:

𝛼 = 𝐴𝑉 𝐺(C𝑖), 𝑖 ∈ 2, 3, 4

X𝑎𝑔𝑔 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝛼,C𝑖]

step2:

X𝑒𝑥𝑝 = 𝐸𝑥𝑝𝑎𝑛𝑑(X𝑎𝑔𝑔)

M𝑖 = P𝑖 × X𝑒𝑥𝑝, 𝑖 ∈ 1, 2, 3, 4

(7)

where 𝐴𝑉 𝐺 denotes the 2-D averaging pooling, 𝑃𝑖 mean the features 
before fusion expansion, 𝑀𝑖 is the final detection head.

The hierarchical aggregation is explicitly linked to creating a more 
coherent multi-scale feature representation, reducing the risk of seman-
tic ambiguity for small objects. The expansion process is analyzed not 
just as an upsampling operation, but as a feature refinement step that 
uses the aggregated semantic context to guide the reconstruction of 
high-resolution features, thereby preserving crucial spatial details for 
localization.

3.3.  Vision state space model for handling multiscale features

Vision Transformers (ViTs) Vaswani et al. (2017), Liu et al. (2021), 
Yu et al. (2022) have revolutionized visual representation learning, 
demonstrating the critical role of large-scale pre-training in advancing 
image classification performance. However, their practical deployment 
faces a fundamental challenge: the quadratic computational complex-
ity of self-attention mechanisms, which becomes prohibitive for long-
sequence inputs. To address this limitation, Mamba (Gu & Dao, 2023) 
emerges as an innovative evolution of State Space Models (Gu et al., 
2020) (Gu et al., 2021), introducing Selective Structured State Space 
Models that achieve two key breakthroughs: (1) linear computational 
complexity scaling, (2) enhanced capacity for modeling long-range de-
pendencies. This paradigm shift enables efficient processing of high-
resolution visual data while maintaining the representational power of 
traditional ViTs.

SSMs has sparkled renewed enthusiasm with remarkable progress 
from both academic and industrial communities in the recent years 
(Wang et al., 2024c). Evolving from their classical predecessors like 
the Kalman filter, contemporary SSM have demonstrated exceptional ca-
pabilities in modeling long-range dependencies while maintaining effi-
cient parallelizability during training. These advantages have positioned 
modern SSMs as a compelling alternative to traditional sequence mod-
eling approaches, particularly in handling large-scale sequential data.

Preliminaries. The SSM-based models, can be considered as linear 
time-invariant system that maps the 1-D function or sequence 𝑥(𝑡) ∈
ℝ → 𝑦(𝑡) ∈ ℝ through a hidden state ℎ(𝑡) ∈ ℝ𝑁 . The process uses A
∈ ℝ𝑁×𝑁  as the evolution parameter and B ∈ ℝ𝑁×1, C∈ 𝟙 × ℕ as the pro-
jection parameters.
ℎ
′
(𝑡) = Aℎ(𝑦) + B𝑥(𝑡)

𝑦(𝑡) = Cℎ(𝑡)
(8)

To adapt the model into deep networks, continuous-time SSM need 
to undergo discretization in advance, including a times scale parameter 
Δ to transform A and B into discrete pattern A and B, among this process 
the common employed technique is zero-order hold (ZOH),
A = 𝑒𝑥𝑝(Δ)

B = (ΔA)−1(𝑒𝑥𝑝(ΔA − I)) ⋅ ΔB (9)

ℎ
′
(𝑡) = Aℎ(𝑦) + B𝑥(𝑡)

𝑦(𝑡) = Cℎ(𝑡) (10)

Finally, the output can be reached by global convolution,

K = (CB,CAB,… ,CA
𝐿−1

B)

𝑦 = 𝑥 ∗ K
(11)
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Fig. 4. Different Feature Pyramid Networks. (a) the vanilla FPN. (b) PANet with extra top-down information flows. (c) Our proposed Semantic Aggregation Networks 
with feature aggregation and expansion steps for enriched knowledge from a wide range scale features.

Fig. 5. Architecture of 2D-Selective-Scan (SS2D). The input patches are transmitted from four different scanning paths and then processed by distinct S6 blocks, the 
results are subsequently merged together to build 2D feature map for eventual output.

where 𝐿 denotes the length of the input sequence 𝑥 and K ∈ ℝ𝐿.
We employ cost-effective selective mechanism named Vision State 

Space (VSS) block from Vmamba (Liu et al., 2024) as the core expan-
sion method in the SAN architecture, shown in Fig. 6, VSS serves as 
the fundamental exchange center for processing the multi-scale features 
to construct hierarchical vision representation with linear computation 
and complexity. As shown in Fig. 5, the workflow of SS2D contains four 
steps: Split, Cross-scan, S6 blocks (Gu & Dao, 2023), Cross-merge. The 
input features are first split into several patches, these data are gener-
ated into sequences pattern from four distinct traversal paths, and then 
further process by consecutive parallel S6 blocks for managing long-
range dependency information, the treated features are then sent into 
Cross-merge produced to output.

