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Detecting small objects in aerial images taken by unmanned aerial vehicles (UAVs) has become a crucial re-
search challenge in the field of computer vision. This challenge is attributable to the following primary factors:
the small size of the targets, the complexity of the background and the inadequate feature fusion, which makes
small targets more susceptible to limited effective information and inferior detection performance. To address
this issues, we propose a collaboration network that integrates Kolmogorov-Arnold Networks (KAN) and State
Space Model (SSM) to improve the small target detection performance from UAV imagery. Specifically, we em-
ploy the KAN inserted into original YOLO11 architecture as primary backbone for feature extraction, which is
sufficient to decompose complex high-dimensional data into simple one-dimensional function combinations so
as to efficiently explore features with strong expressive power. We design Semantic Aggregation Network (SAN)
to perform highly-effective multiscale feature fusion of global patterns. The SSM module plays a crucial role in
SAN, which has been demonstrated to exhibit a superior capacity to adapt to a variety of input data types through
its distinctive scanning strategy and dynamic weighting mechanism, especially for the complicated UAV images.
An efficient Depthwise Channel Attention (DCA) is developed to reduce the aliasing effect generated from fused
feature via lightweight channel dimension refinement. Extensive experiments on the public UAV datasets have
been conducted to validate the effectiveness of KSCNet. Concretely, KSCNet performs 0.844 mAP @50 and 0.691
mAP@50: 95 on the SIMD dataset, achieving 1.69% and 2.22% accuracy improvement compared with baseline.
Moreover, KSCNet also accomplishes 4.82% and 5.11% accuracy increase on the VisDrone validation set and
4.43% and 6.16% boost on the VisDrone test set at mAP@50 and mAP@50: 95 respectively, indicating that
the KSCNet demonstrates excellent performance in the UAV small object detection task, providing substantial
technical support for applications in related domains.

1. Introduction

Recent years have seen a rapid development of UAV technology,
the UAV remote sensing platform is assuming a progressively crucial
role across diverse domains, including agricultural monitoring (Zhang
et al., 2024b), search and rescue (Martinez-Alpiste et al., 2021), traf-
fic managing (Wu et al., 2021), environmental monitoring (Motlagh
et al., 2023), satellite monitoring (Gagliardi et al., 2023) etc. The ad-
vantages of this technology include its flexibility and mobility, low cost
and high resolution of acquired data. The UAV platform can quickly
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acquire large-scale surface information, providing timely and accurate
data support for decision-making in related fields (Zhang et al., 2021).
However, the intrinsic attributes of UAV images, characterized by their
extensive coverage, diminutive target scale and dense spatial distribu-
tion, present formidable challenges to conventional object detection
methodologies, especially when it comes to the detection of small tar-
gets (Zhang et al., 2024a). This can be attributed to the limitations
in the available information regarding target features, the presence
of substantial background interference and the suboptimal detection
accuracy.
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In the field of computer vision, small object detection in UAV remote
sensing imagery has attracted considerable research attention due to its
critical role in various applications (Li et al., 2017). This task remains
highly challenging, primarily owing to three major obstacles: the small
size of objects, complex environmental conditions such as varying il-
lumination, and the stringent demand for computational efficiency in
real-world deployment. Small objects in UAV-captured images often oc-
cupy only minimal pixel regions, making them easily indistinguishable
from background clutter and texture noise. Moreover, inconsistent light-
ing conditions-including shadows, overexposure, and weather-related
variations-further degrade the discernibility of such objects. These issues
collectively hinder the performance of conventional detection models,
necessitating more robust and adaptive feature extraction techniques
(Wang et al., 2020). In addition to these perceptual challenges, the in-
herent limitations of UAV platforms-such as constrained computational
resources and the need for real-time processing-impose strong require-
ments for lightweight and efficient model architectures. It is essential
to develop detection systems that not only achieve high accuracy un-
der challenging visual conditions, but also maintain low computational
overhead. Therefore, the integration of deep learning approaches that
balance performance and efficiency becomes imperative for enabling
reliable on-board detection in UAV applications.

In recent years, object detection task has witnessed remarkable
progress through advances in deep learning (LeCun et al., 2015), partic-
ularly with the development of convolutional neural network (CNN)-
based detection architectures. Prominent examples include Faster R-
CNN (Ren et al., 2016), YOLO (Redmon, 2016), and SSD (Liu et al.,
2016), which have demonstrated remarkable performance on general-
purpose object detection datasets. These algorithms are capable of auto-
matically extracting target features and achieving outstanding localiza-
tion and classification through an end-to-end learning approach. How-
ever, they usually encounter the some critical issues when directly ap-
plied to small target detection in UAV remote sensing images: the insuf-
ficient process of feature extraction and the presence of extreme small
targets within image results in a reduced number of pixels, thereby lim-
iting the amount of feature information used for the subsequent deep
neural networks.

It is evident that conventional neural networks typically employ
downsampling operations to expand the sensory field. However, this
process concomitantly results in the loss of small target presentation
(Chen et al., 2025b). Additionally, the capacity to detect targets across
multiple scales is inadequate. The scale of objects in UAV remote sens-
ing images varies significantly and existing algorithms are challenging
to utilize for the accurate detection of both large and small targets. Al-
beit the substantial advancements in deep learning methodologies for
small object detection, several critical challenges remain unresolved.
Foremost among these is the development of a network architecture
that enables effective multi-scale perception, which is essential to ac-
commodate the wide range of sizes exhibited by small targets. Secondly,
the intricate nature of image backgrounds, the high degree of similar-
ity between targets and their surroundings and the frequent occlusion
of targets collectively exacerbate the complexity of the detection task.
Furthermore, the lack of effective feature fusion is a key factor that de-
grades small objects detection performance. Due to their limited pixel
coverage, small targets have sparse and fragile feature representations
that are easily overshadowed by background noise. This makes it dif-
ficult for models to accurately extract features and distinguish small
targets from the background, thereby reducing detection accuracy (Yue
et al., 2024).

To tackle the significant challenges in UAV small object detection
and boost the detection performance in complex scenarios, we have
developed an innovative detection network called KSCNet. This net-
work leverages the hybrid collaboration of KAN and SSM to achieve
remarkable detection performance especially for small objects. Notably,
KAN doesn’t hold fixed activation functions but with learnable univari-
ate functions, allowing it to excel in data fitting and complex feature

Expert Systems With Applications 299 (2026) 130240

learning tasks. SSM exhibits greate potential for managing long-range
dependencies with linear computational complexity, and also enables
model to filter out irrelevant information while retaining necessary and
relevant feature indefinitely through effective selection mechanism. Be-
sides, we also design a new FPN variants named Semantic Aggregation
Networks (SAN), which consists aggregation and expansion step to fully
explore and utilize multiscale features. Finally, a depthwise channel at-
tention (DCA) mechanism was introduced to mitigate the aliasing effect
for fused features. In summary, we conclude our contribution of this
work as follows,

e We propose a innovative high performance UAV small object de-
tection architecture named KSCNet, which collaborates prevalent
methodologies KAN and SSM, enabling effective modeling of the in-
tricate relationship between small targets and their background in
detection tasks, while simultaneously facilitating flexible feature ex-
traction and largely improve the UAV small object detection perfor-
mance.

e Several strategies were adopted to build KSCNet, including KAN-
based backbone for efficient feature extraction, Semantic Aggrega-
tion Network (SAN) for processing multiscale features, SSM acts
as core function within SAN as its superior cost-effective ability
for long range dependancy relation, a channel pattern Depthwise
Channel Attention (DCA) to reduce the aliasing effect for fused
features.

