One-step Incomplete Multi-view Clustering based
on Bipartite Graph Learning
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Abstract—Although previous graph-based multi-view cluster-
ing algorithms have made remarkable progress, most of them
still face the following two limitations: 1. Many existing methods
rely on k-means for the discretization of spectral embeddings,
which cannot directly learn graphs with discrete cluster struc-
tures and require two steps for clustering results. 2. Practical
applications may contain some missing instances, which require
Incomplete Multi-View Clustering (IMVC) methods to hold them.
In this paper, we propose a novel method named One-step
Incomplete Multi-View Clustering based on Bipartite Graph
Learning (OIMVC-BGL) which aims to solve the above problems.
OIMVC-BGL first constructs bipartite graphs from all views
with an anchor-based subspace learning method. Then, OIMVC-
BGL fuses these graphs to obtain a consensus bipartite graph
with an adaptive weight manner. Finally, OIMVC-BGL imposes
a Laplacian rank constraint on the consensus bipartite graph to
obtain the results directly. Experiments conducted on benchmark
datasets verify the effectiveness of OIMVC-BGL.

Index Terms—Unsupervised learning, Incomplete multi-view
clustering, Bipartite graph, Graph fusion.

I. INTRODUCTION

Current IMVC methods can roughly be divided into the fol-
lowing four categories: cooperative learning-based IMVC [[1]],
kernel-based IMVC [2]], [3], NMF-based (nonnegative matrix
factorization) IMVC [4], and deep learning-based IMVC [5],
[6]. Among the above methods, [[7] utilizes a plain collabora-
tive training method to recover missing potential representa-
tion instances and obtain consensus representation. However,
it requires separating model optimization and clustering into
two independent steps, which need to implement k-means
as post-processing to obtain clustering results. Moreover, the
approach based on the two-step optimization cannot guarantee
the global optimal kernel matrix and potential representation.
[8] restructures the complete kernel from the view containing
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Fig. 1. The framework of OIMVC-BGL. Firstly, we construct the incomplete
bipartite graph BOMO® on each view. Secondly, by employing adaptive
weights, all bipartite graphs are fused into a consensus bipartite P. Finally, a
Laplacian rank constraint is imposed on the consensus bipartite P to obtain
the clustering directly.

complete instances and recovers the missing element of the
incomplete kernel by solving a Laplacian regularization prob-
lem. However, the technique based on Laplacian regularization
can only handle a class of incomplete cases, which is not
suitable for practical application. Lin et al. [9] propose a deep
learning-based IMVC model, which can recover data and learn
the representation by contrastive learning. However, high time
complexity caused by the massive parameters and complex
models of neural networks prevents it from being applied to
large-scale tasks. This paper proposes OIMVC-BGL, which
does not need any post-processing and can be well applied to
large-scale data, to solve the above problems. The algorithm
framework is shown in Figure

We first use subspace learning to obtain the incomplete
bipartite graph of each missing view. Then, we fuse them into
a consensus bipartite graph and improve each base bipartite
graph simultaneously. In the fusion process, view weights are
learned adaptively to balance the influence of different view-
specific bipartite graphs. In addition, we apply a Laplacian



rank constraint to the consensus bipartite to obtain k-connected
component numbers directly, thus obtaining clustering re-
sults. Experimental results on various benchmark datasets
demonstrate the effectiveness and efficiency of OIMVC-BGL.
Our appendix and code are available at https://github.com/
CLDOKK/OIMVC-BGL.

II. RELATED WORK
A. Multi-view subspace learning based on anchor points

It is a challenge for multi-view subspace clustering that
fuses information from different views [10]. Let X(®) &
Rd(rv) X" denote the data of the v-th view in multi-view data,
where d(¥) is the dimensionality of the v-th view. According
to the assumptions in sparse subspace clustering (SSC) [11]],
all data points can be written as a linear combination of other
ones. The objective function of SSC is as follows,
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where Z() € R"*™ denotes the self-representation matrix.
The constraint of Z(") guarantees each point can only be
represented by other data points except itself.

In recent years, researchers usually use the n x m anchor
graph (bipartite graph between original samples and anchor
points) to replace the n X n similar graph to decrease the time
complexity [[12], [13]]. An effective method [14] first constructs
anchor points by performing k-means clustering on original
datasets and then lets the corresponding clustering centroids
be the anchor points. In comparison with traditional SSC, the
computational complexity of the method that uses a bipartite
graph instead of the whole graph is reduced from O(n?) to
O(nm).

B. One-step method on Multiview Clustering

As we know, most graph clustering methods are two-step.
They fuse all base graphs to obtain a consensus graph and
then explore the clustering structure from the consensus graph.
Compared with the one-step method, the two-step method not
only requires an additional post-process to get the final results
but also affects the exploration of the true cluster structure.
A pioneer work on the one-step methods is proposed in [[15]]
named constrained Laplacian rank method (CLR). After that,
[12] improves the CLR for multi-view clustering which can
be formulated as
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where n = [, n@ ... )] " is the weight of each view,
B() is the v-th bipartite graph, P € R™ ™ is the consensus
bipartite graph with Laplace rank constraint, and Lg is a

normalized Laplacian matrix of the similarity graph S which
can be constructed as

Lemma 1. Let S be a non-negative undirected graph,
the multiplicative number of eigenvalue O of the normalized
Laplacian matrix Lgs is equal to the number of connected
components in the graph [15]).