SS2D employs a sophisticated cross-scanning strategy that processes 
the 2D image through complementary 1D traversal paths. This innova-
tive approach enables each spatial location to dynamically aggregate 
and integrate features from all regions of the input image across mul-
tiple orientations. By systematically combining information from these 
diverse scanning directions, the model effectively constructs compre-
hensive global receptive fields while maintaining computational effi-
ciency. The omni-directional information flow along different axes en-
sures robust feature representation that captures both local details and 
long-range dependencies in the visual space.

3.4.  Depthwise channel attention

A channel attention mechanism named Depthwise Channel Atten-
tion (DCA) is designed to eliminate the aliasing effect,  which denotes a 
distortion phenomenon where erroneous and misleading information is 
introduced into feature maps due to continual signal sampling and di-
rectly combined multi-scale feature fusion process (Li et al., 2022b). The 
architecture of DCA, shown in Fig. 7, consists two main branches to re-
calibrate input features for more discriminative information objects. We 
employed depthwise convolution (Chollet, 2017) along with relatively 
shorted information flow path, mitigating channel information loss due 
to the dimension reduction compared with SE (Hu et al., 2018). Be-
sides, Harsh-Sigmoid activation function was also adopted to improve 

Fig. 6. Visual state space block.

the feature non-linear representation, which is a variant of the sigmoid 
function and due to the strong gradient around its saturation interval 
(i.e. the part of the input away from 0), the optimization process can be 
faster in terms of more gradient new, which can improve model training 
efficiency, especially in deep neural networks. The calculation of DCA 
can summarized as follows,
𝜇, 𝜈 = 𝑆𝑝𝑙𝑖𝑡(X) (12)

O1 = 𝜎(𝐿𝑖𝑛𝑒𝑎𝑟(𝐴𝑉 𝐺𝑃𝑜𝑜𝑙(𝜈))) (13)

𝜏1, 𝜏2, 𝜏3 = 𝐷𝑊 (𝑠𝑝𝑙𝑖𝑡(𝜇)) (14)

O2 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝜏1; 𝜏2; 𝜏2] (15)

X𝑟𝑒𝑓𝑖𝑛𝑒 = 𝑂1 × 𝑂2 × X (16)

For input X ∈ ℝ𝐶×𝐻×𝑊 , where 𝐶,𝐻 and 𝑊  denote the channel, height 
and width respectively. 𝜎 means the Harsh-Sigmoid activation function. 
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Fig. 7. Depthwise Channel Attention (DCA).

DW is depthwise convolution with kernel size 3×3, AVGPool is global 
average pooling. 𝐶𝑜𝑛𝑐𝑎𝑡 represents that all the outputs are stacked along 
the channel dimension. The DCA module addresses aliasing not by 
directly filtering spatial frequencies, but by dynamically recalibrating 
channel-wise feature responses to suppress channels that are most cor-
rupted by these spatial dimension. It uses DWConv to sense spatial in-
consistencies and then employs channel recalibration to mute the chan-
nels that are most polluted by these effects, making it more robust for 
accurate localization and classification.

4.  Experiments

4.1.  Dataset and settings

In this work, we adopt two public UAV dataset to testify the effec-
tiveness for KSCNet on the UAV small detection:

SIMD: This dataset is an open source dataset for small object de-
tection in remote sensing imagery, released by a team of researchers 
at the National University of Science and Technology (NUST) (Haroon 
et al., 2020). The images in SIMD are mainly acquired from multiple 
locations in the EU and the US from the public Google Earth satellite 
imagery, which is mainly used for multi-size and multi-category vehicle 
detection tasks in high-resolution remote sensing imagery. It comprises 
5000 images of resolution 1024 × 768 and collectively contains 45 096 
objects in 15 different classes of vehicles including cars, trucks, buses, 
long vehicles, various types of aircrafts and boats.

VisDrone: The dataset is a large benchmark dataset created by the 
AISKYEYE team at the Machine Learning and Data Mining Laboratory 
of Tianjin University, China, designed for the analysis of images and 
videos captured by drones (Du et al., 2019). This dataset contains 288 
video clips, 261,908 frames and 10,209 still images captured by various 
drone cameras. For the task for UAV detection, there are 6471 images 
for training, 548 for validation and 3190 for testing. The dataset covers 
a variety of aspects including different locations, environments, objects 
and densities and also are under different weather and lighting condi-
tions.

For more detail, all experiments were conducted under CPU Intel 
Core i7-13700KF and one single GPU NVIDIA RTX 4090, with deep 
learning framework pytorch version 2.2 and cuda toolkit 11.8. We set 
the total 300 training epochs with training input image size 640 × 640, 
batch size 16, learning rate 0.01, momentum 0.937 and weight decay 
5e-5 during training time, the batch size was set to 1 for fast processing 
during inference stage.

4.2.  Evaluation metrics

In order to thoroughly validate the performance of the model, we 
follow the standard evaluation metrics commonly used in object detec-
tion. These metrics assess the model’s performance in various aspects, 
including Precision (P), Recall (R), and the balance between them, such 
as Mean Average Precision (mAP). By analyzing these comprehensive 
performance metrics, we gain a deeper understanding of the model’s 
detection capabilities under different scenarios and conditions, allow-
ing for a more accurate evaluation.