* Extensive experiments conducted on the public UAV datasets SIMD
and VisDrone demonstrate that KSCNet achieves superior detection
performance in comparison with mainstream object detectors, ex-
hibiting a consistent improvement in accuracy across various object
detection metrics, particularly for small targets.

2. Related works
2.1. Deep learning object detectors

In the field of deep learning, detection algorithms can be classi-
fied into two categories: two-stage and one stage types based on the
workflow and complexity of the involved processing tasks. The typi-
cal representative algorithms of the two stage methods are RCNN (Gir-
shick et al., 2014), Faster RCNN (Ren et al., 2016), FPN (Lin et al.,
2017a), Mask RCNN (He et al., 2017) and so on. Meanwhile, for the
one stage counterpart like SSD (Liu et al., 2016), RetinaNet (Lin et al.,
2017b), CenterNet (Duan et al., 2019), EfficientDet (Tan & Le, 2019)
and YOLO series algorithms. Particularly, the YOLO family techniques
have been developed to the YOLOv12 (Tian et al., 2025) version after
continuous updating and iteration since its introduction. The network
structure has been extensively optimized to significantly enhance the
performance and efficiency of object detection, garnering considerable
attention from numerous researchers and scholars. DETR (Zhao et al.,
2024) is notable for introducing the transformer encoder-decoder ar-
chitecture into the detection task for the first time, and replacing the
traditional anchor and NMS with the global attention mechanism and
end-to-end design. These represents a significant innovation in the de-
tection paradigm. Subsequent models, including Deformable DETR (Zhu
et al., 2020), DINO (Zhang et al., 2022) and others, leading to substan-
tial improvements in training efficiency and detection accuracy. These
models have been shown to combine both global context modeling capa-
bility and end-to-end simplicity, with outstanding performance in dense
occlusion and small target scenes. Conventional object detection meth-
ods often fail to deliver satisfactory performance when applied to UAV
small object detection due to the unique challenges of this domain.
We propose KSCNet, a detection framework specifically designed for
UAV scenarios, achieves superior detection performance by enhancing
feature extraction and localization accuracy for small objects in aerial
imagery.
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2.2. Optimized strategies for UAV detectors

Researchers have proposed numerous enhanced approaches to ad-
dress the critical challenges for small objects and boost the detection
performance in UAV imagery, primarily encompassing the following
domains: The enhancement of feature extraction backbone, the de-
sign of deeper network structures, the introduction of attention mech-
anisms and other optimization techniques. To address extreme varia-
tion of small target scale faced in the UAV aerial images, Chen (Chen
et al., 2025a) et.al proposed semantic information guided fusion mod-
ule through high-level semantic information to guide and align texture
patterns for enhancing the representation of small targets, significantly
improve the detection performance. Xiao (Xiao et al., 2024) et.al intro-
duced lightweight fusion strategy by rethinking interlayer feature cor-
relation within FPN architecture and proposed grouped feature focus
unit and multi-level feature reconstruct module to improve small detec-
tion performance in the complex backgrounds and densely populated
areas. Jing (Jing et al., 2024) et.al proposed Feature Aggregation Net-
work to fully explore different scale features by introducing top-down
pathway and feature-aware modules, which contribute to narrow se-
mantic information gap within architecture and boost the small object
detection. Xu (Xue et al., 2024) et.al introduced EL-YOLO aimed for
low-altitude aerial small object detectors, by developing sparsely con-
nected asymptotic FPN and cross stage multi-head self attention mech-
anism, EL-YOLO realized excellent performance on NVIDIA Jetson har-
ware platform with lightweight model pattern. Fan (Fan et al., 2025)
et.al introduced LUD-YOLO to improve the unmanned aerial vehicle de-
tection by designing new feature fusion mode and dynamic sparse at-
tention into C2f to achieve flexible computation location and content
awareness of features with excellent detection accuracy. Nevertheless,
the existing methods still exhibit certain limitations in feature fusion,
leading to features of small objects to be submerged in the complex
background, thereby diminishing detection accuracy. We propose the
SAN feature fusion network. The SAN network employs the SSM unit
as its core component to model the features of small objects over long
distances with linear modol complexity, achieving substantial improve-
ments in UAV small detection performance.

2.3. Feature enhancement of small object detection

In the field of small object detection, the inherent challenges posed
by diminutive target sizes and limited pixel representation often hinder
conventional detection approaches from effectively capturing discrimi-
native features. To address these limitations, contemporary methodolo-
gies employ sophisticated multi-scale feature fusion architectures that
integrate high-resolution spatial details from early network layers with
semantically rich information from deeper levels, thereby constructing
more robust feature representations of multi-scale features (Lin et al.,
2017a)(Ghiasi et al., 2019)(Tan et al., 2020)(Hu et al., 2021).

The incorporation of attention mechanisms has proven particularly
valuable, as these modules automatically identify and emphasize the
most salient channels and spatial regions while suppressing irrelevant
background interference (Hassanin et al., 2024). Furthermore, context
augmentation techniques (Liu et al., 2018a), including expanded re-
ceptive fields through dilated convolutions or global relationship mod-
eling via Transformer architectures, establish crucial connections be-
tween small targets and their surrounding environment to compensate
for their inherently weak semantic signatures (Wu et al., 2022). To
counteract the inevitable information degradation caused by progressive
downsampling, modern approaches implement various high-resolution
preservation strategies (Noh et al., 2019). These include maintaining
shallow feature maps throughout the network hierarchy and integrat-
ing super-resolution reconstruction modules to enhance feature clarity.
During model optimization, carefully designed data augmentation pro-
tocols work in concert with specialized loss functions to address class
imbalance issues and refine localization precision.
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3. The methodology of KSCNet

Our proposed framework follows the overall architecture of efficient
typical YOLO methods, shown in Fig. 1, including backbone, neck and
detection head. For an input image, the KSCNet architecture employs
specifically designed CKN blocks as its primary computational compo-
nents. This strategic integration significantly enhances the feature dis-
cernment capabilities of the conventional C3k2 module that is utilized in
YOLOL11. During the neck stage, the SSM act as core along with channel
attention DCA for driving the basic features into high advanced seman-
tic information, producing feature maps at three distinct scales: 80 x 80,
40 x40 and 20 x 20. These hierarchically structured semantic features
are then employed for the final object detection task.

3.1. KAN-based feature extractor

Recent advancements in Kolmogorov-Arnold Networks (KAN) have
catalyzed a paradigm shift in machine learning, offering novel solutions
for integrating domain-specific knowledge into deep learning models.
KAN (Kolmogorov, 1961) offer a compelling alternative to Multi-Layer
Perceptrons (MLP) (Hornik et al., 1989) by leveraging the Kolmogorov-
Arnold theorem. These theorem proves that any continuous multivariate
function can be decomposed into a finite composition of single-variable
functions. This principle underpins KANs, which replace traditional neu-
ral networks’ fixed linear weights with learnable univariate activation
functions. With this paradigm, KANs gain superior flexibility in model-
ing complex patterns and enhanced interpretability through their math-
ematically structured architecture.