Motived by Lemma 1, we can directly obtain the cluster
results from the similarity graph without performing k-means
or other discretization procedures [15].

III. ONE-STEP INCOMPLETE MULTI-VIEW CLUSTERING
BASED ON BIPARTITE GRAPH LEARNING (OIMVC-BGL)

A. Model proposal

By performing SSC on every single view and combining
them into a unified objective function, we can obtain
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where |Z(“)H2 prevents the model from getting a trivial
solution, F(Z™M ... Z(")) strengthens the consistency of
multiple self-representation matrices Z(*), and \, 8 are two
trade-off hyper—Parameters. Let m be the number of anchors
and A®) € R?”*m be the anchor matrix of the v-th view.
We extend (@) from the traditional subspace learning to the
subspace learning based on anchor points as follows,
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where B(Y) € R"*™ is the bipartite graph between n original
samples and m anchor points of the v-th view.

In practice, some accidents like sensor damage will cause
absent instances of partial view and generate incomplete data.
To adress this issue, we then extend the above framework for
incomplete multi-view clustering (IMVC). Defining the index
vector as h(*) € R™ to represent the index of the n; existing
sample on the v-view. Then we can define the incomplete
indicator matrix M(*) € R"%"i for the v-th view as follows,

M(U):{L thl(lv):pvazla2vanzv
pa 0, otherwise.

(6)
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In this way, the v-view of the incomplete sample matrix can
be represented by X" M) R4 xns Combining (@), we
can rewrite (3) for IMVC as
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The quality of anchors is a serious problem in IMVC. When
the missing rate is relatively large, some anchor selection
strategies like uniform sampling, mean value, or k-means may
result in poor clustering performance. Therefore, we use the
observed samples in each base view to learn the anchor points.
Specifically, we use a projection matrix W) ¢ RFxd"”
to project each view into a potential space. The preliminary
objective function can be written as
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In the fusion process, Equation (2)) is used to fuse bipartite
graphs of multiple views into a consensus bipartite graph.
According to lemma 1, the multiplicity of eigenvalue O is equal
to the number of connected components in the graph. Thus, a
similar matrix with k-connected components is obtained, and
the samples in the same connected branch can be treated as a
cluster. Since , the connection of P is the same as S. So
that the clustering results can be obtained directly from the
bipartite graph P.

We apply the unified bipartite graph learning and bipartite
graph fusion to IMVC. Equation (8) is combined with (),
where (2) can be considered as a regularization term. Then
the Laplacian rank constraint bridges the gap between bipartite
graph learning and discrete cluster structure learning. At the
same time, a projection matrix with dimension k is added for
feature screening. Formally, the objective function of unified
discrete bipartite graph learning can be expressed as follows,
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The details of the optimization and algorithm process are
included in Section 1 of the appendix.

B. Time complexity analysis

The computational complexity of OIMVC-BGL consists of
five optimization steps. For the v-view, the main calculation
steps include: Update W(?)| which computational complexity
is O(d™) (nm+km+k?)); Update A(*), which computational
complexity is O(nmk + nd "k 4 d)2k); Update P, which
computational complexity is O(nmkt + nm?t + m>t), and t
is number of iterations ; Update B®), which computational
complexity is O(nm?d®)); Update i, which computational
complexity is O(V2nm). Each variable update is about the
linear time complexity of n. So the overall computational
complexity of OMIVC-BLG is linear.

IV. EXPERIMENT
A. Datasets and Baselines

Four multi-view datasets are used in the experiment:
Prokaryotic [[16], Caltech101-7 [17], NUSWIDE [18], and
YoutubeFace. Prokaryotic includes text data, gene lineage,
and protein composition information of 551 prokaryotes in
four categories. Caltech101-7 is a subset of the image dataset
Caltech101. NUSWIDE is an object recognition dataset with
30000 instances. YoutubeFace is a video dataset collected from
YouTube with 101499 instances.

To compare the results of the algorithm, we employ seven
algorithms as a baseline to compare with OIMVC-BGL on
datasets. BSV [19] fills all missing views with the sample
mean of corresponding views, then uses the best views as
clustering results. Concat [20] concat all views of each sam-
ple into a feature vector. FLSD [21] learns potential view-
specific representations and seek shared representations of
clusters based on semantically consistent constraints. UEAF
[22] learns a uniform cluster representation while recovering
missing views. DAIMC [23]] introduces a view algorithm-
specific weight matrix to solve the missing view problem and
align the base matrix. IMVC-CBG [24] is a scalable anchor
graph framework is proposed to solve the IMVC problem for
the first time. FIMAVC-VIA [25] is an IMVC method with
fast processing for large-scale partial data. To make better use
of specific information, it learns individual anchors on each
view.