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(17)

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(18)

𝐴𝑃𝑖 = ∫

1

0
𝑃𝑖(𝑅𝑖)𝑑𝑅𝑖 (19)

𝑚𝐴𝑃 = 1
𝑛

𝑛
∑

𝑖=1
𝐴𝑃𝑖 (20)

Ture Positive (TP), False Negative (FN) and False Positive (FP) were 
used to measure the accuracy and effectiveness of the model in detecting 
the target, which represented successful detection for real targets, failed 
for targets and misrecognition for true targets respectively.

4.3.  Experimental analysis

We report the detection results of KSCNet with the real-time YOLO 
series methods on the SIMD dataset in Table 1. It’s notable that KSCNet 
achieve the best detection performance across 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑚𝐴𝑃@50 eval-
uation metric, realizing 2.68% and 1.69% increase respectively com-
pared with baseline YOLO11s (Khanam & Hussain, 2024). For the strict 
and comprehensive metric 𝑚𝐴𝑃@50∶ 95, KSCNet also realizes 2.22% 
detection improvements and also exhibits the top grades among all 
other algorithms, indicating that KSCNet could fully utilize the advan-
tage of the model design and address the small detection issues. For 
the latest released YOLO variant YOLOv12 (Tian et al., 2025), KSCNet 
also provides the noticeable leading detection results at most of eval-
uation metrics. Obviously, model complexity matters overall detection 
results to some extent, this can be validated from YOLO-𝑠 model, such as 
YOLOv5s (Jocher, 2020), YOLOv6s (Li et al., 2022a), YOLOv8s (Jocher 
et al., 2023) and YOLOv10s (Wang et al., 2024a), they generally pro-
duce higher detection results compared with their 𝑛 versions counter-
parts, which highlights more complex models have greater feature ex-
traction capabilities, capturing subtle patterns and high-level features 
in the data to improve recognition of complex targets. In conclusion, 
KSCNet has been demonstrated to achieve optimal object detection per-
formance with minimal increase in model complexity and parameter. 
The network performs particularly well on the comprehensive evalua-
tion metric 𝑚𝐴𝑃@50∶ 95, fully demonstrating its unique advantage in 
balancing model lightness and detection accuracy. This efficient perfor-
mance enhancement not only underscores the innovation of its architec-
tural design, additionally offers an optimal solution for object detection 
applications in contexts where resources are constrained.

To fully understand the detection performance of KSCNet,
Table 2 presents the results of KSCNet with mainstream detectors in-
cluding two-stage, one-stage and transformer based methods. Faster 
RCNN, as the classic milestone two-stage detectors, realizes 0.868 
detection accuracy at 𝑚𝐴𝑃@50, a slightly higher than that of KSC-
Net. As for the evaluation metric 𝑚𝐴𝑃@50∶ 95, KSCNet excels by 
1.17% of 0.691 with less parameters and model complexity, explain-
ing that heavy parameter model is not suitable for realtime device 
applications and will become computation burden for fast inference 
situation, which is also adaptable for RT-DETR detectors holds infe-
rior detection results on 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶ 95 compared with
KSCNet. Recent HyperYOLO exhibits outstanding detection perfor-
mance on the COCO dataset, whereas HyperYOLOs produces relatively 
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Table 1 
Overall comparison with the YOLO algorithms on the SIMD dataset. * means the baseline method.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺)

 YOLOv5n (Jocher, 2020)  0.774  0.777  0.801  0.616  1.77  4.2
 YOLOv5s (Jocher, 2020)  0.803  0.777  0.811  0.639  7  15.9
 YOLOv6n (Li et al., 2022a)  0.807  0.759  0.804  0.637  4.63  11.35
 YOLOv6s (Li et al., 2022a)  0.771  0.773  0.792  0.633  18.51  45.19
 YOLOv7t (Wang et al., 2023)  0.768  0.784  0.816  0.643  6.04  13.1
 YOLOv8n (Jocher et al., 2023)  0.814  0.764  0.813  0.651  3  8.1
 YOLOv8s (Jocher et al., 2023)  0.804  0.803  0.836  0.677  11.1  28.5
 YOLOv9c (Wang et al., 2024b)  0.834  0.811  0.855  0.702  50.73  236.8
 YOLOv10n (Wang et al., 2024a)  0.764  0.757  0.796  0.633  2.7  8.3
 YOLOv10s (Wang et al., 2024a)  0.814  0.764  0.822  0.664  8.04  24.5
 YOLO11n (Khanam & Hussain, 2024)  0.738  0.798  0.813  0.65  2.58  6.3
 YOLO11s∗ (Khanam & Hussain, 2024)  0.783  0.812  0.83  0.676  9.41  21.3
 YOLOv12n (Tian et al., 2025)  0.74  0.792  0.812  0.66  2.55  6.3
 YOLOv12s (Tian et al., 2025)  0.773  0.823  0.828  0.672  9.23  21.2
 KSCNet  0.804  0.809  0.844  0.691  11.71  32.8

Table 2 
Experimental results with the SOTA methods on the SIMD dataset.
 Methods 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺)