Unlike conventional MLPs that employ fixed linear transformations,
KANs implement parametric spline functions as their fundamental com-
putational units, shown in Fig. 2. This architectural innovation achieves
dual advantages: significant parameter efficiency through optimized
function representation and enhanced network generalization by en-
coding smoothness priors in the spline formulations. The Kolmogorov-
Arnold representation theorem considers that a continuous multivariate

function f(x,,...,X,) can be presented as,
2n+1 n

f(xpx) =) <I>q< ¢qﬁp(x,,)> 6))
gq=1 p=1

Here, the @, and ¢, , are a set of continues univariate functions.
Each layer in the KANs can be regarded as a matrix of these learnable
1D functions:

Q= p=12, . ny g=12,...,n, 2

The ¢, , can be defined as a B-spline, which is a type of function defined
by a linear combination of basis splines. n;, denotes the number of input
features to a particular layer, while n,,, is the number of output features
generated by that layer. The activation functions ¢, ;; in this metric are
such learnable spline functions,

spline(x) = z ¢; B;(x) 3)

i

¢; are trainable coefficients.
With stacking of the complex functional mapping, we can get the
overall structural of KAN,

KAN(®X) = (@;_,0®;_,o ... o®)(X) 4

where @, acts on the input x; to produce the next layer’s input x,,,
presented as,

&1 11, ()

Xip1 =@ (x)) = X (5)

Pl a ) Prngyym )
In this work, we employ KAN convolution (Bodner et al., 2024) into

C3K2 (Khanam & Hussain, 2024) architecture shown in Fig. 3(b) to build
CKN block as the fundamental backbone in Fig. 1. The KAN convolution
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Fig. 1. Main architecture of proposed KSCNet for UAV small object detection. KAN-style integrated convolution backbone for elementary feature extraction. Semantic
Aggregation Network with core VSS within neck for efficient multiscale feature fusion. A channel attention DCA for reducing aliasing effect for fused features. Finally,
3 scales detection head 80 x 80, 40 x 40, 20 x 20 to execute final classification and localization.

integrates a basis functions b(x) and the output O(x) can been concluded
the sum of b(x) and spline function spline(x), defined as,

O(x) = w(b(x) + spline(x))
b(x) = SiLU(X) ©)

spline(x) = Z ¢; B;(%)

i

where w is the training weight of the network, ¢; is the coefficient to
optimize the training loss function, B;(x) is B-spline function.

CKN apply kernels composed of learnable non-linear functions, al-
lowing each kernel element to adapt dynamically during training, en-
abling greater flexibility and expressiveness. Furthermore, CKN share
fundamental architectural similarities with conventional CNNs, while
they incorporate two key modifications to the standard CNN framework:
(1) The replacement of traditional convolutional layers with parametric
KAN-based convolutional layers.(2) The option to employ either a KAN
layer or a standard MLP following the flattening operation.

The principal advantage of CKN lies in their superior parameter ef-
ficiency compared to conventional architectures. This efficiency stems
from the network’s unique construction, particularly its utilization of
B-spline basis functions to model activation patterns. Unlike fixed ac-

tivation functions such as ReLU that employ piecewise linear approxi-
mations, B-splines enable the smooth representation of complex, non-
linear activation functions through learnable parameters. This adaptive
approach allows for more efficient function approximation while main-
taining strong representational capacity, enabling the convolution ker-
nel to learn optimized, smooth functions that are highly effective at en-
coding the complex textures and structures found in UAV imagery.

3.2. Semantic aggregation network

The Feature Pyramid Networks (FPN) (Lin et al., 2017a) has been
identified as a seminal innovation in the domain of object detection,
playing a pivotal role in enhancing the robustness of the model to scaling
variations via the multi-scale feature fusion mechanism, particularly in
the case of small targets. Basic FPN architecture, shown in Fig. 4(a), con-
structs a feature pyramid with both high-resolution details and strong
semantic expression through top-down semantic propagation and cross-
layer fusion with lateral connection. PAFPN (Liu et al., 2018b) notably
improved information flow while keeping the framework simple and
generalizable, shown in Fig. 4(b), the core innovation lies in its dou-
ble bidirectional (top-down + bottom-up) multi-scale feature fusion
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Fig. 3. Architecture of C3K2 and CKN.

approach, which became influential in subsequent detection architec-
tures. While FPN and PAFPN effectively propagate semantic informa-
tion, their fixed fusion pathways (e.g., simple addition or complex con-
catenation) struggle to adaptively model the non-linear relationships
and semantic gaps between features from vastly different scale.

We introduces a redesigned FPN architecture, the Semantic Aggre-
gation Network, which implements an enhanced feature fusion mech-
anism for combining multi-scale representations from various network
stages, shown in Fig. 4(c). Through hierarchical feature aggregation and
semantically guided feature expansion, the SAN network significantly
improves the characterization of the feature pyramid while maintain-
ing computational efficiency. SAN consists of two steps: Aggregation
and Expansion. The Aggregation step is designed to construct a central-
ized, multi-scale feature context by hierarchically integrating informa-
tion from different backbone levels. This is achieved through a set of par-
allel adaptive average pooling operations, which systematically gather
and unify feature representations across varying spatial resolution. The
Expansion step aims to semantically and structurally enrich the aggre-
gated multi-scale features through a guided upsampling and refinement
process. This step utilizes the globally-aware context obtained from the
Aggregation phase to intelligently guide the feature reconstruction and
enhancement across resolutions. By integrating holistic semantic guid-
ance with local feature refinement, the Expansion step effectively gener-
ates a new pyramid of enhanced features that possess both high spatial
fidelity and strong semantic consistency. The resulting feature context
serves as a rich, globally aware foundation for subsequent processing, ef-
fectively mitigating the semantic fragmentation and scale misalignment
issues commonly encountered in complex scenes such as UAV imagery.
The whole process is easy to follow and can be implemented with 2
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steps,
step1:
a=AVG(C),i€2,3,4
X g¢ = Concatla,C;] o
step2:
X,xp = Expand(X
M, =P; xX

agg)
i€l,23,4

exp’
where AV G denotes the 2-D averaging pooling, P, mean the features
before fusion expansion, M; is the final detection head.

The hierarchical aggregation is explicitly linked to creating a more
coherent multi-scale feature representation, reducing the risk of seman-
tic ambiguity for small objects. The expansion process is analyzed not
just as an upsampling operation, but as a feature refinement step that
uses the aggregated semantic context to guide the reconstruction of
high-resolution features, thereby preserving crucial spatial details for
localization.

3.3. Vision state space model for handling multiscale features

Vision Transformers (ViTs) Vaswani et al. (2017), Liu et al. (2021),
Yu et al. (2022) have revolutionized visual representation learning,
demonstrating the critical role of large-scale pre-training in advancing
image classification performance. However, their practical deployment
faces a fundamental challenge: the quadratic computational complex-
ity of self-attention mechanisms, which becomes prohibitive for long-
sequence inputs. To address this limitation, Mamba (Gu & Dao, 2023)
emerges as an innovative evolution of State Space Models (Gu et al.,
2020) (Gu et al., 2021), introducing Selective Structured State Space
Models that achieve two key breakthroughs: (1) linear computational
complexity scaling, (2) enhanced capacity for modeling long-range de-
pendencies. This paradigm shift enables efficient processing of high-
resolution visual data while maintaining the representational power of
traditional ViTs.

