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Abstract: The conditioning theory of the generalized inverse C‡
A is considered in this article. First, we

introduce three kinds of condition numbers for the generalized inverse C‡
A, i.e., normwise, mixed

and componentwise ones, and present their explicit expressions. Then, using the intermediate result,
which is the derivative of C‡

A, we can recover the explicit condition number expressions for the
solution of the equality constrained indefinite least squares problem. Furthermore, using the augment
system, we investigate the componentwise perturbation analysis of the solution and residual of the
equality constrained indefinite least squares problem. To estimate these condition numbers with high
reliability, we choose the probabilistic spectral norm estimator to devise the first algorithm and the
small-sample statistical condition estimation method for the other two algorithms. In the end, the
numerical examples illuminate the obtained results.
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1. Introduction
Throughout this paper, Rm×n denotes the set of real m × n matrices. For a matrix

A ∈ Rm×n, AT is the transpose of A, rank(A) denotes the rank of A, ∥A∥2 is the spectral
norm of A, and ∥A∥F is the Frobenius norm of A. For a vector a ,∥a∥∞ is its ∞-norm,
and ∥a∥2 the 2-norm. The notation |A| is a matrix whose components are the absolute
values of the corresponding components of A. For any matrix A, the following four
equations uniquely define the Moore–Penrose inverse A† of A [1]:

AA† A = A, A† AA† = A†, (AA†)T = AA†, (A† A)T = A† A. (1)

The generalized inverse C‡
A is defined by

C‡
A = (I − (PQP)†Q)C†, (2)

where Q = AT JA, A ∈ R(p+q)×n denotes weight matrix and P = I − C†C is the orthogonal
projection onto the null space of C and C ∈ Rs×n may not have full rank and J is a signature
matrix defined by

J =
[

Ip 0
0 −Iq

]
, p + q = m.
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The generalized inverse C‡
A originated from the equality constrained indefinite least squares

problem (EILS), which is stated as follows [2–5]:

EILS : min
∥Cx−h∥2

(g − Ax)T J(g − Ax), (3)

where g ∈ Rm and h ∈ Rs. The EILS problem has a unique solution:

x = C‡
Ah + (PQP)† AT Jg (4)

under the following condition:

rank(C) = s, xTQx > 0 for all nonzero x ∈ null(C).

The above condition implies

p ≥ n − s, rank
(

A
C

)
= n, (5)

then (5) ensures the existence and uniqueness of generalized inverse C‡
A (see [2,6]). The gen-

eralized inverse C‡
A has significant applications in the study of EILS algorithms, the analysis

of large-scale structure, error analysis, perturbation theory, and the solution of the EILS
problem [2–5,7–10]. The EILS problem was first demonstrated by Bojanczyk et al. [5].
Additionally, we reveal some detailed work on the perturbation analysis of this problem.
The perturbation theory of the EILS problem was discussed by Wang [11] and extended
by Shi and Liu [8] based on the hyperbolic MGS elimination method. Diao and Zhou [12]
recovered the linearized estimate of the backward error of this problem. Later, Li et al. [13]
investigated the componentwise condition numbers for the EILS problem. Recently, Wang
and Meng [14] studied the condition numbers and normwise perturbation analysis of the
EILS problem.

Componentwise perturbation analysis has received significant attention in recent
years; for references, see [15–19]. The motivation for studying componentwise perturbation
analysis is reasonable for research because, if the perturbation in the input data is measured
componentwise rather than by norm, it may help us to measure the sensitivity of a function
more accurately [15], and improve the exactness and effectiveness of the EILS solution
computation. It has attracted many authors’ attention to consider the componentwise
perturbation analysis in which the least squares problem [16] and the weighted least squares
problem [17] are included. In this article, we continue the research on componentwise
perturbation analysis of the EILS problem. We can recover the componentwise perturbation
bounds of the indefinite least squares problem with the intermediate result.

The generalized inverse C‡
A reduce to K-weighted pseudoinverse L†

K when q = 0 and K
has a full row rank. This pseudoinverse was expanded to the MK-weighted pseudoinverse
L†

MK by Wei and Zhang [6], which describes its structure and uniqueness. Its algorithm
was developed by Elden [20]. According to Wei [21], the expression of L†

K based on GSVD
was investigated. A perturbation equation for L†

K was given by Gulliksson et al. [22].
The condition numbers for the K-weighted pseudoinverse L†

K and their statistical estimate
were recently provided by Mahvish et al. [23].

The condition number is a well-known research topic in numerical analysis that es-
timates the worst-case sensitivity of input data to small perturbations on it (see [24–26]
and references therein). The normwise condition number [25] has the disadvantage of
disregarding the scaling structure of both input and output data. To address this issue,
the terms mixed and componentwise condition numbers are introduced [26]. Mixed condi-
tion numbers employ componentwise error analysis for input data and normwise error
analysis for output data. On the other hand, the componentwise condition numbers employ
componentwise error analysis for input and output data. In fact, due to rounding errors and
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data storage difficulties, it is more practical to estimate input errors componentwise rather
than normwise. However, the condition numbers of the generalized inverse C‡

A have not
been discussed until now. Inspired by this, we attempt to present the explicit expressions
of normwise, mixed and componentwise condition numbers for the generalized inverse
C‡

A, as well as their statistical estimation due to their importance in EILS research.
The rest of this manuscript is organized as follows: Section 2 provides some prelim-

inaries that will be helpful for the upcoming discussions. With the intermediate result,
i.e., the derivative of C‡

A, we can recover the explicit expression of condition numbers for the
solution of the EILS problem in Section 3. Section 4 will present the componentwise pertur-
bation analysis for the EILS problem. In Section 5, we propose the first two algorithms for
the normwise condition number by using the probabilistic spectral norm estimator [27] and
the small-sample statistical condition estimation [28] method. Additionally, we construct
the third algorithm for the mixed and componentwise condition numbers by using the
small-sample statistical condition estimation [28] method. To check the efficiency of these
algorithms, we demonstrate them through numerical experiments in Section 6.

2. Preliminaries
In this part, we introduce some definitions and important results, which will be used

in the upcoming sections.
Firstly, we define the entrywise division between two vectors v =

[
v1, . . . , vp

]T ∈ Rp

and w =
[
w1, . . . , wp

]T ∈ Rp by v
w =

[
η1, . . . , ηp

]T with

ηi =

{
vi
wi

, if wi ̸= 0

vi, if wi = 0
.

Following [1,26,29], the componentwise distance between v and w is defined by

d(v, w) =

∥∥∥∥v − w
w

∥∥∥∥
∞
= max

i=1,...,p

{
|vi − wi|
|wi|

}
=

{ |vi∗−wi∗ |
|wi∗ |

, if wi∗ ̸= 0

|vi∗|, if wi∗ = 0

Note that when wi∗ ̸= 0, ∀ i = 1, . . . , p, d(v, w) gives the relative distance from v to w with
respect to w, while the absolute distance for wi∗ = 0. We describe the distance between the
matrices V, W ∈ Rn×n as follows:

d(V, W) = d(vec(V), vec(W)).

