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Abstract—Multiple kernel clustering (MKC) algorithms optimally combine a group of pre-specified base kernel matrices to improve

clustering performance. However, existing MKC algorithms cannot efficiently address the situation where some rows and columns of

base kernel matrices are absent. This paper proposes two simple yet effective algorithms to address this issue. Different from existing

approaches where incomplete kernel matrices are first imputed and a standard MKC algorithm is applied to the imputed kernel

matrices, our first algorithm integrates imputation and clustering into a unified learning procedure. Specifically, we perform multiple

kernel clustering directly with the presence of incomplete kernel matrices, which are treated as auxiliary variables to be jointly

optimized. Our algorithm does not require that there be at least one complete base kernel matrix over all the samples. Also, it adaptively

imputes incomplete kernel matrices and combines them to best serve clustering. Moreover, we further improve this algorithm by

encouraging these incomplete kernel matrices to mutually complete each other. The three-step iterative algorithm is designed to solve

the resultant optimization problems. After that, we theoretically study the generalization bound of the proposed algorithms. Extensive

experiments are conducted on 13 benchmark data sets to compare the proposed algorithms with existing imputation-based methods.

Our algorithms consistently achieve superior performance and the improvement becomes more significant with increasing missing

ratio, verifying the effectiveness and advantages of the proposed joint imputation and clustering.

Index Terms—Multiple kernel clustering, multiple view learning, incomplete kernel learning

Ç

1 INTRODUCTION

THE recent years have seen many effort devoted to design-
ing effective and efficient multiple kernel clustering

(MKC) algorithms [1], [2], [3], [4], [5]. They aim to optimally
combine a group of pre-specified base kernels to perform data
clustering. For example, the work in [1] proposes to find the
maximum margin hyperplane, the best cluster labeling, and
the optimal kernel simultaneously. A novel optimized kernel

k-means algorithm is presented in [2] to combine multiple
data sources for clustering analysis. In [3], the kernel combina-
tion weights are allowed to adaptively change to capture the
characteristics of individual samples. Replacing the squared
error in k-means with an ‘2;1-norm based one, the work in [4]
develops a robust multiple kernel k-means (MKKM) algo-
rithm that simultaneously finds the best clustering labels
and the optimal combination of kernels. Observing that
existing MKKM algorithms do not sufficiently consider
the correlation among base kernels, the work in [5] designs
a matrix-induced regularization to reduce the redundancy
and enhance the diversity of the selected kernels. These MKC
algorithms have been applied to various applications and
demonstrated attractive clustering performance [6], [7], [8],
[9], [10].

One underlying assumption commonly adopted by the
above-mentioned MKC algorithms is that all of the base ker-
nels are complete, i.e., none of the rows or columns of any
base kernel shall be absent. In some practical applications
such as Alzheimer’s disease prediction [11] and cardiac dis-
ease discrimination [12], however, it is not uncommon to see
that some views of a sample are missing, and this causes the
corresponding rows and columns of related base kernels
unfilled. The presence of incomplete base kernels makes it
difficult to utilize the information of all views for clustering.
A straightforward remedy may first impute incomplete ker-
nels with a filling algorithm and then perform a standard
MKC algorithm with the imputed kernels. Some widely used
filling algorithms include zero-filling, mean value filling,
k-nearest-neighbor filling and expectation-maximization
(EM) filling [13]. Recently, more advanced imputation algo-
rithms have been developed [14], [15], [16], [17]. The work in
[14] constructs a full kernel matrix for an incomplete view
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with the help of the other complete view (or equally, base
kernel). By exploiting the connections of multiple views, the
work in [15] proposes an algorithm to accomplish multi-view
learning with incomplete views, where different views are
assumed to be generated from a shared subspace. In [17], a
multi-incomplete-view clustering algorithm is proposed. It
learns latent feature matrices for all the views and generates a
consensus matrix so that the difference between each view
and the consensus is minimized. In addition, by modelling
bothwithin-view and between-view relationships among ker-
nel values, an approach is proposed in [16] to predict missing
rows and columns of a base kernel. Though demonstrating
promising clustering performance in various applications,
the above “two-stage” algorithms share a drawback that they
disconnect the processes of imputation and clustering, and
this prevents the two learning processes from negotiating
with each other to achieve the optimal clustering. Can we
design a clustering-oriented imputation algorithm to enhance a
kernel for clustering?