SSMs has sparkled renewed enthusiasm with remarkable progress
from both academic and industrial communities in the recent years
(Wang et al., 2024c). Evolving from their classical predecessors like
the Kalman filter, contemporary SSM have demonstrated exceptional ca-
pabilities in modeling long-range dependencies while maintaining effi-
cient parallelizability during training. These advantages have positioned
modern SSMs as a compelling alternative to traditional sequence mod-
eling approaches, particularly in handling large-scale sequential data.

Preliminaries. The SSM-based models, can be considered as linear
time-invariant system that maps the 1-D function or sequence x(¢) €
R — y(t) € R through a hidden state h(r) € RN. The process uses A
€ RMXN as the evolution parameter and B € RV*!, Ce 1 x N as the pro-
jection parameters.

1 () = Ah(y) + Bx(1)
(1) = Ch(t)

To adapt the model into deep networks, continuous-time SSM need
to undergo discretization in advance, including a times scale parameter
A to transform A and B into discrete pattern A and B, among this process
the common employed technique is zero-order hold (ZOH),

A =exp(A)

®

B = (AA) !(exp(AA — 1)) - AB )
7 () = Ah(y) + Bx(?)
¥(1) = Ch(r) (10)

Finally, the output can be reached by global convolution,

K= (CB,CAB,....CA" 'B)
_ an
y=xx*K
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Fig. 5. Architecture of 2D-Selective-Scan (SS2D). The input patches are transmitted from four different scanning paths and then processed by distinct S6 blocks, the
results are subsequently merged together to build 2D feature map for eventual output.

where L denotes the length of the input sequence x and K € RL.

We employ cost-effective selective mechanism named Vision State
Space (VSS) block from Vmamba (Liu et al., 2024) as the core expan-
sion method in the SAN architecture, shown in Fig. 6, VSS serves as
the fundamental exchange center for processing the multi-scale features
to construct hierarchical vision representation with linear computation
and complexity. As shown in Fig. 5, the workflow of SS2D contains four
steps: Split, Cross-scan, S6 blocks (Gu & Dao, 2023), Cross-merge. The
input features are first split into several patches, these data are gener-
ated into sequences pattern from four distinct traversal paths, and then
further process by consecutive parallel S6 blocks for managing long-
range dependency information, the treated features are then sent into
Cross-merge produced to output.

SS2D employs a sophisticated cross-scanning strategy that processes
the 2D image through complementary 1D traversal paths. This innova-
tive approach enables each spatial location to dynamically aggregate
and integrate features from all regions of the input image across mul-
tiple orientations. By systematically combining information from these
diverse scanning directions, the model effectively constructs compre-
hensive global receptive fields while maintaining computational effi-
ciency. The omni-directional information flow along different axes en-
sures robust feature representation that captures both local details and
long-range dependencies in the visual space.

3.4. Depthwise channel attention

A channel attention mechanism named Depthwise Channel Atten-
tion (DCA) is designed to eliminate the aliasing effect, which denotes a
distortion phenomenon where erroneous and misleading information is
introduced into feature maps due to continual signal sampling and di-
rectly combined multi-scale feature fusion process (Li et al., 2022b). The
architecture of DCA, shown in Fig. 7, consists two main branches to re-
calibrate input features for more discriminative information objects. We
employed depthwise convolution (Chollet, 2017) along with relatively
shorted information flow path, mitigating channel information loss due
to the dimension reduction compared with SE (Hu et al., 2018). Be-
sides, Harsh-Sigmoid activation function was also adopted to improve
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Fig. 6. Visual state space block.

the feature non-linear representation, which is a variant of the sigmoid
function and due to the strong gradient around its saturation interval
(i.e. the part of the input away from 0), the optimization process can be
faster in terms of more gradient new, which can improve model training
efficiency, especially in deep neural networks. The calculation of DCA
can summarized as follows,

u,v = Split(X) 12)
01 = o(Linear(AV G Pool(v))) 13)
71,712,713 = DW (split(u)) 14
02 = Concat|71;12;12] (15)
X,opine = 01 x 02 xX (16)

For input X € REH*W where C,H and W denote the channel, height
and width respectively. ¢ means the Harsh-Sigmoid activation function.
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DW is depthwise convolution with kernel size 3 x 3, AVGPool is global
average pooling. Concat represents that all the outputs are stacked along
the channel dimension. The DCA module addresses aliasing not by
directly filtering spatial frequencies, but by dynamically recalibrating
channel-wise feature responses to suppress channels that are most cor-
rupted by these spatial dimension. It uses DWConv to sense spatial in-
consistencies and then employs channel recalibration to mute the chan-
nels that are most polluted by these effects, making it more robust for
accurate localization and classification.

4. Experiments
4.1. Dataset and settings

In this work, we adopt two public UAV dataset to testify the effec-
tiveness for KSCNet on the UAV small detection:

SIMD: This dataset is an open source dataset for small object de-
tection in remote sensing imagery, released by a team of researchers
at the National University of Science and Technology (NUST) (Haroon
et al., 2020). The images in SIMD are mainly acquired from multiple
locations in the EU and the US from the public Google Earth satellite
imagery, which is mainly used for multi-size and multi-category vehicle
detection tasks in high-resolution remote sensing imagery. It comprises
5000 images of resolution 1024 x 768 and collectively contains 45 096
objects in 15 different classes of vehicles including cars, trucks, buses,
long vehicles, various types of aircrafts and boats.

VisDrone: The dataset is a large benchmark dataset created by the
AISKYEYE team at the Machine Learning and Data Mining Laboratory
of Tianjin University, China, designed for the analysis of images and
videos captured by drones (Du et al., 2019). This dataset contains 288
video clips, 261,908 frames and 10,209 still images captured by various
drone cameras. For the task for UAV detection, there are 6471 images
for training, 548 for validation and 3190 for testing. The dataset covers
a variety of aspects including different locations, environments, objects
and densities and also are under different weather and lighting condi-
tions.

For more detail, all experiments were conducted under CPU Intel
Core i7-13700KF and one single GPU NVIDIA RTX 4090, with deep
learning framework pytorch version 2.2 and cuda toolkit 11.8. We set
the total 300 training epochs with training input image size 640 x 640,
batch size 16, learning rate 0.01, momentum 0.937 and weight decay
5e-5 during training time, the batch size was set to 1 for fast processing
during inference stage.
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4.2. Evaluation metrics

In order to thoroughly validate the performance of the model, we
follow the standard evaluation metrics commonly used in object detec-
tion. These metrics assess the model’s performance in various aspects,
including Precision (P), Recall (R), and the balance between them, such
as Mean Average Precision (mAP). By analyzing these comprehensive
performance metrics, we gain a deeper understanding of the model’s
detection capabilities under different scenarios and conditions, allow-
ing for a more accurate evaluation.

P= _re a7
TP+ FP
R= TP a18)
TP+ FN
1
AP, = / P,(R)dR, a9
0
1 n
mAP = — > AP, (20)

i=1

Ture Positive (TP), False Negative (FN) and False Positive (FP) were
used to measure the accuracy and effectiveness of the model in detecting
the target, which represented successful detection for real targets, failed
for targets and misrecognition for true targets respectively.