 Faster RCNN (Ren et al., 2016)  0.868  0.683  41.42  178
 RT-DETR-R50 (Zhao et al., 2024)  0.75  0.609  411.96  125.7
 RetinaNet (Lin et al., 2017b)  0.603  0.439  36.62  179
 SSD300 (Liu et al., 2016)  0.714  0.448  25.61  32.12
 SSD512 (Liu et al., 2016)  0.752  0.496  26.45  89.5
 EfficientNet (Tan & Le, 2019)  0.874  0.680  18.62  83.42
 HyperYOLOs (Feng et al., 2024)  0.833  0.669  14.82  38.9
 DINO (Zhang et al., 2022)  0.818  0.382  47.56  235
 KSCNet  0.844  0.691  11.71  32.8

Table 3 
Different methods for building effective feature extraction block with vanilla C3K2.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺)

 C2fCIB (Wang et al., 2024a)  0.767  0.808  0.822  0.657  9.15  25.4
 FMB (Zheng et al., 2024)  0.772  0.806  0.729  0.665  9.36  21.2
 DeConv (Chen et al., 2024b)  0.818  0.778  0.824  0.668  9.41  21.3
 FasterConv (Chen et al., 2023)  0.785  0.812  0.828  0.677  9  23.3
 CKN  0.815  0.825  0.836  0.681  11.44  26.7

Table 4 
Experimental results of CKN employment in different position within backbone.
 Baseline  Stage2  Stage3  Stage4  Stage5 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠. 𝐹𝐿𝑂𝑃𝑠(𝐺)

✓  0.834  0.672  9.41  21.3
✓ ✓ ✓  0.833  0.679  10.4  23.7
✓ ✓ ✓  0.831  0.678  10.1  23.3
✓ ✓ ✓ ✓ ✓  0.836  0.681  11.44  26.7

lower detection accuracy compared with KSCNet. This experiments val-
idate the effectiveness KSCNet on the UAV small object detection with 
leading detection performance among the current detectors.

To validate the effectiveness of CKN, we compare it with other simi-
lar efficient model blocks in Table 3. The results shows the CKN provides 
the excellent detection accuracy across the four main evaluation met-
rics 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑚𝐴𝑃@50, 𝑚𝐴𝑃@50∶ 95 with 0.815, 0.825, 0.836 
and 0.681. Compared with the lightweight method FasterConv and De-
Conv, CKN realizes higher detection accuracy results at 𝑚𝐴𝑃@50∶ 95
while with slight model parameter and complexity surge. CKN exhibits 
a strong performance boost compared to C2fCIB by 1.7% and 3.65% 
increase at 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶ 95. CKN demonstrates superior effi-
cacy in elucidating the complex relational structures between nodes. By 
effectively learning the intricate non-linear patterns embedded within 
the data, it achieves enhanced predictive accuracy. Notably, in the con-
text of high-dimensional data, KAN convolution exhibits pronounced 
advantages in terms of flexibility, parameter and optimization efficacy. 

These attributes collectively underscore its potential as a powerful tool 
for advanced data analysis and modeling.

We perform an ablation study to examine the impact of CKN on 
model performance at different stages within the backbone, as presented 
in Table 4. As shown in the Fig. 1, the core components of backbone 
can be separated into 6 stages. The initial and final stages constitute 
the basic module responsible for downsampling input images and col-
lecting the comprehensive semantic information. CKN blocks deployed 
range 2 to 5 stages offers the best detection accuracy with 0.836 and 
0.681 at 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶ 95 respectively, confirming the need 
of consecutive of KAN-base approaches to capture the complex pat-
terns in the data. Employing CKN only in the first two stages or in the 
last two stages achieves insufficient performance, illustrating that al-
though KAN convolution has a powerful representation and it requires 
a more complex structure to realize its theoretical potential in the face 
of scarce feature representations when dealing with weak targets in
UAVs.
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Table 5 
Results of current prevailing feature pyramid networks with our proposed SAN on the SIMD dataset.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺)

 PANet∗ (Liu et al., 2018b)  0.78  0.823  0.834  0.672  9.41  21.3
 HSFPN (Shi et al., 2025)  0.821  0.782  0.826  0.659  6.6  18.7
 GDFPN (Xu et al., 2022)  0.788  0.806  0.825  0.669  12.2  25.6
 CGRFPN (Ni et al., 2024)  0.816  0.759  0.826  0.655  3.29  8.6
 ERepFPN (Li et al., 2022a)  0.764  0.801  0.813  0.663  12.07  28.2
 BiFPN (Tan & Le, 2019)  0.805  0.773  0.828  0.674  7.77  24.1
 SAN  0.829  0.787  0.838  0.681  9.77  26.3

Table 6 
Comparative results of long-range modeling methods employed within SAN on the SIMD dataset.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺)

 CAA (Cai et al., 2024)  0.805  0.77  0.817  0.651  9.76  26.3
 C2fCIB (Wang et al., 2024a)  0.767  0.808  0.822  0.657  9.15  25.4
 GLSA (Tang et al., 2023)  0.803  0.793  0.83  0.667  10.6  27.5
 CA (Hou et al., 2021)  0.763  0.826  0.836  0.668  9.11  24.1
 SAN(VSS)  0.847  0.79  0.842  0.683  11.42  30.8

Table 7 
Ablation study of core module for VSS and DCA at different locations.