In order to define the mixed and componentwise condition numbers, we also need to
define the set B◦(v, ε) = {u ∈ Rp| |ui − vi| ≤ ϵ|vi|, i = 1, · · · , p} and B(v, ε) = {u ∈ Rp |
∥u − v∥2 ⩽ ε∥v∥2} for given ε > 0.

Definition 1 ([29]). Let ℵ : Rp → Rq be a continuous mapping defined on an open set Dom(ℵ) ⊂
Rp, and v ∈ Dom(ℵ), v ̸= 0 such that ℵ(v) ̸= 0.

(i) The normwise condition number of ℵ at v is given by

n(ℵ, v) = lim
ε→0

sup
u∈B(v,ε)

u ̸=v

(
∥ℵ(u)− ℵ(v)∥2

∥ℵ(v)∥2

/∥u − v∥2

∥v∥2

)
.

(ii) The mixed condition number of ℵ at v is given by

m(ℵ, v) = lim
ε→0

sup
u∈Bo(v,ε)

u ̸=v

∥ℵ(u)− ℵ(v)∥∞

∥ℵ(v)∥∞

1
d(u, v)

.
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(iii) The componentwise condition number of ℵ at v is given by

c(ℵ, v) = lim
ε→0

sup
u∈Bo(v,ε)

u ̸=v

d
(
ℵ(u),ℵ(v)

)
d(u, v)

.

When the map ℵ in Definition 1 is Fréchet differentiable, the following lemma given
in [29] makes the computation of condition numbers easier.

Lemma 1 ([29]). Under the assumptions of Definition 1, and supposing ℵ is Fréchet differentiable
at v, we have

n(ℵ, v) = ∥dℵ(v)∥2∥v∥2
∥ℵ(v)∥2

, m(ℵ, v) = ∥|dℵ(v)||v|∥∞
∥ℵ(v)∥∞

, c(ℵ, v) =
∥∥∥ |dℵ(v)||v|

|ℵ(v)|

∥∥∥
∞

,

where dℵ(v) stands for the Fréchet derivative of ℵ at v.

To obtain the explicit expressions of the above condition numbers, we need some
properties of the Kronecker product [30] between X and Y:

vec(YZX) =
(

XT ⊗ Y
)

vec(Z), (6)

vec
(

YT
)

= Πmnvec(Y), (7)

∥Y ⊗ X∥2 = ∥Y∥2∥X∥2, (8)

where the matrix Z has a suitable dimension, and Πmn ∈ Rmn×mn is the vec-permutation
matrix, which depends only on the dimensions m and n.

Now, we present the following two lemmas, which will be helpful for obtaining
condition numbers and their upper bounds.

Lemma 2 ([31], p. 174, Theorem 5). Let S be an open subset of Rn×q , and let ℵ : S −→ Rm×p

be a matrix function defined and k ≥ 1 times (continuously) differentiable on S. If rank(ℵ(X)) is
constant on S, then ℵ† : S −→ Rp×m is k times (continuously) differentiable on S, and

dℵ† = −ℵ†dℵℵ† + ℵ†ℵ†T
dℵT(Im − ℵℵ†) + (Ip − ℵ†ℵ)dℵTℵ†Tℵ†. (9)

Lemma 3 ([1]). For any matrices E, F, G, H, U and V with dimensions making the following
well defined

[E ⊗ F + (G ⊗ H)Π]vec(U),

[E ⊗ F + (G ⊗ H)Π]vec(U)

V
,

FUETand HUTGT ,

we have

∥|[E ⊗ F + (G ⊗ H)Π]|vec(|U|)∥∞ ≤
∥∥∥vec(|F||U||E|T + |H||U|T |G|T)

∥∥∥
∞

and ∥∥∥∥ |[E ⊗ F + (G ⊗ H)Π]|vec(|U|)
|V|

∥∥∥∥
∞
≤

∥∥∥∥vec(|F||U||E|T + |H||U|T |G|T)
|V|

∥∥∥∥
∞

.

3. Condition Numbers

First, we define a mapping ϕ(u) : Rmn+sn → Rns by

ϕ(u) = vec(C‡
A). (10)
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Here, u = (vec(A)T , vec(C)T)T , ∆u = (vec(∆A)T , vec(∆C)T)T , and for matrix
X = (xij), ∥X∥F = ∥vec(X)∥2 and ∥X∥max = ∥vec(X)∥∞ = max

i,j
|xij|.

Then, using Definition 1, we present the definitions of the normwise, mixed, and com-
ponentwise condition numbers for generalized inverse C‡

A as given in [32]:

n‡(A, C) = n(ϕ, u) := lim
ε→0

sup
∥[∆A, ∆C]∥F≤ε∥[A, C]∥F

∥(C + ∆C)‡
A − C‡

A∥F/∥C‡
A∥F

∥[∆A, ∆C]∥F/∥[A, C]∥F
, (11)

m‡(A, C) = m(ϕ, u) := lim
ε→0

sup
∥∆A/A∥max≤ε
∥∆C/C∥max≤ε

∥(C + ∆C)‡
A − C‡

A∥max

∥C‡
A∥max

1
d(u + ∆u, u)

, (12)

c‡(A, C) = c(ϕ, u) := lim
ε→0

sup
∥∆A/A∥max≤ε
∥∆C/C∥max≤ε

1
d(u + ∆u, u)

∥∥∥∥∥ (C + ∆C)‡
A − C‡

A

C‡
A

∥∥∥∥∥
max

. (13)

With the help of the vec operator, Frobenius, spectral, and Max norms, we can rewrite
the definitions of normwise, mixed and componentwise condition numbers as follows:

n‡(A, C) = n(ϕ, u) := lim
ε→0

sup∥∥∥∥∥
[

vec(∆A)
vec(∆C)

]∥∥∥∥∥
2

≤ε

∥∥∥∥∥
[

vec(A)
vec(C)

]∥∥∥∥∥
2

∥vec((C + ∆C)‡
A − C‡

A)∥2

∥vec(C‡
A)∥2

/∥∥∥∥[ vec(∆A)
vec(∆C)

]∥∥∥∥
2∥∥∥∥[ vec(A)

vec(C)

]∥∥∥∥
2

, (14)

m‡(A, C) = m(ϕ, u) := lim
ε→0

sup
∥vec(∆A)/vec(A)∥∞≤ε
∥vec(∆C)/vec(C)∥∞≤ε

∥vec((C + ∆C)‡
A − C‡

A)∥∞

∥vec(C‡
A)∥∞

1
d(u + ∆u, u)

, (15)

c‡(A, C) = c(ϕ, u) := lim
ε→0

sup
∥vec(∆A)/vec(A)∥∞≤ε
∥vec(∆C)/vec(C)∥∞≤ε

1
d(u + ∆u, u)

∥∥∥∥∥vec((C + ∆C)‡
A − C‡

A)

vec(C‡
A)

∥∥∥∥∥
∞

. (16)

In the following, we find the expression of the Fréchet derivative of ϕ at u.