4.3. Experimental analysis

We report the detection results of KSCNet with the real-time YOLO
series methods on the SIMD dataset in Table 1. It’s notable that KSCNet
achieve the best detection performance across Precision, mAP @50 eval-
uation metric, realizing 2.68% and 1.69% increase respectively com-
pared with baseline YOLO11s (Khanam & Hussain, 2024). For the strict
and comprehensive metric mAP@50: 95, KSCNet also realizes 2.22%
detection improvements and also exhibits the top grades among all
other algorithms, indicating that KSCNet could fully utilize the advan-
tage of the model design and address the small detection issues. For
the latest released YOLO variant YOLOv12 (Tian et al., 2025), KSCNet
also provides the noticeable leading detection results at most of eval-
uation metrics. Obviously, model complexity matters overall detection
results to some extent, this can be validated from YOLO-s model, such as
YOLOVS5s (Jocher, 2020), YOLOv6s (Li et al., 2022a), YOLOvS8s (Jocher
et al.,, 2023) and YOLOv10s (Wang et al., 2024a), they generally pro-
duce higher detection results compared with their n versions counter-
parts, which highlights more complex models have greater feature ex-
traction capabilities, capturing subtle patterns and high-level features
in the data to improve recognition of complex targets. In conclusion,
KSCNet has been demonstrated to achieve optimal object detection per-
formance with minimal increase in model complexity and parameter.
The network performs particularly well on the comprehensive evalua-
tion metric mAP@50: 95, fully demonstrating its unique advantage in
balancing model lightness and detection accuracy. This efficient perfor-
mance enhancement not only underscores the innovation of its architec-
tural design, additionally offers an optimal solution for object detection
applications in contexts where resources are constrained.

To fully understand the detection performance of KSCNet,
Table 2 presents the results of KSCNet with mainstream detectors in-
cluding two-stage, one-stage and transformer based methods. Faster
RCNN, as the classic milestone two-stage detectors, realizes 0.868
detection accuracy at mAP@50, a slightly higher than that of KSC-
Net. As for the evaluation metric mAP@50: 95, KSCNet excels by
1.17% of 0.691 with less parameters and model complexity, explain-
ing that heavy parameter model is not suitable for realtime device
applications and will become computation burden for fast inference
situation, which is also adaptable for RT-DETR detectors holds infe-
rior detection results on mAP@50 and mAP@50: 95 compared with
KSCNet. Recent HyperYOLO exhibits outstanding detection perfor-
mance on the COCO dataset, whereas HyperYOLOs produces relatively
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Table 1
Overall comparison with the YOLO algorithms on the SIMD dataset. * means the baseline method.
Methods Precision Recall mAP@50 mAP@50: 95 Params.(M) FLOPs(G)
YOLOv5n (Jocher, 2020) 0.774 0.777 0.801 0.616 1.77 4.2
YOLOvV5s (Jocher, 2020) 0.803 0.777 0.811 0.639 7 15.9
YOLOvé6n (Li et al., 2022a) 0.807 0.759 0.804 0.637 4.63 11.35
YOLOV6s (Li et al., 2022a) 0.771 0.773 0.792 0.633 18.51 45.19
YOLOv7t (Wang et al., 2023) 0.768 0.784 0.816 0.643 6.04 13.1
YOLOv8n (Jocher et al., 2023) 0.814 0.764 0.813 0.651 3 8.1
YOLOVS8s (Jocher et al., 2023) 0.804 0.803 0.836 0.677 111 28.5
YOLOvV9c (Wang et al., 2024b) 0.834 0.811 0.855 0.702 50.73 236.8
YOLOvV10n (Wang et al., 2024a) 0.764 0.757 0.796 0.633 2.7 8.3
YOLOv10s (Wang et al., 2024a) 0.814 0.764 0.822 0.664 8.04 24.5
YOLO11n (Khanam & Hussain, 2024) 0.738 0.798 0.813 0.65 2.58 6.3
YOLO11s* (Khanam & Hussain, 2024) 0.783 0.812 0.83 0.676 9.41 21.3
YOLOv12n (Tian et al., 2025) 0.74 0.792 0.812 0.66 2.55 6.3
YOLOvV12s (Tian et al., 2025) 0.773 0.823 0.828 0.672 9.23 21.2
KSCNet 0.804 0.809 0.844 0.691 11.71 32.8
Table 2
Experimental results with the SOTA methods on the SIMD dataset.
Methods mAP@50 mAP@50: 95 Params.(M) FLOPs(G)
Faster RCNN (Ren et al., 2016) 0.868 0.683 41.42 178
RT-DETR-R50 (Zhao et al., 2024) 0.75 0.609 411.96 125.7
RetinaNet (Lin et al., 2017b) 0.603 0.439 36.62 179
SSD300 (Liu et al., 2016) 0.714 0.448 25.61 32.12
SSD512 (Liu et al., 2016) 0.752 0.496 26.45 89.5
EfficientNet (Tan & Le, 2019) 0.874 0.680 18.62 83.42
HyperYOLOs (Feng et al., 2024) 0.833 0.669 14.82 38.9
DINO (Zhang et al., 2022) 0.818 0.382 47.56 235
KSCNet 0.844 0.691 11.71 32.8
Table 3
Different methods for building effective feature extraction block with vanilla C3K2.
Methods Precision Recall mAP@50 mAP@50: 95 Params.(M) FLOPs(G)
C2fCIB (Wang et al., 2024a) 0.767 0.808 0.822 0.657 9.15 25.4
FMB (Zheng et al., 2024) 0.772 0.806 0.729 0.665 9.36 21.2
DeConv (Chen et al., 2024b) 0.818 0.778 0.824 0.668 9.41 21.3
FasterConv (Chen et al., 2023) 0.785 0.812 0.828 0.677 9 23.3
CKN 0.815 0.825 0.836 0.681 11.44 26.7
Table 4
Experimental results of CKN employment in different position within backbone.
Baseline Stage2 Stage3 Stage4 Stage5 mAP@50 mAP@50: 95 Params. FLOPs(G)
v 0.834 0.672 9.41 21.3
v v 4 0.833 0.679 10.4 23.7
v 4 v 0.831 0.678 10.1 23.3
v v v 4 v 0.836 0.681 11.44 26.7

lower detection accuracy compared with KSCNet. This experiments val-
idate the effectiveness KSCNet on the UAV small object detection with
leading detection performance among the current detectors.

To validate the effectiveness of CKN, we compare it with other simi-
lar efficient model blocks in Table 3. The results shows the CKN provides
the excellent detection accuracy across the four main evaluation met-
rics Precision Recall, nAP@50, mAP@50: 95 with 0.815, 0.825, 0.836
and 0.681. Compared with the lightweight method FasterConv and De-
Conv, CKN realizes higher detection accuracy results at mAP@50: 95
while with slight model parameter and complexity surge. CKN exhibits
a strong performance boost compared to C2fCIB by 1.7% and 3.65%
increase at mAP@50 and mAP@50: 95. CKN demonstrates superior effi-
cacy in elucidating the complex relational structures between nodes. By
effectively learning the intricate non-linear patterns embedded within
the data, it achieves enhanced predictive accuracy. Notably, in the con-
text of high-dimensional data, KAN convolution exhibits pronounced
advantages in terms of flexibility, parameter and optimization efficacy.