The construction of feature pyramids constitutes an essential pro-
cedure in a wide array of computer vision tasks and represents an in-
dispensable component of modern detection frameworks. It lays the 
groundwork for addressing challenges associated with multiscale object 
recognition and analysis. Table 5 presents results of our proposed SAN 
with current prevalent FPN methods. It’s noticeable that SAN achieves 
leading detection results across listed methods at main evaluation metric 
𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶ 95. Compared the baseline PANet architecture, 
SAN improves the accuracy at 𝑚𝐴𝑃@50∶ 95 by 1.34% with 0.681. BiFPN 
achieves 0.674 at 𝑚𝐴𝑃@50∶ 95, placing it at the pinnacle in comparison 
to alternative methods. This superior outcome of BiFPN is attributed to 
its innovative and efficient cross-connection design, facilitating effec-
tive feature information transfer from disparate layers. Nevertheless, it 
exhibits suboptimal performance in comparison to SANs. Thanks to its 
aggregation and expansion modules design, SAN could fully explore the 
multi-scale distinctive information and then generate differentiable de-
tails of small objects in deep networks.

Table 6 offers comparison results between VSS block with main-
stream long-range modeling methods employed in the our proposed 
SAN architecture. SS2D plays a vital role in VSS block, by traversing the 
input image patches along four scanning paths, SS2D bridges the gap 
between the sequential nature of one-dimensional selective scanning 
and the non-sequential structure of two-dimensional visual data. This 
design enables the model to aggregate contextual information from di-
verse sources and perspectives, thereby enhancing its capability to pro-
cess two-dimensional visual data more effectively. Compared with chan-
nel attention method CA, VSS block shows visible detection accuracy 
increase at 𝑚𝐴𝑃@50∶ 95 with 0.683. CAA module acts as core feature 
procedure unit in the PKINet (Cai et al., 2024) which achieves similar 
effects to larger convolutional kernels and obtains 0.651 at 𝑚𝐴𝑃@50∶ 95
by 4.92% lower than VSS, indicating that CAA suffers information 
loss when applied in the SAN architecture. The VSS module plays a 
pivotal role in the SAN, it enhances the model’s capacity to process 
2D visual data and optimizes the architecture to boost computational
efficiency.

A series of ablation experiments were conducted to ascertain the 
impact of employment of VSS module and DCA attention mechanism 
at different position within the SAN network towards the utilization of 
multiscale features, shown in Table 7. The experimental positions were 
differentiated by the application of the color blue and green, respec-
tively, in order to denote the variation numbers of VSS and DCA in each 
respective position.As the results shown in the bottom line, the opti-
mal solution for VSS and DCA follows two VSS modules and two DCA 
modules in Neck for 80×80 and 20×20 head optimization, by contrast 
to 3+1 combination strategy. This underscores the pivotal function of 
VSS in capturing the dependencies of detail information across multiple 
scales, while concurrently demonstrating proficiency in effectively man-
aging consistent spatial and semantic feature representations of diminu-
tive targets. Conversely, the DCA channel mechanism has been shown 
to be more effective in correcting and condensing the fused information, 
thereby reducing the feature blending effect.

Table 8 lists the comparison of the detection performance of KSCNet 
with the same level of parametric quantity detectors on 𝑚𝐴𝑃@50∶ 95. It 
can be seen that YOLOv5s has the smallest number of model parameters, 
but achieves the lowest accuracy. Compared to YOLOv8s, YOLOv10s 
and YOLO11s, although KSCNet has a slight increase in the number of 
parameters, the improvement in accuracy achieved is satisfactory. RT-
DETR exhibits a substantial disparity in detection accuracy when com-
pared to KSCNet, attribute to its intricate structural design and the sub-
stantial parameters resulting from self-attention. It is noteworthy that 
KSCNet achieves an inference speed of 164 FPS, fulfilling the criteria 
for real-time object detection and demonstrating strong potential for 
practical deployment in real-world applications.

To further validate the effectiveness of the different components in 
KSCNet on model performance, we conducted detailed ablation experi-
ments as shown in Table 9. When CKN blocks were employed as the ba-
sic backbone, the detection accuracy at 𝑚𝐴𝑃@50∶ 95 surged from 0.676 
to 0.681. Based on the CKN, SAN fusion strategy further enhance the 
whole detection performance to 0.685, emphasizing that the SAN is ca-
pable to refine multi-stages feature than baseline method PANet. Solely 
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Table 8 
Comparison with the SOAT algorithms on the SIMD dataset.
 Methods 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺) 𝐹𝑃𝑆

 SSD512 (Liu et al., 2016)  0.752  0.496  26.45  89.5  154
 RT-DETR-R50 (Zhao et al., 2024)  0.75  0.609  411.96  125.7  72
 YOLOv5s (Jocher, 2020)  0.811  0.639  7  15.9  295
 YOLOv8s (Jocher et al., 2023)  0.836  0.677  11.1  28.5  280
 YOLOv10s (Wang et al., 2024a)  0.822  0.664  8.04  24.5  253
 YOLO11s (Khanam & Hussain, 2024)  0.83  0.676  9.41  21.3  232
 YOLO12s (Tian et al., 2025)  0.828  0.672  9.23  21.2  243
 KSCNet  0.844  0.691  11.71  32.8  164