Lemma 4. Let the mapping ϕ be continuous. Then, the Fréchet differential at u is:

ϕ′(u) = [W(A), W(C)], (17)

where

W(A) = −[(C‡T

A ⊗ (PQP)† AT J) + ((JAC‡
A)

T ⊗ (PQP)†)Πmn],

W(C) = −[(C‡T

A ⊗ C‡
A)− ((I − CC†)T ⊗ C‡

AC†T
)Πsn − (C†T

QC‡
A)

T ⊗ (PQP)†)Πsn]. (18)

Proof. Differentiating both sides of (2), we obtain

d(C‡
A) = d[(I − (PQP)†Q)C†]. (19)

From ([3], Theorem 2.2), we obtain

(PQP)† = P(PQP)† = (PQP)†P = P(PQP)†P, (20)

P(I − (PQP)†QP) = 0, (PQP)†QP = P. (21)
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Thus, substituting (20) into (19) and differentiating both sides of the equation, we
can deduce

d(C‡
A) = d[(I − P(PQP)†Q)C†] = dC† − d(P(PQP)†QC†)

= (I − P(PQP)†Q)dC† − dP(PQP)†QC† − Pd(PQP)†QC† − P(PQP)†dQC†.

Further, using (9), we have

d(C‡
A) = (I − P(PQP)†Q)[−C†dCC† + C†C†T

dCT(I − CC†) + (I − C†C)dCTC†T
C†]

− d(I − C†C)(PQP)†QC† + P[(PQP)†d(PQP)(PQP)†

− (PQP)†(PQP)†T
d(PQP)T(I − (PQP)(PQP)†)

− (I − (PQP)†(PQP))d(PQP)T(PQP)†T
(PQP)†]QC† − P(PQP)†dQC†.

Noting (20), (2), and (I − P(PQP)†Q)(I − C†C) = P(I − (PQP)†QP), the previous equa-
tion may be expressed as

d(C‡
A) = −C‡

AdCC† + C‡
AC†T

dCT(I − CC†) + P(I − (PQP)†QP)dCTC†T
C† + dC†C(PQP)†QC†

+ C†dC(PQP)†QC† + (PQP)†d(PQP)(PQP)†QC†

− (PQP)†(PQP)†T
d(PQP)T(I − (PQP)(PQP)†)QC†

− P(I − (PQP)†QP)d(PQP)T(PQP)†T
(PQP)†QC† − (PQP)†dQC†.

Further, by the fact PQ = (QP)T = QP, (21), and

CP(PQP)† = C(PQP)† = 0, (22)

the above equation may be simplified as follows:

d(C‡
A) = −C‡

KdCC† + C‡
AC†T

dCT(I − CC†) + C†dC(PQP)†QC† − (PQP)†dQC†

+ (PQP)†dQP(PQP)†QC† + (PQP)†QdP(PQP)†QC†

− (PQP)†(PQP)†T
dQT PT(I − (PQP)(PQP)†)QC†

− (PQP)†(PQP)†T
QTdPT(I − (PQP)(PQP)†)QC†.

= −C‡
KdCC† + C‡

AC†T
dCT(I − CC†) + C†dC(PQP)†QC† − (PQP)†dAT JAC†

− (PQP)† AT JdAC† + (PQP)†PdAT JA(PQP)†QC† + (PQP)†PAT JdA(PQP)†QC†

− (PQP)†(PQP)†T
dQT P(I − QP(PQP)†)QC† + (PQP)†QdP(PQP)†QC†

− (PQP)†(PQP)(PQP)†dPT(I − QP(PQP)†)QC†. (23)

Considering PQ = (QP)T = QP, we obtain

P((I − QP(PQP)†) = 0 QP(PQP)† = P (24)

Substituting this fact into (23) implies

d(C‡
A) = −C‡

AdCC† + C‡
AC†T

dCT(I − CC†) + C†dC(PQP)†QC†

− (PQP)† AT JdA(I − P(PQP)†Q)C† − (PQP)†QC†dC(PQP)†QC†

− (PQP)†dAT JA(I − (PQP)†Q)C† + (PQP)†dCTC†T
Q(I − (PQP)†Q)C†.
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We can rewrite the above equation by using (2) and (20) as

d(C‡
A) = −C‡

AdCC‡
A + C‡

AC†T
dCT(I − CC†) + (PQP)†dCTC†T

QC‡
A − (PQP)† AT JdAC‡

A

− (PQP)†dAT JAC‡
A. (25)

By applying "vec" operator on (25), and using (6) and (7), we obtain

vec(d(C‡
A)) = −(C‡T

A ⊗ (PQP)† AT J)vec(dA)− ((JAC‡
A)

T ⊗ (PQP)†)vec(dAT)

− (C‡T

A ⊗ C‡
A)vec(dC) + ((I − CC†)T ⊗ C‡

AC†T
)vec(dCT)

+ ((C†T
QC‡

A)
T ⊗ (PQP)†)vec(dCT) by (6)

= −[(C‡T

A ⊗ (PQP)† AT J) + ((JAC‡
A)

T ⊗ (PQP)†)Πmn]vec(dA)

− [(C‡T

A ⊗ C‡
A)− ((I − CC†)T ⊗ C‡

AC†T
)Πsn − (C†T

QC‡
A)

T ⊗ (PQP)†)Πsn]vec(dC)

by (7)

= [−(C‡T

A ⊗ (PQP)† AT J)− ((JAC‡
A)

T ⊗ (PQP)†)Πmn,

− (C‡T

A ⊗ C‡
A) + ((I − CC†)T ⊗ C‡

AC†T
)Πsn + (C†T

QC‡
A)

T ⊗ (PQP)†)Πsn]

[
vec(dA)
vec(dC)

]
.

That is,
d(vec(C‡

A)) = [W(A), W(C)]dv.

Thus, we have obtained the required result by using the definition of Fréchet derivative.

Remark 1. Setting C = L, K = A, q = 0 and C as full row rank, we have C‡
A = L†

K and

W̃(A) = −[(C†T

A ⊗ (AP)†) + ((AC†
A)

T ⊗ (AP)†(AP)†T
)Πmn],

W̃(C) = −[(C†T

A ⊗ C†
A)− ((AC†)T AC†

A)
T ⊗ (AP)†(AP)†T

)Πsn],

where the latter is just the result of ([23], Lemma 3.1), with which we can recover the condition
numbers for K-weighted pseudoinverse L†

K [23].

Using the straightforward results of Lemma 1 and Lemma 4, we derive the following
condition numbers for C‡

A.