These attributes collectively underscore its potential as a powerful tool
for advanced data analysis and modeling.

We perform an ablation study to examine the impact of CKN on
model performance at different stages within the backbone, as presented
in Table 4. As shown in the Fig. 1, the core components of backbone
can be separated into 6 stages. The initial and final stages constitute
the basic module responsible for downsampling input images and col-
lecting the comprehensive semantic information. CKN blocks deployed
range 2 to 5 stages offers the best detection accuracy with 0.836 and
0.681 at mAP@50 and mAP@50: 95 respectively, confirming the need
of consecutive of KAN-base approaches to capture the complex pat-
terns in the data. Employing CKN only in the first two stages or in the
last two stages achieves insufficient performance, illustrating that al-
though KAN convolution has a powerful representation and it requires
a more complex structure to realize its theoretical potential in the face
of scarce feature representations when dealing with weak targets in
UAVs.
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Table 5
Results of current prevailing feature pyramid networks with our proposed SAN on the SIMD dataset.
Methods Precision Recall mAP@50 mAP@50: 95 Params.(M) FLOPs(G)
PANet* (Liu et al., 2018b) 0.78 0.823 0.834 0.672 9.41 21.3
HSFPN (Shi et al., 2025) 0.821 0.782 0.826 0.659 6.6 18.7
GDFPN (Xu et al., 2022) 0.788 0.806 0.825 0.669 12.2 25.6
CGRFPN (Ni et al., 2024) 0.816 0.759 0.826 0.655 3.29 8.6
ERepFPN (Li et al., 2022a) 0.764 0.801 0.813 0.663 12.07 28.2
BiFPN (Tan & Le, 2019) 0.805 0.773 0.828 0.674 7.77 24.1
SAN 0.829 0.787 0.838 0.681 9.77 26.3
Table 6
Comparative results of long-range modeling methods employed within SAN on the SIMD dataset.
Methods Precision Recall mAP@50 mAP@50: 95 Params.(M) FLOPs(G)
CAA (Cai et al., 2024) 0.805 0.77 0.817 0.651 9.76 26.3
C2fCIB (Wang et al., 2024a) 0.767 0.808 0.822 0.657 9.15 25.4
GLSA (Tang et al., 2023) 0.803 0.793 0.83 0.667 10.6 27.5
CA (Hou et al., 2021) 0.763 0.826 0.836 0.668 9.11 241
SAN(VSS) 0.847 0.79 0.842 0.683 11.42 30.8
Table 7
Ablation study of core module for VSS and DCA at different locations.
Neck VSS Head DCA mAP@50 mAP@50: 95 Params.(M) FLOPs(G)
- - - - 0.834 0.672 9.41 21.3
v 1 v 3 0.845 0.683 12.71 342
v 3 - - 0.845 0.685 11.57 36.2
v 3 v 1(Up) 0.834 0.674 11.68 31.8
v 3 v 1(Down) 0.837 0.683 11.68 31.8
v 2 v 2 0.844 0.691 11.71 32.8

The construction of feature pyramids constitutes an essential pro-
cedure in a wide array of computer vision tasks and represents an in-
dispensable component of modern detection frameworks. It lays the
groundwork for addressing challenges associated with multiscale object
recognition and analysis. Table 5 presents results of our proposed SAN
with current prevalent FPN methods. It’s noticeable that SAN achieves
leading detection results across listed methods at main evaluation metric
mAP@50 and mAP@50: 95. Compared the baseline PANet architecture,
SAN improves the accuracy at mAP@50: 95 by 1.34% with 0.681. BiFPN
achieves 0.674 at mAP@50: 95, placing it at the pinnacle in comparison
to alternative methods. This superior outcome of BiFPN is attributed to
its innovative and efficient cross-connection design, facilitating effec-
tive feature information transfer from disparate layers. Nevertheless, it
exhibits suboptimal performance in comparison to SANs. Thanks to its
aggregation and expansion modules design, SAN could fully explore the
multi-scale distinctive information and then generate differentiable de-
tails of small objects in deep networks.

Table 6 offers comparison results between VSS block with main-
stream long-range modeling methods employed in the our proposed
SAN architecture. SS2D plays a vital role in VSS block, by traversing the
input image patches along four scanning paths, SS2D bridges the gap
between the sequential nature of one-dimensional selective scanning
and the non-sequential structure of two-dimensional visual data. This
design enables the model to aggregate contextual information from di-
verse sources and perspectives, thereby enhancing its capability to pro-
cess two-dimensional visual data more effectively. Compared with chan-
nel attention method CA, VSS block shows visible detection accuracy
increase at mAP@50: 95 with 0.683. CAA module acts as core feature
procedure unit in the PKINet (Cai et al., 2024) which achieves similar
effects to larger convolutional kernels and obtains 0.651 at mAP@50: 95
by 4.92% lower than VSS, indicating that CAA suffers information
loss when applied in the SAN architecture. The VSS module plays a
pivotal role in the SAN, it enhances the model’s capacity to process
2D visual data and optimizes the architecture to boost computational
efficiency.

A series of ablation experiments were conducted to ascertain the
impact of employment of VSS module and DCA attention mechanism
at different position within the SAN network towards the utilization of
multiscale features, shown in Table 7. The experimental positions were
differentiated by the application of the color blue and green, respec-
tively, in order to denote the variation numbers of VSS and DCA in each
respective position.As the results shown in the bottom line, the opti-
mal solution for VSS and DCA follows two VSS modules and two DCA
modules in Neck for 80 x 80 and 20 x 20 head optimization, by contrast
to 3+ 1 combination strategy. This underscores the pivotal function of
VSS in capturing the dependencies of detail information across multiple
scales, while concurrently demonstrating proficiency in effectively man-
aging consistent spatial and semantic feature representations of diminu-
tive targets. Conversely, the DCA channel mechanism has been shown
to be more effective in correcting and condensing the fused information,
thereby reducing the feature blending effect.

Table 8 lists the comparison of the detection performance of KSCNet
with the same level of parametric quantity detectors on mAP@50: 95. It
can be seen that YOLOV5s has the smallest number of model parameters,
but achieves the lowest accuracy. Compared to YOLOv8s, YOLOv10s
and YOLO11s, although KSCNet has a slight increase in the number of
parameters, the improvement in accuracy achieved is satisfactory. RT-
DETR exhibits a substantial disparity in detection accuracy when com-
pared to KSCNet, attribute to its intricate structural design and the sub-
stantial parameters resulting from self-attention. It is noteworthy that
KSCNet achieves an inference speed of 164 FPS, fulfilling the criteria
for real-time object detection and demonstrating strong potential for
practical deployment in real-world applications.