Table 9 
Ablation study of the improvement modules on the SIMD dataset.
 Baseline  CKN  SAN  VSS  DCA 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠. 𝐹𝐿𝑂𝑃𝑠(𝐺)

✓  0.83  0.676  9.41  21.3
✓ ✓  0.836  0.681  11.44  26.7
✓ ✓ ✓  0.841  0.685  11.5  28.3
✓ ✓ ✓  0.831  0.679  11.56  31.5
✓ ✓ ✓ ✓ ✓  0.844  0.691  11.71  32.8

Table 10 
Experimental results on VisDrone 𝑣𝑎𝑙 set with YOLO series methods.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺)

 YOLOv5n (Jocher, 2020)  0.341  0.272  0.248  0.125  1.77  4.2
 YOLOv5s (Jocher, 2020)  0.444  0.326  0.323  0.171  7  15.8
 YOLOv8n (Jocher et al., 2023)  0.452  0.342  0.339  0.195  3  8.1
 YOLOv8s (Jocher et al., 2023)  0.504  0.393  0.399  0.236  11.12  28.5
 YOLOv10n (Wang et al., 2024a)  0.452  0.362  0.332  0.193  2.69  8.2
 YOLOv10s (Wang et al., 2024a)  0.499  0.38  0.386  0.23  8.04  24.5
 YOLO11n (Khanam & Hussain, 2024)  0.45  0.34  0.335  0.193  2.58  6.3
 YOLO11s∗ (Khanam & Hussain, 2024)  0.507  0.385  0.394  0.235  9.4  21.3
 YOLOv12n (Tian et al., 2025)  0.455  0.334  0.336  0.195  2.55  6.3
 YOLOv12s (Tian et al., 2025)  0.504  0.387  0.395  0.236  9.23  21.2
 KSCNet  0.534  0.401  0.413  0.247  12.1  33

using VSS without SAN will not bring improvement, explaining that the 
efficacy of VSS is contingent upon its integration within a meticulously 
designed FPN network, wherein it can facilitate the efficient process-
ing of features. Ultimately, the amalgamation of all the aforementioned 
design elements culminates in the formation of KSCNet. This network 
demonstrates a substantial enhancement in detection accuracy, register-
ing a relative improvement of 1.69% and 2.22% in terms of 𝑚𝐴𝑃@50
and 𝑚𝐴𝑃@50∶ 95, respectively compared with the baseline. These re-
sults serve as a robust validation of the efficacy of the proposed modi-
fications in facilitating efficient and stable detection of small targets by 
UAVs.

In order to further validate the robustness of KSCNet on the UAV 
small target detection task, a number of comparative experiments were 
conducted on the VisDrone dataset. In Table 10, the results of experi-
mental investigation are presented in which the KSCNet model was com-
pared with the family of algorithms on the VisDrone 𝑣𝑎𝑙 set. The exper-
imental results reveal that KSCNet attains the highest detection scores 
across the four primary evaluation metrics, significantly outperforming 
other YOLO-based algorithms. Specifically, compared with the baseline 
model, KSCNet achieves respective increments of 5.32%, 4.16%, 4.82%, 
and 5.11% in the evaluation metrics 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑚𝐴𝑃@50, and 
𝑚𝐴𝑃@50∶ 95. Similarly, Table 11 presents the comparative experiments 
of KSCNet on the VisDrone 𝑡𝑒𝑠𝑡 dataset, where it demonstrates remark-
able performance enhancements of 5.67%, 2.1%, 4.43% and 6.15% rela-
tive to the baseline YOLO11s, outperforms the rest of YOLO algorithms 
across the evaluation metrics. Table 12 presents the experimental re-
sults comparing KSCNet with current state-of-the-art (SOTA) methods. 
Compared to the latest object detectors, KSCNet achieves the highest de-
tection performance with fewer parameters and lower model complexity 
when given smaller input image size. The aforementioned experiments 
have demonstrated that KSCNet, owing to its highly efficient model de-

sign, is capable of conducting in-depth exploration and focusing on small 
target features within UAV imagery and leads to its robust performance 
across various datasets. The strong robustness exhibited by KSCNet can 
be attributed to the stable synergistic processing of the KAN, VSS, SAN 
as well as DCA mechanism. The collaboration of these components en-
dows KSCNet with superior detection accuracy and stability for small 
UAV object detection.