Theorem 1. The normwise, mixed and componentwise condition numbers for C‡
A defined

in (11)–(13) are

n‡(A, C) =

∥[W(A), W(C)]∥2

∥∥∥∥[vec(A)
vec(C)

]∥∥∥∥
2

∥vec(C‡
A)∥2

, (26)

m‡(A, C) =
∥|W(A)|vec(|A|) + |W(C)|vec(|C|)∥∞

∥vec(C‡
A)∥∞

, (27)

c‡(A, C) =

∥∥∥∥∥ |W(A)|vec(|A|) + |W(C)|vec(|C|)
vec(C‡

A)

∥∥∥∥∥
∞

. (28)

Next, we provide easier computable upper bounds by minimizing the cost of comput-
ing the above condition numbers. The estimation of the upper bounds will be demonstrated
by numerical experiments in Section 6.
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Corollary 1. The upper bounds of normwise, mixed and componentwise condition numbers for
C‡

A are

n‡(A, C) ≤ nupper(A, C)

= [∥C‡
A∥2∥(PQP)† AT J∥2 + ∥JAC‡

A∥2∥(PQP)†∥2 + ∥C‡
A∥2∥C‡

A∥2 + ∥(I − CC†)∥2∥C‡
AC†T∥2

+ ∥C†T
QC‡

A∥2∥(PQP)†∥2]
∥[A, C]∥F

∥C‡
A∥F

,

m‡(A, C) ≤ mupper(A, C)

= ∥[|(PQP)† AT J||A||C‡T

A |+ |(PQP)†||AT ||JAC‡
A|+ |C‡

A||C||C
‡T

A |+ |C‡
AC†T ||CT ||(I − CC†)|

+ |(PQP)†||CT ||C†T
QC‡

A|]∥max/∥C‡
A∥max,

c‡(A, C) ≤ cupper(A, C)

= ∥[|(PQP)† AT J||A||C‡T

A |+ |(PQP)†||AT ||JAC‡
A|+ |C‡

A||C||C
‡T

A |+ |C‡
AC†T ||CT ||(I − CC†)|

+ |(PQP)†||CT ||C†T
QC‡

A|]/C‡
A∥max.

Proof. For any two matrices X and Y, it is well-known that ∥[X, Y]∥2 ≤ ∥X∥2 + ∥Y∥2.
With the help of Theorem 1, and (8), we obtain

n‡(A, C) ≤ [∥ − (C‡T

A ⊗ (PQP)† AT J)− ((JAC‡
A)

T ⊗ (PQP)†)Πmn∥2

+ ∥ − (C‡T

A ⊗ C‡
A) + ((I − CC†)T ⊗ C‡

AC†T
)Πsn + (C†T

QC‡
A)

T ⊗ (PQP)†)Πsn∥2]

× ∥[A, C]∥F

∥C‡
A∥F

≤ [∥C‡T

A ⊗ (PQP)† AT J∥2 + ∥(JAC‡
A)

T ⊗ (PQP)†∥2 + ∥C‡T

A ⊗ C‡
A∥2

+ ∥(I − CC†)T ⊗ C‡
AC†T∥2 + ∥(C†T

QC‡
A)

T ⊗ (PQP)†∥2]
∥[A, C]∥F

∥C‡
A∥F

= [∥C‡
A∥2∥(PQP)† AT J∥2 + ∥JAC‡

A∥2∥(PQP)†∥2 + ∥C‡
A∥2∥C‡

A∥2 + ∥(I − CC†)∥2∥C‡
AC†T∥2

+ ∥C†T
QC‡

A∥2∥(PQP)†∥2]
∥[A, C]∥F

∥C‡
A∥F

.

Secondly, by using Lemma 3 and Theorem 1, we obtain

m‡(A, C) = ∥| − (C‡T

A ⊗ (PQP)† AT J)− ((JAC‡
A)

T ⊗ (PQP)†)Πmn|vec(|A|) + | − (C‡T

A ⊗ C‡
A)

+ ((I − CC†)T ⊗ C‡
AC†T

)Πsn + (C†T
QC‡

A)
T ⊗ (PQP)†)Πsn|vec(|C|)∥∞/∥vec(C‡

A)∥∞

≤ ∥[|(PQP)† AT J||A||C‡T

A |+ |(PQP)†||AT ||JAC‡
A|+ |C‡

A||C||C
‡T

A |+ |C‡
AC†T ||CT ||(I − CC†)|

+ |(PQP)†||CT ||C†T
QC‡

A|]∥max/∥C‡
A∥max,

and finally, we have

c‡(A, C) = ∥| − (C‡T

A ⊗ (PQP)† AT J)− ((JAC‡
A)

T ⊗ (PQP)†)Πmn|vec(|A|) + | − (C‡T

A ⊗ C‡
A)

+ ((I − CC†)T ⊗ C‡
AC†T

)Πsn + (C†T
QC‡

A)
T ⊗ (PQP)†)Πsn|vec(|C|)/|vec(C‡

A)|∥∞

≤ ∥[|(PQP)† AT J||A||C‡T

A |+ |(PQP)†||AT ||JAC‡
A|+ |C‡

A||C||C
‡T

A |+ |C‡
AC†T ||CT ||(I − CC†)|

+ |(PQP)†||CT ||C†T
QC‡

A|]/C‡
A∥max.
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Remark 2. Using the GHQR factorization [3] on A and C in (2) and (5):

HT AQ =

(
L11 0
L21 L22

)
, UTCQ =

(
K11 0
0 0

)
, (29)

where U ∈ Rs×s and Q ∈ Rn×n and a J−orthogonal matrix, H ∈ R(p+q)×(p+q) (i.e., HJHT = J),
L22 and K11 are lower triangular and non-singular. We have

C‡
A = Q

(
I

−L−1
22 L21

)
K−1

11 UT
1 , (PQP)† AT J = Q

(
0

L−1
22

)
HT

2 , (PQP)† = Q
(

0
−(LT

22L22)
−1

)
QT ,

C‡
AC†T

=

(
0

−L−1
22 L22

)
(K−1

11 )TQT , C†T
QC‡

A = U−T
1 K−T

11 L−1
11 JL11K−1

11 UT
1 ,

JAC‡
A = JL11K−T

11 UT
1 , C‡

AC‡T

A = Q
(

I
−L−1

22 L21

)
K−1

11 K−T
11

(
I −L−1

22 L21
)
QT , CC† = U1

(
K11K−1

11 0
)
UT

1 ,

where U = (U1, U2), H = [H1, H2]; U1 and H1 are, respectively, the submatrices of U and H
obtained by taking the first r columns. Putting all the above terms into (18) leads to

W1(A) = −
[(

U1K−T
11

(
I −L−1

22 L21
)
QT ⊗ Q

(
0

L−1
22

)
HT

2

)
+

(
K−T

11 U1K11LT
11 J ⊗ Q

(
0

−(LT
22L22)

−1

)
QT

)
Πmn

]
,

W1(C) = −
[(

U1K−T
11

(
I −L−1

22 L21
)
QT ⊗ Q

(
I

−L−1
22 L21

)
K−1

11 UT
1

)
−

((
I − U1

(
K11K−1

11 0
)
UT

1

)T
⊗

(
0

−L−1
22 L22

)
(K−1

11 )TQT
)

Πsn

− (U1K−T
11 LT

11 JL−T
11 K−1

11 U−1
1 )⊗ Q

(
0

−(LT
22L22)

−1

)
QT)Πsn

]
.

Remark 3. We can obtain dx using the d(C‡
A) expression, where (4) is the solution of EILS

problem (3). By differentiating (4), we obtain

dx = d(C‡
Ah + (PQP)† AT Jg).