To further validate the effectiveness of the different components in
KSCNet on model performance, we conducted detailed ablation experi-
ments as shown in Table 9. When CKN blocks were employed as the ba-
sic backbone, the detection accuracy at mAP@50: 95 surged from 0.676
to 0.681. Based on the CKN, SAN fusion strategy further enhance the
whole detection performance to 0.685, emphasizing that the SAN is ca-
pable to refine multi-stages feature than baseline method PANet. Solely
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Table 8
Comparison with the SOAT algorithms on the SIMD dataset.
Methods mAP@50 mAP@50: 95 Params.(M) FLOPs(G) FPS
SSD512 (Liu et al., 2016) 0.752 0.496 26.45 89.5 154
RT-DETR-R50 (Zhao et al., 2024) 0.75 0.609 411.96 125.7 72
YOLOVS5s (Jocher, 2020) 0.811 0.639 7 15.9 295
YOLOVS8s (Jocher et al., 2023) 0.836 0.677 111 28.5 280
YOLOv10s (Wang et al., 2024a) 0.822 0.664 8.04 24.5 253
YOLO11s (Khanam & Hussain, 2024) 0.83 0.676 9.41 21.3 232
YOLO12s (Tian et al., 2025) 0.828 0.672 9.23 21.2 243
KSCNet 0.844 0.691 11.71 32.8 164
Table 9
Ablation study of the improvement modules on the SIMD dataset.
Baseline CKN SAN VSS DCA mAP@50 mAP@50: 95 Params. FLOPs(G)
v 0.83 0.676 9.41 21.3
v v 0.836 0.681 11.44 26.7
v v v 0.841 0.685 11.5 28.3
v v v 0.831 0.679 11.56 31.5
v v 4 v v 0.844 0.691 11.71 32.8
Table 10
Experimental results on VisDrone val set with YOLO series methods.
Methods Precision Recall mAP@50 mAP@50: 95 Params.(M) FLOPs(G)
YOLOvV5n (Jocher, 2020) 0.341 0.272 0.248 0.125 1.77 4.2
YOLOV5s (Jocher, 2020) 0.444 0.326 0.323 0.171 7 15.8
YOLOvV8n (Jocher et al., 2023) 0.452 0.342 0.339 0.195 3 8.1
YOLOV8s (Jocher et al., 2023) 0.504 0.393 0.399 0.236 11.12 28.5
YOLOvV10n (Wang et al., 2024a) 0.452 0.362 0.332 0.193 2.69 8.2
YOLOvV10s (Wang et al., 2024a) 0.499 0.38 0.386 0.23 8.04 24.5
YOLO11n (Khanam & Hussain, 2024) 0.45 0.34 0.335 0.193 2.58 6.3
YOLO11s* (Khanam & Hussain, 2024) 0.507 0.385 0.394 0.235 9.4 21.3
YOLOv12n (Tian et al., 2025) 0.455 0.334 0.336 0.195 2.55 6.3
YOLOvV12s (Tian et al., 2025) 0.504 0.387 0.395 0.236 9.23 21.2
KSCNet 0.534 0.401 0.413 0.247 12.1 33

using VSS without SAN will not bring improvement, explaining that the
efficacy of VSS is contingent upon its integration within a meticulously
designed FPN network, wherein it can facilitate the efficient process-
ing of features. Ultimately, the amalgamation of all the aforementioned
design elements culminates in the formation of KSCNet. This network
demonstrates a substantial enhancement in detection accuracy, register-
ing a relative improvement of 1.69% and 2.22% in terms of mAP @50
and mAP@50: 95, respectively compared with the baseline. These re-
sults serve as a robust validation of the efficacy of the proposed modi-
fications in facilitating efficient and stable detection of small targets by
UAVs.

In order to further validate the robustness of KSCNet on the UAV
small target detection task, a number of comparative experiments were
conducted on the VisDrone dataset. In Table 10, the results of experi-
mental investigation are presented in which the KSCNet model was com-
pared with the family of algorithms on the VisDrone val set. The exper-
imental results reveal that KSCNet attains the highest detection scores
across the four primary evaluation metrics, significantly outperforming
other YOLO-based algorithms. Specifically, compared with the baseline
model, KSCNet achieves respective increments of 5.32%, 4.16%, 4.82%,
and 5.11% in the evaluation metrics Precision, Recall, mAP @50, and
mAP@50: 95. Similarly, Table 11 presents the comparative experiments
of KSCNet on the VisDrone test dataset, where it demonstrates remark-
able performance enhancements of 5.67%, 2.1%, 4.43% and 6.15% rela-
tive to the baseline YOLO11s, outperforms the rest of YOLO algorithms
across the evaluation metrics. Table 12 presents the experimental re-
sults comparing KSCNet with current state-of-the-art (SOTA) methods.
Compared to the latest object detectors, KSCNet achieves the highest de-
tection performance with fewer parameters and lower model complexity
when given smaller input image size. The aforementioned experiments
have demonstrated that KSCNet, owing to its highly efficient model de-

sign, is capable of conducting in-depth exploration and focusing on small
target features within UAV imagery and leads to its robust performance
across various datasets. The strong robustness exhibited by KSCNet can
be attributed to the stable synergistic processing of the KAN, VSS, SAN
as well as DCA mechanism. The collaboration of these components en-
dows KSCNet with superior detection accuracy and stability for small
UAV object detection.

4.4. Quantitative results and analysis

In order to demonstrate the excellent performance of KSCNet in the
UAV small target detection, a series of representative algorithms will
be selected for comparative analysis in this section. To offer a more
intuitive illustration of model performance, we visualize the precision,
recall, mAP@50, and mAP@50-95 curves of KSCNet alongside real-time
YOLO methods in Figs. 8 and 9, which correspond to the SIMD dataset
and the VisDrone dataset, respectively. Among the evaluation indexes
listed above, KSCNet is denoted by the brown curve, which demonstrates
a gradual improvement during the training process. The final experi-
mental results are notably higher than those of other algorithms follow-
ing the completion of total 300 training epochs, indicating that KSCNet
exhibits consistent and stable performance without significant fluctua-
tions during the training. This stability is attributed to the collaborative
processing among its internal modules. As illustrated in Fig. 9, KSCNet
demonstrates superior performance results at the end of the training,
a notable distinction from its comparable algorithms of equivalent size
and magnitude. This observation underscores KSCNet’s remarkable scal-
ability within the VisDrone dataset.

Fig. 10 illustrates the detection results of KSCNet in comparison with
the baseline model on the SIMD dataset. The empirical results reveal
that the proposed KSCNet exhibits enhanced performance relative to the

10
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Table 11
Experimental results on VisDrone zest set with YOLO series methods.
Methods Precision Recall mAP@50 mAP@50: 95 Params.(M) FLOPs(G)
YOLOV5n (Jocher, 2020) 0.306 0.252 0.208 0.102 1.77 4.2
YOLOVS5s (Jocher, 2020) 0.444 0.326 0.323 0.171 7 15.8
YOLOvV8n (Jocher et al., 2023) 0.39 0.299 0.267 0.147 3 8.1
YOLOVS8s (Jocher et al., 2023) 0.443 0.332 0.314 0.178 11.12 28.5
YOLOv10n (Wang et al., 2024a) 0.396 0.289 0.268 0.149 2.69 8.2
YOLOvV10s (Wang et al., 2024a) 0.444 0.328 0.311 0.177 8.04 24.5
YOLO11n (Khanam & Hussain, 2024) 0.386 0.297 0.266 0.147 2.58 6.3
YOLO11s* (Khanam & Hussain, 2024) 0.441 0.339 0.316 0.179 9.4 21.3
YOLOv12n (Tian et al., 2025) 0.39 0.298 0.27 0.151 2.55 6.3
YOLOV12s (Tian et al., 2025) 0.45 0.341 0.321 0.186 9.23 21.2
KSCNet 0.466 0.346 0.33 0.19 12.1 33
Table 12
Experimental results on VisDrone val with state of the art methods.
Methods input size mAP@50 mAP@50: 95 Params.(M) Params.(M)
Faster RCNN (Ren et al., 2016) 1333 x 800 0.384 0.232 41.39 208
Cascade RCNN (Cai & Vasconcelos, 2018) 1333 x 800 0.392 0.245 29.18 236
ATSS (Zhang et al., 2020) 1333 x 800 0.362 0.221 32 203
FCOS (Detector, 2022) 1344 x 768 0.316 0.188 32.13 198
DTSSNet (Chen et al., 2024a) 1333 x 800 0.399 0.242 10.1 50.3
HyperYOLOs (Feng et al., 2024) 640 x 640 0.409 0.244 14.8 38.9
RT-DETR-R18 (Zhao et al., 2024) 640 x 640 0.409 0.241 19.88 57
KSCNet 640 X 640 0.413 0.247 12.1 33
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Fig. 9. Training curves of Precision, Recall, mnAP@50 and mAP@50: 95