4.4.  Quantitative results and analysis

In order to demonstrate the excellent performance of KSCNet in the 
UAV small target detection, a series of representative algorithms will 
be selected for comparative analysis in this section. To offer a more 
intuitive illustration of model performance, we visualize the precision, 
recall, mAP@50, and mAP@50-95 curves of KSCNet alongside real-time 
YOLO methods in Figs. 8 and 9, which correspond to the SIMD dataset 
and the VisDrone dataset, respectively. Among the evaluation indexes 
listed above, KSCNet is denoted by the brown curve, which demonstrates 
a gradual improvement during the training process. The final experi-
mental results are notably higher than those of other algorithms follow-
ing the completion of total 300 training epochs, indicating that KSCNet 
exhibits consistent and stable performance without significant fluctua-
tions during the training. This stability is attributed to the collaborative 
processing among its internal modules. As illustrated in Fig. 9, KSCNet 
demonstrates superior performance results at the end of the training, 
a notable distinction from its comparable algorithms of equivalent size 
and magnitude. This observation underscores KSCNet’s remarkable scal-
ability within the VisDrone dataset.

Fig. 10 illustrates the detection results of KSCNet in comparison with 
the baseline model on the SIMD dataset. The empirical results reveal 
that the proposed KSCNet exhibits enhanced performance relative to the 
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Table 11 
Experimental results on VisDrone 𝑡𝑒𝑠𝑡 set with YOLO series methods.
 Methods 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝐹𝐿𝑂𝑃𝑠(𝐺)

 YOLOv5n (Jocher, 2020)  0.306  0.252  0.208  0.102  1.77  4.2
 YOLOv5s (Jocher, 2020)  0.444  0.326  0.323  0.171  7  15.8
 YOLOv8n (Jocher et al., 2023)  0.39  0.299  0.267  0.147  3  8.1
 YOLOv8s (Jocher et al., 2023)  0.443  0.332  0.314  0.178  11.12  28.5
 YOLOv10n (Wang et al., 2024a)  0.396  0.289  0.268  0.149  2.69  8.2
 YOLOv10s (Wang et al., 2024a)  0.444  0.328  0.311  0.177  8.04  24.5
 YOLO11n (Khanam & Hussain, 2024)  0.386  0.297  0.266  0.147  2.58  6.3
 YOLO11s∗ (Khanam & Hussain, 2024)  0.441  0.339  0.316  0.179  9.4  21.3
 YOLOv12n (Tian et al., 2025)  0.39  0.298  0.27  0.151  2.55  6.3
 YOLOv12s (Tian et al., 2025)  0.45  0.341  0.321  0.186  9.23  21.2
 KSCNet  0.466  0.346  0.33  0.19  12.1  33

Table 12 
Experimental results on VisDrone 𝑣𝑎𝑙 with state of the art methods.
 Methods  input size 𝑚𝐴𝑃@50 𝑚𝐴𝑃@50∶ 95 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀) 𝑃𝑎𝑟𝑎𝑚𝑠.(𝑀)

 Faster RCNN (Ren et al., 2016) 1333 × 800  0.384  0.232  41.39  208
 Cascade RCNN (Cai & Vasconcelos, 2018) 1333 × 800  0.392  0.245  29.18  236
 ATSS (Zhang et al., 2020) 1333 × 800  0.362  0.221  32  203
 FCOS (Detector, 2022) 1344 × 768  0.316  0.188  32.13  198
 DTSSNet (Chen et al., 2024a) 1333 × 800  0.399  0.242  10.1  50.3
 HyperYOLOs (Feng et al., 2024) 640 × 640  0.409  0.244  14.8  38.9
 RT-DETR-R18 (Zhao et al., 2024) 640 × 640  0.409  0.241  19.88  57
 KSCNet 640 × 640  0.413  0.247  12.1  33

Fig. 8. Training curves of Precision, Recalll, 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶ 95 for YOLO representative algorithms and KSCNet on SIMD dataset.

Fig. 9. Training curves of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶ 95 for YOLO representative algorithms and KSCNet on VisDrone dataset.

baseline counterpart, achieving higher classification accuracy and supe-
rior object localization capabilities across diverse scenarios. Notably, 
KSCNet consistently demonstrates the ability to accurately pinpoint and 
correctly classify aircraft models. This robust performance is attributed 
to its advanced feature extraction mechanisms, which effectively
capture salient characteristics of aircraft even under complex back-
ground conditions. Moreover, the effectiveness of SAN and DCA atten-
tion strategies within KSCNet further enhances its generalization ca-
pability, ensuring high accuracy across diverse datasets and scenarios. 
Conversely, the baseline model occasionally encounters difficulties in 
accurately identifying the models under certain conditions.

Heatmaps can serve as a powerful tool to elucidate the inner work-
ings of a model and demonstrate that the network has effectively cap-
tured meaningful information. Grad-CAM (Selvaraju et al., 2017), a 
widely recognized visualization technique, pinpoints the regions within 
the feature map of a deep neural network that are most influential in 
shaping the prediction outcomes. In this study, we employ this tech-
nique to visualize the feature maps of the middle layers in both the 
baseline and KSCNet. As shown in Fig. 11, KSCNet pays more atten-
tion to small target area than baseline. Therefore, the proposed KSCNet 
exhibits enhanced capability in extracting key features from UAV im-
ages. It demonstrates superior robustness in the presence of substantial 
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Fig. 10. Qualitative visualization comparisons on the SIMD dataset of KSCNet and baseline model.