Thus, using (20), we obtain

dx = d(C‡
Ah + P(PQP)† AT Jg) = d(C‡

A)h + C‡
Adh + dP(PQP)† AT Jg + Pd(PQP)† AT Jg

+P(PQP)†dAT Jg + P(PQP)† AT Jdg.

Substituting (25) into above equation and using (9), we have

dx = [−C‡
AdCC‡

A + C‡
AC†T

dCT(I − CC†) + (PQP)†dCTC†T
QC‡

A − (PQP)† AT JdAC‡
A

−(PQP)†dAT JAC‡
A]h + d(I − C†C)(PQP)† AT Jg + P[−(PQP)†d(PQP)(PQP)†

+(PQP)†(PQP)†T
d(PQP)T(I − (PQP)(PQP)†)

+(I − (PQP)†(PQP))d(PQP)T(PQP)†T
(PQP)†]AT Jg

+P(PQP)†dAT Jg + P(PQP)† AT Jdg + C‡
Adh,
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which together with (20)–(22) give

dx = −C‡
AdCC‡

Ah + C‡
AC†T

dCT(I − CC†)h + (PQP)†dCTC†T
QC‡

Ah − (PQP)† AT JdAC‡
Ah

−(PQP)†dAT JAC‡
Ah − C†dC(PQP)† AT Jg − (PQP)†dQP(PQP)† AT Jg

−(PQP)†QdP(PQP)† AT Jg + (PQP)†PQP(PQP)†dPT(I − (QP)(PQP)†)AT Jg

+(PQP)†(PQP)†T
dQT P(I − (QP)(PQP)†)AT Jg + P(PQP)†dAT Jg + P(PQP)† AT Jdg + C‡

Adh.

Noting (24), the above equation can be rewritten as

dx = −C‡
AdCC‡

Ah + C‡
AC†T

dCT(I − CC†)h + (PQP)†dCTC†T
AT JAC‡

Ah − (PQP)† AT JdAC‡
Ah

−(PQP)†dAT JAC‡
Ah − C†dC(PQP)† AT Jg + (PQP)†dAT J(g − A(PQP)† AT Jg)

−(PQP)† AT JdA(PQP)† AT Jg + (PQP)†QC†dC(PQP)† AT Jg

−(PQP)†dCTC†T
AT J(g − A(PQP)† AT Jg) + (PQP)† AT Jdg + C‡

Adh.

Further, by (20) and (4), we have

dx = −C‡
AdC(C‡

Ah + (PQP)† AT Jg) + C‡
AC†T

dCT(I − CC†)h − (PQP)† AT JdA(C‡
Ah + (PQP)† AT Jg)

−(PQP)†dCTC†T
AT J(g − A(C‡

Ah + (PQP)† AT Jg))

+(PQP)†dAT J(g − A(C‡
Ah + (PQP)† AT Jg)) + (PQP)† AT Jdg + C‡

Adh by (20)

= −C‡
AdCx + C‡

AC†T
dCTρ − (PQP)† AT JdAx − (PQP)†dCTC†T

AT Jr

+(PQP)†dAT Jr + (PQP)† AT Jdg + C‡
Adh, by (4) (30)

where s = Jr = J(g − Ax), β = (I − CC†)h. By utilizing operator "vec" on (30), and us-
ing (6) and (7), we obtain

dx = −(xT ⊗ (PQP)† AT J)vec(dA) + (sT ⊗ (PQP)†)vec(dAT)− (xT ⊗ C‡
A)vec(dC)

+(βT ⊗ C‡
AC†T

)vec(dCT) + (C†T
ATs)T ⊗ (PQP)†)vec(dCT) + (PQP)†dg + C‡

Adh by (6)

= [−(xT ⊗ (PQP)† AT J) + (sT ⊗ (PQP)†)Πmn]vec(dA)− [(xT ⊗ C‡
A)− (βT ⊗ C‡

AC†T
)Πsn

−((C†T
ATs)T ⊗ (PQP)†)Πsn]vec(dC) + (PQP)†dg + C‡

Adh by (7)

=
[
− (xT ⊗ (PQP)† AT J) + (sT ⊗ (PQP)†)Πmn, −(xT ⊗ C‡

A) + (βT ⊗ C‡
AC†T

)Πsn

+((C†T
ATs)T ⊗ (PQP)†)Πsn, (PQP)†, C‡

A
]

vec(dA)
vec(dC)

dg
dh

.

From the above result, we can recover the condition numbers of the EILS problem provided
in [3,13,14]. Further, we observe that r = (g − A(C‡

Ah + (PQP)† AT Jg)). Applying the same
procedure, we can determine dr and condition numbers for residuals of EILS.

4. Componentwise Perturbation Analysis

In the following section, we derive a componentwise perturbation analysis of the
augmented system for the EILS problem.
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Let the perturbations dA ∈ R(p+q)×n, dC ∈ Rs×n, dg ∈ Rm and dh ∈ Rs satisfy
|dA| ≤ ϵ|A|, |dC| ≤ ϵ|C| |dg| ≤ ϵ|g| and |dh| ≤ ϵ|h| for a small ϵ and s = Jr. Suppose that
the perturbed augmented system is 0 0 C + dC

0 J + dJ A + dA
(C + dC)T (A + dA)T 0

 λ + dλ
s + ds
x + dx

 =

 h + dh
g + dg

0


Denoting

S =

 0 0 C
0 J A

CT AT 0

, u =

 g
h
0

, v =

 λ
s
x


and the perturbations

dS =

 0 0 dC
0 dJ dA

(dC)T (dA)T 0

, df =

 dg
dh
0

, dz =

 dλ
ds
dx

.

When A is of full column rank and C has full row rank, S is invertible. It can be verified that

S−1 =

 C‡
A

T
QC‡

A −
(

JAC‡
A

)T
C‡

A
T

−JAC‡
A J − JA(PQP)† AT J JA(PQP)†

C‡
A (PQP)† AT J −(PQP)†

.

If the spectral radius

ρ
(∣∣∣S−1

∣∣∣|dS|
)
< 1 (31)

then Im+n + S−1dS is invertible. Clearly, the condition

ϵ < ρ−1


 |C‡

A
T
||C|T |C‡

A
T
||A|T |C‡

A
T

QC‡
A||C|+ |(JAC‡

A)
T ||A|∣∣JA(PQP)†

∣∣|C|T ∣∣JA(PQP)†
∣∣|A|T

∣∣∣JAC‡
A

∣∣∣|A|+
∣∣J − JA(PQP)† AT J

∣∣|C|
|(PQP)†||C|T |(PQP)†||A|T |C‡

A||C|+ |(PQP)† AT J||A|


, (32)

implies (31). The following results [33] are important for Theorem 2.