baseline counterpart, achieving higher classification accuracy and supe-
rior object localization capabilities across diverse scenarios. Notably,
KSCNet consistently demonstrates the ability to accurately pinpoint and
correctly classify aircraft models. This robust performance is attributed
to its advanced feature extraction mechanisms, which effectively
capture salient characteristics of aircraft even under complex back-
ground conditions. Moreover, the effectiveness of SAN and DCA atten-
tion strategies within KSCNet further enhances its generalization ca-
pability, ensuring high accuracy across diverse datasets and scenarios.
Conversely, the baseline model occasionally encounters difficulties in
accurately identifying the models under certain conditions.

11

for YOLO representative algorithms and KSCNet on VisDrone dataset.

Heatmaps can serve as a powerful tool to elucidate the inner work-
ings of a model and demonstrate that the network has effectively cap-
tured meaningful information. Grad-CAM (Selvaraju et al., 2017), a
widely recognized visualization technique, pinpoints the regions within
the feature map of a deep neural network that are most influential in
shaping the prediction outcomes. In this study, we employ this tech-
nique to visualize the feature maps of the middle layers in both the
baseline and KSCNet. As shown in Fig. 11, KSCNet pays more atten-
tion to small target area than baseline. Therefore, the proposed KSCNet
exhibits enhanced capability in extracting key features from UAV im-
ages. It demonstrates superior robustness in the presence of substantial
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Fig. 11. Visualization comparison of Heatmap by Grad-CAM (Selvaraju et al., 2017) between baseline and KSCNet.

background interference, effectively mitigating the impact of such dis-
tractions on detection performance.

To further clarify the effectiveness of the proposed KSCNet in en-
hancing small object detection from UAV images, we meticulously se-
lects four representative and challenging samples from the VisDrone
dataset for detailed analysis. In Fig. 12, we present aerial images
captured by UAV depicting a major urban thoroughfare. This image
showcases bustling vehicular traffic and an extensive array of intricate

12

objects, thereby rendering the scene highly complex and multifaceted.
Experiments were conducted by KSCNet with recent released YOLO re-
altime detectors, YOLOv10s, YOLO11s and YOLOv12s, which execute
constant iterative optimization of version updates based on YOLO. It is
evident that the remaining three models exhibit relatively weaker de-
tection capabilities for distant small objects. These models frequently
demonstrate missed detections or lower class confidence scores for the
targets. They particularly struggle with detecting pedestrians that have
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Fig. 12. Visualization of detection performance of KSCNet with advanced realtime YOLO detectors YOLO10s, YOLO11s and YOLOv12s on the VisDrone dataset.
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Fig. 13. Comparisons of mainstream detectors in mAP @50, mAP@50: 95 and
model parameters.

minimal pixel coverage and occasionally misclassify vehicle categories.
Conversely, the proposed KSCNet exhibits enhanced overall detection
performance, successfully identifying a substantial proportion of the
dense crowd traversing the pedestrian crossing.

To facilitate an intuitive understanding of the comparative perfor-
mance between KSCNet and other models, Fig. 13 presents a compar-
ison across key evaluation metrics, including mAP @50, mAP@50: 95,
and the number of model parameters. The results clearly demonstrate
that KSCNet achieves a superior balance between detection precision
and model complexity, outperforming most counterparts in accuracy
while maintaining a compact structure. Furthermore, Fig. 14 provides
a radar graph comparison of the FPS inference speed between KSC-
Net and current real-time object detectors, highlighting its competi-
tive computational efficiency across different operational profiles. From
the results presented, it can be observed that the proposed KSCNet not
only achieves high detection accuracy but also attains an inference
speed of 164 FPS and meeting the requirements for real-time object
detection.

13

SSD512
300

250

KSCNet RT-DETR-R50

YOLOv12s YOLOVSs

24

YOLO11s

3

YOLOvV10s

Fig. 14. Radar graph of FPS inference speed of KSCNet with mainstream real-
time detectors.

5. Limitations

Despite the promising performance achieved by the proposed KSC-
Net on standard UAV benchmarks, we acknowledge several limitations
that present opportunities for future work. First, the incorporation of
the KAN and SSM modules increases the computational complexity and
inference latency of the model. This elevated cost may hinder its de-
ployment on resource-constrained UAV platforms for real-time appli-
cations. Future work will focus on model compression, knowledge dis-
tillation, or the design of more efficient operators to achieve a better
trade-off between accuracy and speed. Second, the model’s validation is
primarily confined to standard public datasets. Its robustness and gen-
eralization performance under extreme real-world conditions, such as
adverse weather or severe motion blur, require further investigation.
The model’s robustness and generalization capability in these challeng-
ing and niche environments require further investigation. Third, the
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design and integration of the proposed SAN and DCA modules are tai-
lored for a specific YOLO-based architecture. The transferability and ef-
fectiveness of these components to other detector families, such as two-
stage or query-based models, remain an open question. Adapting and
evaluating the proposed modules across a wider range of architectural
backbones would be a valuable direction to explore their universal ef-
ficacy. Addressing these limitations will be the focus of our subsequent
research efforts to make KSCNet more robust, efficient, and applicable
to a broader spectrum of real-world aerial vision tasks.

6. Conclusion

In this work, we proposes KSCNet, an innovative detection frame-
work designed to enhance small target detection in UAV aerial im-
agery. By integrating Kolmogorov-Arnold Networks (KAN) and State
Space Model (SSM), KSCNet effectively addresses challenges posed by
small target size, complex backgrounds and limited imaging resolution
in complex environment. Concretely, CKN efficiently decomposes high-
dimensional data into simpler functions, thereby extracting robust fea-
tures for subsequent processing. The Semantic Aggregation Network
(SAN), augmented with SSM, optimizes multiscale feature fusion and
generalization for complex UAV images. A new channel attention mech-
anisms further refine feature integration within SAN. Extensive experi-
ments on public UAV datasets validate KSCNet’s efficacy. On the SIMD
dataset, KSCNet achieves 0.844 mAP @50 and 0.691 mAP@50: 95, with
respective improvements of 1.69% and 2.22% over the baseline. On the
VisDrone dataset, KSCNet demonstrates significant accuracy increases
of 4.82% and 5.11% on the validation set and 4.43% and 6.16% on the
test set at mAP@50 and mAP@50: 95. These results highlight KSCNet’s
superior performance in UAV small target detection, providing valuable
technical support for related applications.
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