To address this issue, we propose an absent multiple
kernel k-means algorithm that integrates imputation and
clustering into a single optimization procedure. In our
algorithm, the clustering result at the last iteration guides the
imputation of absent kernel elements, and the latter is in turn
used to conduct the subsequent clustering. These two proce-
dures are alternatively performed until convergence. By this
way, the imputation and clustering processes are seamlessly
connected, with the aim to achieve better clustering perfor-
mance. Though being theoretically elegant, we also observe
that this algorithm does not sufficiently consider that the
imputation of each kernel could benefit from the other kernel
matrices, even though they may be incomplete. As a result,
we further improve the proposed multiple kernel k-means
with incomplete kernels by explicitly allowing these incom-
plete kernel matrices to mutually impute each other. Both
optimization objectives of the proposed absent multiple ker-
nel clustering algorithms are carefully designed and two
three-step alternative algorithms are developed to solve the
resultant optimization problems, respectively. Extensive
experimental study is carried out on 13multiple kernel learn-
ing (MKL) benchmark data sets to evaluate the clustering
performance of the proposed algorithm. As indicated, the
proposed multiple kernel k-means algorithm with incom-
plete kernels (MKKM-IK) significantly outperforms existing
two-stage imputation methods, and the improvement is par-
ticularly significant at highmissing ratios, which is desirable.
Meanwhile, we observe that the other proposed variant, i.e.,
MKKM-IK with mutual kernel completion (MKKM-IK-
MKC), further improves the clustering performance of
MKKM-IK. It is expected that the simplicity and effective-
ness of these clustering algorithms will make them a good
option to be considered for practical applications where
incomplete views or kernel matrices are encountered.

This work is a substantially extended version of our orig-
inal conference paper [18]. Its significant improvement over
the previous one can be summarized as follows: (1) We
design a new algorithm, termed MKKM-IK-MKC, by incor-
porating the kernel reconstruction into existing MKKM-IK,
and develop an iterative algorithm to efficiently solve the
resultant optimization problem. Moreover, the newly pro-
posed MKKM-IK-MKC significantly outperforms MKKM-

IK proposed in the previous paper [18]. (2) We provide a
theoretical explanation on why utilizing the same kernel
coefficients in the kernel reconstruction and the combined
kernel for clustering by revealing its connection with kernel
alignment maximization. (3) We theoretically study the gen-
eralization bound of the proposed MKKM-IK and MKKM-
IK-MKC on test data. (4) We design a toy data experiment
to explore the sensitivity of the proposed MKKM-IK-MKC
in the presence of noisy or uncorrelated kernels. (5) We con-
duct comprehensive experiments to validate the effective-
ness of the proposed algorithms.

2 RELATED WORK

2.1 Kernel k-Means Clustering (KKM)

Let fxigni¼1 � X be a collection of n samples, and fð�Þ : x 2
X 7! H be a featuremapping that maps x onto a reproducing
kernel Hilbert spaceH. The objective of kernel k-means clus-
tering is to minimize the sum-of-squares loss over the cluster
assignment matrix Z 2 f0; 1gn�k, which can be formulated as
the following optimization problem,

min
Z2f0;1gn�k

Xn;k
i¼1;c¼1

ZickfðxiÞ � mmck22

s:t:
Xk
c¼1

Zic ¼ 1;

(1)

where nc ¼
Pn

i¼1 Zic and mmc ¼ 1
nc

Pn
i¼1 ZicfðxiÞ are the size

and centroid of the cth cluster.
The optimization problem in Eq. (1) can be rewritten as

the following matrix-vector form,

min
Z2f0;1gn�k

TrðKÞ � TrðL1
2Z>KZL

1
2Þ s:t: Z1k ¼ 1n; (2)

where K is a kernel matrix with Kij ¼ fðxiÞ>fðxjÞ; L ¼
diagð½n�1

1 ; n�1
2 ; . . . ; n�1

k �Þ and 1‘ 2 R‘ is a column vector with
all elements being 1.

The variable Z in Eq. (2) is discrete, and this makes the
optimization problem difficult to solve. A common approach
is to relax Z to take real values. Specifically, by defining
H ¼ ZL

1
2 and letting H take real values, a relaxed version of

the above problem can be obtained as

min
H

Tr KðIn �HH>Þ� �
s:t: H 2 Rn�k; H>H ¼ Ik; (3)

where Ik is an identity matrix with size k� k. The optimalH
for Eq. (3) can be obtained by taking the eigenvectors corre-
sponding to the top k largest eigenvalues of K [19].