Lemma 5. The perturbed system of a linear system Sv = u is defined as follows:

(S + dS)(v + dv) = u + du,

where v + dv is the solution to the perturbed system, when the perturbations dS and du are
sufficiently small such that S + dS is invertible, the perturbation dv in the solution v satisfies

dv =
(

I + S−1dS
)−1

S−1(du − dSv),

which implies

|dv| ≤
∣∣∣∣(I + S−1dS

)−1
∣∣∣∣∣∣∣S−1

∣∣∣(|du|+ |dS||v|).
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Furthermore, when the spectral radius ρ
(∣∣S−1

∣∣|dS|
)
< 1, we have

|dv| ≤
(

I −
∣∣∣S−1

∣∣∣|dS|
)−1∣∣∣S−1

∣∣∣(|du|+ |dS||v|)

=
(

I + O
(∣∣∣S−1

∣∣∣|dS|
))∣∣∣S−1

∣∣∣(|du|+ |dS||v|). (33)

Now, we have the following bounds for the perturbations in the equality constrained indefinite
least squares solution and residual.

Theorem 2. Under the above assumption, for any ϵ > 0 satisfying the condition (32), when the
componentwise perturbations |dA| ≤ ϵ|A|, |dC| ≤ ϵ|C| |dg| ≤ ϵ|g| and |dh| ≤ ϵ|h|, the error
in the solution is bounded by

∥dx∥∞ ≤ ϵ

(
∥C‡

A(|h|+ |C||x|)∥∞ +
∥∥∥(PQP)† AT J(|g|+ |A||x|)

∥∥∥
∞
+

∥∥∥(PQP)†(|C|T |λ|+ |A|T |r|)
∥∥∥

∞

)
+ O

(
ϵ2
)

(34)

and error in the residual is bounded by

∥dr∥∞ ≤ ϵ

(
∥JAC‡

A(|h|+ |C||x|)∥∞ + ∥J − JA(PQP)† AT J(|g|+ |A||x|)∥∞

+ ∥JA(PQP)†(|C|T |λ|+ |A|T |r|)∥∞

)
+ O

(
ϵ2
)

. (35)

Proof. Since the condition (32) implies (31), applying (33) in Lemma 5, we obtain dλ
ds
dx

 ≤
(

I + O
(∣∣∣S−1

∣∣∣|dS|
))∣∣∣S−1

∣∣∣
 |dh|+ |dC||x|

|dg|+ |dA||x|
|dC|T|λ|+ |dA|T|r|

.

Finally, using the conditions |dA| ≤ ϵ|A|, |dC| ≤ ϵ|C| |dg| ≤ ϵ|g| and |dh| ≤ ϵ|h|, and the
explicit form of S−1, the upper bounds (34) and (35) can be obtained.

Furthermore, we can obtain the componentwise perturbation bounds of the indefinite
least squares solution and its residual.

Remark 4. Assume that C is a zero matrix, λ = 0, and h = 0. Using the above notations, for any
ϵ > 0, if the componentwise perturbations satisfy |dA| ≤ ϵ|A| and |dg| ≤ ϵ|g|, then the error in
the solution is bounded by

∥dx∥∞ ≤ ϵ

(
∥|
((

AT JA
)−1

)
AT J|(|g|+ |A||x|)∥∞ + ∥

(
AT JA

)−1
||A|T|r|∥∞

)
+ O

(
ϵ2
)

and the error in the residual is bounded by

∥dr∥∞ ≤ ϵ

(
∥|J − JA

(
AT JA

)−1
AT J|(|g|+ |A||x|)∥∞ + ∥|JA

(
AT JA

)−1
||A|T|r|∥∞

)
+ O

(
ϵ2
)

.

5. Statistical Condition Estimates

This section proposes three algorithms for estimating the normwise, mixed and com-
ponentwise condition numbers for the generalized inverse C‡

A. Algorithm 1 is based on
a probabilistic condition estimator method [27] and utilized to examine the normwise
condition number for K-weighted pseudoinverse L†

K [23], ILS problem [34], constrained
and weighted least squares problem [35] and Tikhonov regularization of total least squares
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problem [36]. Based on the SSCE method [28], we develop Algorithm 2 to estimate the
normwise condition number; for details, see [23,34,37–39].
Algorithm 1 (Probabilistic condition estimator for the normwise condition number)

1. Compute the derivative dϕ(u) = [W(A), W(C)], and choose a starting vector u0

uniformly and randomly from the unit t-sphere St−1 with t = n2.
2. Using the probabilistic spectral norm estimator [27], compute the certain lower bound

α1 and the probabilistic upper bound α2 of dϕ(u).
3. Compute the normwise condition number by using (26)

n‡
p(A, C) =

np(A, C)∥[A, C]∥F

∥C‡
A∥F

with np(A, C) =

√
α1 + α2

2
.

Algorithm 2 (Small-sample statistical condition estimation method for the normwise
condition number)

1. Generate matrices [dA1, dC1], [dA2, dC2], . . . ,
[
dAq, dCq

]
with each entry in N (0, 1)

and Orthonormalize the following matrix[
vec(dA1) vec(dA2) · · · vec

(
dAq

)
vec(dC1) vec(dC2) · · · vec

(
dCq

) ]
to obtain

[
τ1, τ2, . . . , τq

]
by modified Gram-Schmidt orthogonalization process. Each

τi can be converted into the corresponding matrices [dAi, dCi] by applying the unvec
operation.

2. Let p = m + mn. Approximate ωp and ωq by

ωk ≈
√

2
π(k − 1

2 )
(36)

3. For i = 1, 2, . . . , q, compute

θi = −C‡
AdCiC

‡
A + C‡

AC†T
dCT

i (I − CC†) + (PQP)†dCT
i C†T

QC‡
A − (PQP)† AT JdAiC

‡
A − (PQP)†dAT

i JAC‡
A.

4. Compute the absolute condition vector by

κ
‡
abs :=

ωq

ωp

√
|θ1|2 + |θ2|2 + · · ·+

∣∣θq
∣∣2, (37)

where the square operation is applied to each entry of θi, i = 1, 2, . . . , q and the square
root is also applied componentwise.

5. Estimate the normwise condition number (26) by

n‡(A, C) =
N‡

SCE∥[A, C]∥F∥∥∥C‡
A

∥∥∥
F

, (38)

where N‡
SCE := ωq

ωp

√
∥σ1∥2

2 + ∥σ2∥2
2 + · · ·+

∥∥σq
∥∥2

2 =
∥∥∥κ

‡
abs

∥∥∥
F
.

To estimate the mixed and componentwise condition numbers, we need the fol-
lowing SSCE method, which is from [28] and has been applied to many problems (see,
e.g., [23,32,34–36]).

6. Numerical Experiments
In the following section, we illustrate two specific examples. The first compares

the normwise, mixed and componentwise condition numbers and their upper bounds.
The second is used to present the efficiency of statistical condition estimators.



Mathematics 2023, 11, 0 14 of 19

Example 1. In this example, we first compute the condition numbers and their upper bounds by
using the below matrix pair, then we demonstrate the reliability of Algorithms 1–3. Matlab2018a
has been used to perform all the numerical experiments. We examine 200 matrices that are created
by repeatedly applying the matrices A ∈ Rm×n from [34] and C ∈ Rs×n below.