Fig. 11. Visualization comparison of Heatmap by Grad-CAM (Selvaraju et al., 2017) between baseline and KSCNet.

background interference, effectively mitigating the impact of such dis-
tractions on detection performance.

To further clarify the effectiveness of the proposed KSCNet in en-
hancing small object detection from UAV images, we meticulously se-
lects four representative and challenging samples from the VisDrone 
dataset for detailed analysis. In Fig. 12, we present aerial images 
captured by UAV depicting a major urban thoroughfare. This image
showcases bustling vehicular traffic and an extensive array of intricate 

objects, thereby rendering the scene highly complex and multifaceted. 
Experiments were conducted by KSCNet with recent released YOLO re-
altime detectors, YOLOv10s, YOLO11s and YOLOv12s, which execute 
constant iterative optimization of version updates based on YOLO. It is 
evident that the remaining three models exhibit relatively weaker de-
tection capabilities for distant small objects. These models frequently 
demonstrate missed detections or lower class confidence scores for the 
targets. They particularly struggle with detecting pedestrians that have 
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Fig. 12. Visualization of detection performance of KSCNet with advanced realtime YOLO detectors YOLO10s, YOLO11s and YOLOv12s on the VisDrone dataset.

Fig. 13. Comparisons of mainstream detectors in 𝑚𝐴𝑃@50, 𝑚𝐴𝑃@50∶ 95 and 
model parameters.

minimal pixel coverage and occasionally misclassify vehicle categories. 
Conversely, the proposed KSCNet exhibits enhanced overall detection 
performance, successfully identifying a substantial proportion of the 
dense crowd traversing the pedestrian crossing.

To facilitate an intuitive understanding of the comparative perfor-
mance between KSCNet and other models, Fig. 13 presents a compar-
ison across key evaluation metrics, including 𝑚𝐴𝑃@50, 𝑚𝐴𝑃@50∶ 95, 
and the number of model parameters. The results clearly demonstrate 
that KSCNet achieves a superior balance between detection precision 
and model complexity, outperforming most counterparts in accuracy 
while maintaining a compact structure. Furthermore, Fig. 14 provides 
a radar graph comparison of the FPS inference speed between KSC-
Net and current real-time object detectors, highlighting its competi-
tive computational efficiency across different operational profiles. From 
the results presented, it can be observed that the proposed KSCNet not 
only achieves high detection accuracy but also attains an inference 
speed of 164 FPS and meeting the requirements for real-time object
detection.

Fig. 14. Radar graph of FPS inference speed of KSCNet with mainstream real-
time detectors.

5.  Limitations

Despite the promising performance achieved by the proposed KSC-
Net on standard UAV benchmarks, we acknowledge several limitations 
that present opportunities for future work. First, the incorporation of 
the KAN and SSM modules increases the computational complexity and 
inference latency of the model. This elevated cost may hinder its de-
ployment on resource-constrained UAV platforms for real-time appli-
cations. Future work will focus on model compression, knowledge dis-
tillation, or the design of more efficient operators to achieve a better 
trade-off between accuracy and speed. Second, the model’s validation is 
primarily confined to standard public datasets. Its robustness and gen-
eralization performance under extreme real-world conditions, such as 
adverse weather or severe motion blur, require further investigation. 
The model’s robustness and generalization capability in these challeng-
ing and niche environments require further investigation. Third, the
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design and integration of the proposed SAN and DCA modules are tai-
lored for a specific YOLO-based architecture. The transferability and ef-
fectiveness of these components to other detector families, such as two-
stage or query-based models, remain an open question. Adapting and 
evaluating the proposed modules across a wider range of architectural 
backbones would be a valuable direction to explore their universal ef-
ficacy. Addressing these limitations will be the focus of our subsequent 
research efforts to make KSCNet more robust, efficient, and applicable 
to a broader spectrum of real-world aerial vision tasks.

6.  Conclusion

In this work, we proposes KSCNet, an innovative detection frame-
work designed to enhance small target detection in UAV aerial im-
agery. By integrating Kolmogorov-Arnold Networks (KAN) and State 
Space Model (SSM), KSCNet effectively addresses challenges posed by 
small target size, complex backgrounds and limited imaging resolution 
in complex environment. Concretely, CKN efficiently decomposes high-
dimensional data into simpler functions, thereby extracting robust fea-
tures for subsequent processing. The Semantic Aggregation Network 
(SAN), augmented with SSM, optimizes multiscale feature fusion and 
generalization for complex UAV images. A new channel attention mech-
anisms further refine feature integration within SAN. Extensive experi-
ments on public UAV datasets validate KSCNet’s efficacy. On the SIMD 
dataset, KSCNet achieves 0.844 𝑚𝐴𝑃@50 and 0.691 𝑚𝐴𝑃@50∶ 95, with 
respective improvements of 1.69% and 2.22% over the baseline. On the 
VisDrone dataset, KSCNet demonstrates significant accuracy increases 
of 4.82% and 5.11% on the validation set and 4.43% and 6.16% on the 
test set at 𝑚𝐴𝑃@50 and 𝑚𝐴𝑃@50∶ 95. These results highlight KSCNet’s 
superior performance in UAV small target detection, providing valuable 
technical support for related applications.
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