B. Experimental Setting

For all of the compared algorithms, we implement them
by downloading their public Matlab code from the website.
All parameters of compare algorithms conform to the de-
scription of the corresponding literature. For OIMVC-BGL,
we use grid search in the range of [1073,1072,---10%,10]
to obtain the best hyperparameters A and (. Similarly, the
number of anchor m is chosen by grid search in the range of
[k, 2k, 4k, 6k, 8k]. All experiments are performed on a desktop
with Ubuntu 22.04.2LTS, 64-bit operating system, 13th Gen
Intel(R) Core(TM) i7-13700KF x24 CPU 64GIB, MATLAB
R2021b.



TABLE I
CLUSTERING RESULTS IN THE METRIC OF ACCUARCY(ACC) OF DIFFERENT METHODS WITH DIFFERENT MISSING RATES (0.5, 0.3, AND 0.0).THE BEST
RESULT IS REPRESENTED BY BOLDFACE, THE SECOND-BEST THE RESULT IS REPRESENTED BY AN UNDERLINE, AND N/A MEANS OUT OF THE CPU

MEMORY
Datasets Prokaryotic Caltech101-7 NUSWIDE YouTube
Missing rate 0.5 0.3 0.0 0.5 0.3 0.0 0.5 0.3 0.0 0.5 0.3 0.0
BSV 63.36 57.93 60.47 50.09 61.53 66.39 8.61 8.18 8.76 N/A N/A N/A
Concat 40.37 43.04 46.93 42.63 40.69 4522 12.77 13.51 15.60 N/A N/A N/A
FLSD 46.85 44.93 44.10 38.17 39.35 42.96 N/A N/A N/A N/A N/A N/A
UEAF 57.95 57.79 43.74 36.40 46.80 40.77 N/A N/A N/A N/A N/A N/A
DAIMC 46.35 55.47 56.98 45.42 50.08 48.24 14.23 14.57 14.78 N/A N/A N/A
IMVC-CBG 55.17 57.89 59.53 70.37 73.39 66.46 14.39 14.99 14.60 15.93 22.11 23.37
FIMAVC-VIA 62.73 63.60 63.40 48.53 65.63 50.35 12.90 13.27 13.55 15.19 17.21 18.87
Ours 68.78 70.05 73.50 77.68 78.36 83.79 18.54 18.94 19.78 26.64 26.63 26.64
TABLE II
THE RUNNING TIME OF DIFFERENT METHODS FOR PROCESSING DATASETS
(UNIT: S)
Datasets Prokaryotic ~ Caltech101-7 NUSWIDE  YouTube
BSV 0.07 0.77 16.87 N/A
Concat 0.22 5.67 202.06 N/A
FLSD 0.65 20.87 N/A N/A umber ofanchors
UEAF 0.65 7.68 N/A N/A (b)
DAIMC 6.73 99.06 911.95 N/A
Fig. 2. The analysis of parameters on the Caltech7 dataset. (a) The parameters
IMVC-CBG 0.46 1.25 2843 175.79 analysis of A and (. (b) The parameters analysis of the number of anchors.
FIMAVC-VIA  0.12 0.59 23.60 91.22
Ours 0.17 4.16 62.16 110.32

C. Experimental Results and Analysis

As shown in Table 1, OIMVC-BGL achieves the best per-
formance compared with all comparison algorithms. OIMVC-
BGL can effectively deal with large-scale datasets such as
YouTube and also have great performance on small-scale
datasets such as prokaryotic. As an algorithm based on bi-
partite graph learning, the comparison with the IMVC-CBG
and the FIMVC-VIA proves the effectiveness of the one-step
method.

The time spent is a crucial performance measure, particu-
larly for the method based on bipartite graph learning. Table
2 shows the running time of multiple algorithms. Although
OIMVC-BGL is not the fastest one among various algorithms,
it can obtain clustering results in a short period. Existing
IMVC methods, such as IMVC-CBG, rely on k-means as a
post-process to obtain the final clustering results. Instability
is one of the disadvantages of k-means. So many researchers
employ at least 20 times k-means and then average the results
to obtain relatively stable results, which spend more time in the
experiment. OIMVC-BGL transforms the multiple k-means
into a simple iteration of the parameter, which can obtain
stable results quickly.

D. Parameters Analysis

In OIMVC-BGL, hyper-parameters A, S and the number
of anchors required to be set. To explore the influence of
parameter selection, we separate fixing one of them to conduct
comparative experiments. Figure 2 shows the analysis of
parameters with a 0.5 missing rate on Caltech101-7 dataset.
From the analysis, our method is relatively stable in different
parameters and appropriate parameter values facilitate obtain-
ing better clustering results.

V. CONCLUSION

In this paper, a novel IMVC method termed OIMVC-
BGL is proposed. OIMVC-BGL uses subspace learning based
on the anchor to obtain view-specific bipartite graphs then
merge them into a consistent bipartite graph with adaptive
view weights. By combining with Laplacian low-rank con-
straints, discrete cluster structures can be obtained directly
from fusion graphs. Unlike existing IMVC methods, OIMVC-
BGL can deal with large-scale IMVC tasks effectively without
postprocessing. The comparative experiments on real datasets
demonstrate the superiority of OIMVC-BGL.
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