A =

[
Up 0
0 Uq

][
D
0

]
V, Up = Ip − 2upuT

p , Uq = Iq − 2uquT
q , and V = In − 2vvT ,

where up ∈ Rp, uq ∈ Rq and v ∈ Rn are unit random vectors obtained from Matlab function

randn( ·, 1) and D = n−l diag
(

nl , (n − 1)l , · · · , 1l
)

. It is simple to determine that the condition

number of A, i.e., κ(A) = ∥A∥2
∥∥A†

∥∥
2, is nl . C = [C1, 0], where C1 is a nonsymmetric Gaussian

random Toeplitz matrix generated by the Matlabs function toeplitz(c, r) with c = randn(s, 1),
r = randn(s, 1). From Table 1, we can see the numerical outcomes of the ratios given by

ω1 =nupper(A, C)/n‡(A, C), ω2 = mupper (A, C)/m‡(A, C) and ω3 = cupper (A, C)/c‡(A, C).

Table 1. Comparison of condition numbers and their upper bounds by choosing different values of
p, q, s and n.

Mean Max Mean Max Mean Max

n1 p, q, n, s ω1 ω2 ω3

25, 15, 20, 10 1.0763 × 100 4.8422 × 100 1.0647 × 100 2.8373 × 100 1.1538 × 100 3.9657 × 100

50, 30, 40, 20 1.3146 × 100 6.7089 × 100 1.0861 × 100 4.4630 × 100 1.2845 × 100 5.9123 × 100

75, 45, 60, 30 1.7422 × 100 1.6402 × 101 1.1965 × 100 1.2847 × 101 1.0784 × 100 1.5766 × 101

100, 60, 80, 40 2.6043 × 100 1.9461 × 101 1.4574 × 100 1.6783 × 101 1.7540 × 100 1.8452 × 101

n2 p, q, n, s ω1 ω2 ω3

25, 15, 20, 10 1.4032 × 100 5.7654 × 100 1.2433 × 100 4.6501 × 100 1.3601 × 100 5.3752 × 100

50, 30, 40, 20 1.7341 × 100 8.2074 × 100 1.5623 × 100 6.4738 × 100 1.7320 × 100 7.2004 × 100

75, 45, 60, 30 2.5254 × 100 2.8732 × 101 1.8510 × 100 1.6062 × 101 2.0653 × 100 2.2903 × 101

100, 60, 80, 40 2.7034 × 100 3.9543 × 101 2.0312 × 100 2.0106 × 101 2.3871 × 100 2.4803 × 101

n3 p, q, n, s ω1 ω2 ω3

25, 15, 20, 10 1.7301 × 100 7.9662 × 100 1.4607 × 100 6.8606 × 100 1.5296 × 100 8.0651 × 100

50, 30, 40, 20 1.9674 × 100 3.7649 × 101 1.7065 × 100 8.5963 × 100 1.8472 × 100 9.7063 × 100

75, 45, 60, 30 2.7055 × 100 5.6570 × 101 2.0276 × 100 3.2613 × 101 2.3601 × 100 4.6904 × 101

100, 60, 80, 40 2.9867 × 100 7.1601 × 101 2.2760 × 100 4.9013 × 101 2.5935 × 100 5.9721 × 101

n4 p, q, n, s ω1 ω2 ω3

25, 15, 20, 10 1.8271 × 100 2.3021 × 101 1.6354 × 100 1.4032 × 101 1.7925 × 100 1.5102 × 101

50, 30, 40, 20 2.3064 × 100 3.7632 × 101 1.9642 × 100 1.5210 × 101 1.9862 × 100 1.6082 × 101

75, 45, 60, 30 2.8063 × 100 7.4310 × 101 2.0513 × 100 5.0471 × 101 2.6743 × 100 6.0437 × 101

100, 60, 80, 40 2.9887 × 100 8.6501 × 101 2.3810 × 100 7.1089 × 101 2.7011 × 100 7.4810 × 101

To show the efficiency of the three algorithms discussed above, we run some numerical tests
and choose parameters δ = 0.01 and ϵ = 0.001 for Algorithm 1 and k = 2 for Algorithms 2 and 3.
The ratios between the exact condition numbers and their estimated values are determined as follows:

rp = n‡
p(A, C)/n‡(A, C), rs = n‡

s (A, C)/n‡(A, C),

rm = m‡
s (A, C)/m‡(A, C), rc = c‡

s (A, C)/c‡(A, C),

where rp is the ratio between the exact normwise condition number and the estimated value of
Algorithm 1, rs is the ratio between the exact normwise condition number and the estimated value
of Algorithm 2, and rm and rc are the ratios between the exact mixed and componentwise condition
numbers and estimated values of Algorithm 3.
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The results in Table 2 demonstrate that Algorithms 1–3 can reliably estimate the condition
numbers in most situations, supporting the statement in ([40], Chapter 15) that an estimate of
the condition number that is correct to within a factor 10 is generally appropriate because it is the
magnitude of an error bound that is of interest, not its precise value. For the normwise condition
number, Algorithm 1 works more effectively and stably.

Table 2. Results by choosing different values of p, q, s and n for Algorithms 1–3.

Mean Variance Mean Variance Mean Variance Mean Variance

n1 p, q, n, s rp rs rm rc

25, 15, 20, 10 1.0000 × 100 5.3577 × 10−11 1.0322 × 100 1.2063 × 10−1 1.0067 × 100 1.3505 × 10−2 1.2785 × 100 1.0431 × 10−2

50, 30, 40, 20 1.0000 × 100 7.0635 × 10−9 1.1439 × 100 3.5027 × 10−1 1.0134 × 100 3.9054 × 10−2 1.3744 × 100 3.6397 × 10−2

75, 45, 60, 30 1.0001 × 100 1.5165 × 10−11 1.2906 × 100 4.6021 × 10−1 1.1075 × 100 4.1653 × 10−2 1.5043 × 100 3.9428 × 10−2

100, 60, 80, 40 1.0001 × 100 1.7940 × 10−12 1.3482 × 100 5.7803 × 10−1 1.2306 × 100 4.9563 × 10−2 1.8732 × 100 4.6543 × 10−2

n2 p, q, n, s rp rs rm rc

25, 15, 20, 10 1.0000 × 100 6.5102 × 10−9 1.2654 × 100 2.7360 × 10−1 1.3405 × 100 3.4605 × 10−2 1.2765 × 100 2.6123 × 10−2

50, 30, 40, 20 1.0000 × 100 7.4738 × 10−11 1.4783 × 100 4.4925 × 10−1 1.7169 × 100 4.8543 × 10−2 1.5063 × 100 4.3326 × 10−2

75, 45, 60, 30 1.0001 × 100 1.6062 × 10−9 1.6295 × 100 6.8732 × 10−1 1.8206 × 100 6.4890 × 10−2 1.7422 × 100 5.0542 × 10−2

100, 60, 80, 40 1.0001 × 100 2.5106 × 10−13 1.8693 × 100 7.9543 × 10−1 2.1456 × 100 7.4293 × 10−2 2.0361 × 100 6.3702 × 10−2

n3 p, q, n, s rp rs rm rc

25, 15, 20, 10 1.0000 × 100 1.7029 × 10−8 1.2063 × 100 4.2083 × 10−1 1.6710 × 100 5.7862 × 10−2 1.3722 × 100 4.7031 × 10−2

50, 30, 40, 20 1.0000 × 100 2.4771 × 10−11 1.7033 × 100 7.2035 × 10−1 1.8041 × 100 6.0165 × 10−2 1.5760 × 100 5.7402 × 10−2

75, 45, 60, 30 1.0002 × 100 6.1041 × 10−12 2.0654 × 100 7.5293 × 10−1 2.2054 × 100 8.3014 × 10−2 2.0113 × 100 7.2461 × 10−2

100, 60, 80, 40 1.0003 × 100 5.6854 × 10−13 2.1976 × 100 8.2063 × 10−1 2.2593 × 100 8.6458 × 10−2 2.1263 × 100 7.9432 × 10−2

n4 p, q, n, s rp rs rm rc

25, 15, 20, 10 1.0000 × 100 5.6321 × 10−7 1.6305 × 100 6.2092 × 10−1 1.9455 × 100 6.7402 × 10−2 1.8240 × 100 6.0461 × 10−2

50, 30, 40, 20 1.0000 × 100 6.0573 × 10−9 1.7002 × 100 8.0210 × 10−1 1.9822 × 100 8.0549 × 10−2 1.9701 × 100 7.4322 × 10−2

75, 45, 60, 30 1.0003 × 100 8.6021 × 10−11 2.1533 × 100 9.0425 × 10−1 2.4003 × 100 9.3614 × 10−2 2.2764 × 100 8.4681 × 10−2

100, 60, 80, 40 1.0004 × 100 2.8543 × 10−12 2.4187 × 100 9.2054 × 10−1 2.6005 × 100 9.5370 × 10−2 2.5711 × 100 9.4502 × 10−2

Algorithm 3 (Small-sample statistical condition estimation method for the mixed and
componentwise condition numbers)

1. Generate matrices [dA1, dC1], [dA2, dC2], . . . ,
[
dAq, dCq

]
with each entry in N (0, 1)

and Orthonormalize the following matrix:[
vec(dA1) vec(dA2) · · · vec

(
dAq

)
vec(dC1) vec(dC2) · · · vec

(
dCq

) ]
to obtain

[
τ1, τ2, . . . , τq

]
by modified Gram-Schmidt orthogonalization process. Each

τi can be converted into the corresponding matrices [dAi, dCi] by applying the unvec
operation. Let [dAi, dCi] be the matrix

[
d̃Ai, d̃Ci

]
multiplied by [A, C] componentwise.

2. Let p = mn + sn. Approximate ωp and ωq by (36).
3. For i = 1, 2, . . . , q, compute

θi = −C‡
AdCiC

‡
A + C‡

AC†T
dCT

i (I − CC†) + (PQP)†dCT
i C†T

QC‡
A − (PQP)† AT JdAiC

‡
A − (PQP)†dAT

i JAC‡
A.

Using the approximations for ωp and ωq, compute the absolute condition vector

κ†
sce =

ωq

ωp

√
|θ1|2 + |θ2|2 + · · ·+

∣∣θq
∣∣2
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4. Estimate the mixed and componentwise condition estimations m‡
sce(A, C) and c‡

sce(A, C)
as follows:

m‡
s (A, C) =

∥κ†
sce∥∞

∥vec(C‡
A)∥∞

, c‡
s (A, C) =

∥∥∥∥∥ κ†
sce

vec(C‡
A)

∥∥∥∥∥
∞

.

Example 2. On similar patrons given in [2,3,5], we generate A and C matrices using the GHQR fac-
torization.

HT AQ =

[
L11 0
L21 L22

]
, UTCQ =

[
K11 0
0 0

]
,

where H ∈ R(p+q)×(p+q) is J-orthogonal, i.e., HJHT = J, Q is orthogonal, and L22 ∈ R(n−s)×(n−s)

and K11 ∈ R(s×s) are lower triangular and non-singular, respectively. In our experiment, we let
L11 L21 be random matrices. H is a random J-orthogonal matrix with a specific condition number
generated using the method described in [41]. Q ∈ R(n×n) and U ∈ R(s×s) generated randomly (by
Matlabs gallery (‘qmult’,....)), L22, and K11 are generated by QR factorization of random matrices
with specified condition numbers and pre-assigned singular value distributions (generated via
Matlabs gallery (‘randsvd’,...)). To examine the above algorithms’ performance, we use 500 matrix
pairs, variate the condition numbers of A and C, and set p = 50, q = 30, n = 40, and s = 20.
The ratios between the exact condition numbers and their estimated values are below.

rp = n‡
p(A, C)/n‡(A, C), rs = n‡

s (A, C)/n‡(A, C),

rm = m‡
s (A, C)/m‡(A, C), rc = c‡

s (A, C)/c‡(A, C),

where the parameters δ, ϵ, k, and ratios rp, rs, rm and rc are the same as given in Example 1. We
present these numerical results and CPU time in Figures 1 and 2. The time ratios are defined by

tp :=
t1

t
, ts :=

t2

t
, tm :=

t3

t
, tc :=

t4

t
,

where t is the CPU time of computing the generalized inverse C‡
A by GHQR decomposition [20]. t1

is the CPU time of Algorithm 1, t2 is the CPU time of Algorithm 2, and t3 and t4 are the CPU times
of Algorithm 3. From Figures 1 and 2, we can see that these three algorithms are highly efficient in
estimating condition numbers. However, Table 3 shows that the CPU times of Algorithms 1 and 2
are smaller than Algorithm 3.

Table 3. CPU times for Algorithms A, B, and C by choosing different values of p, q, s and n.

p, q, n, s tp ts tm tc

25, 15, 20, 10 0.1065 0.2742 0.7601 0.4643
75, 45, 60, 30 0.3784 0.5204 1.3644 1.1677

100, 60, 80, 40 0.4842 0.6032 1.4569 1.2658
120, 80, 100, 50 0.5643 0.7411 1.6345 1.5403
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Figure 1. Efficiency of normwise condition estimators and CPU times of Algorithms 1 and 2.
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Figure 2. Efficiency of mixed and componentwise condition estimators and CPU time of Algorithm 3.

7. Conclusions

In this paper, we provided the explicit expressions and upper bounds for the normwise,
mixed, and componentwise condition numbers for the generalized inverse C‡

A. Addition-
ally, the corresponding results for the K-weighted pseudoinverse L†

K can be obtained as
a special case. We also show how to recover the previous condition numbers of the EILS
solution from the generalized inverse C‡

A condition numbers. We also developed the
componentwise perturbation analysis of the EILS problem. Moreover, we designed three
algorithms that efficiently estimate the normwise, mixed, and componentwise conditions
for the generalized inverse C‡

A using the probabilistic condition estimation method and the
small-sample statistical condition estimation method. Finally, numerical results demon-
strated the performance of these algorithms. In the future, we will continue our research
on the MK-weighted generalized inverse.
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