2.2 Multiple Kernel k-Means Clustering (MKKM)

In amultiple kernel setting, each sample x hasmultiple feature
representations defined by fxðpÞgmp¼1. Each sample is rep-

resented as fbbðxÞ ¼ ½b1f1ðxð1ÞÞ>; . . . ;bmfmðxðmÞÞ>�>, where

ffpð�Þgmp¼1 is a group of feature mappings and bb ¼
½b1; . . . ;bm�> consists of the coefficients of them base kernels.
These coefficientswill be optimized during learning. Based on
the definition of fbbðxÞ, a kernel function can be expressed as

kbbðxi; xjÞ ¼ fbbðxiÞ>fbbðxjÞ ¼
Xm
p¼1

b2
pkpðxðpÞi ; x

ðpÞ
j Þ: (4)
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By replacing the kernel matrix K in Eq. (3) with Kbb com-
puted via Eq. (4), the objective of MKKM can be written as

min
H;bb

Tr KbbðIn �HH>Þ� �
s:t: H 2 Rn�k; H>H ¼ Ik; bb

>1m ¼ 1; bp � 0; 8p:
(5)

This problem can be solved by alternatively updatingH and
bb: i) Optimizing H given bb. With the kernel coefficients bb

fixed, H can be obtained by solving a kernel k-means clus-
tering optimization problem shown in Eq. (3); ii) Optimizing
bb given H. With H fixed, bb can be optimized via solving the
following quadratic programming with linear constraints,

min
bb

Xm
p¼1

b2
pTr KpðIn �HH>Þ� �

s:t: bb>1m ¼ 1; bp � 0; 8p:
(6)

As noted in [2], [3], using a convex combination of kernelsPm
p¼1 bpKp to replace Kbb in Eq. (5) is not a viable option,

because this could make only one single kernel be activated
and all the others assigned with zero weights. Other recent
work using ‘2-norm combination can be found in [20], [21].

3 THE PROPOSED ALGORITHMS

3.1 Formulation of Multiple Kernel K-Means with
Incomplete Kernels

Let sp ð1 	 p 	 mÞ denote the sample indices for which the
pth view is present and KðccÞ

p be used to denote the kernel
sub-matrix computed with these samples. Note that this set-
ting is consistent with the literature, and it is even more gen-
eral since it does not require that there be at least one
complete view across all the samples, as assumed in [14].

The absence of rows and columns from base kernels
makes clustering challenging. Existing two-stage approa-
ches first impute these base kernels and then apply a
conventional clustering algorithm to them. We have the
following two arguments. First, although such imputation
is sound from the perspective of “general-purpose”, it may
not be an optimal option when it has been known that the
imputed kernels are used for a clustering task. This is
because for most, if not all, practical tasks a belief holds that
these employed base kernels or views (when in their com-
plete form) shall, more or less, be able to serve the clustering
task. However, such a belief was not exploited by these two-
stage approaches as prior knowledge to guide the imputa-
tion process. Second, from the perspective that the ultimate
goal is to appropriately cluster data, we shall try to directly
pursue the clustering result, by treating the absent kernel
entries as auxiliary unknowns during this course. In other
words, imputed kernels could be merely viewed as the by-
products of clustering.

These two arguments motivate us to seek a more natural
and reasonable manner to deal with the absence in multiple
kernel clustering. That is to perform imputation and cluster-
ing in a joint way: 1) impute the absent kernels under the
guidance of clustering; and 2) update the clustering with
the imputed kernels. By this way, the above two learning pro-
cesses can be seamlessly coupled and they are allowed to negoti-
ate with each other to achieve better clustering. In specific, we

propose the multiple kernel k-means algorithm with incom-
plete kernels as follows,

min
H; bb; fKpgmp¼1

Tr KbbðIn �HH>Þ� �
s:t: H 2 Rn�k; H>H ¼ Ik; bb

>1m ¼ 1; bp � 0;

Kpðsp; spÞ ¼ KðccÞ
p ; Kp 
 0; 8p;

Kbb ¼
Xm
p¼1

b2
pKp:

(7)

The only difference between the objective function in Eq. (7)
and that of traditional MKKM in Eq. (5) lies at the incorpo-
ration of optimizing fKpgmp¼1. Note that the constraint
Kpðsp; spÞ ¼ KðccÞ

p is imposed to ensure that Kp maintains the
known entries during the course. Though the model in
Eq. (7) is simple, it admits the following advantages: 1) Our
objective function is more direct and well targets the ulti-
mate goal, i.e., clustering, by integrating kernel completion
and clustering into one unified learning framework, where
the kernel imputation is treated as a by-product; 2) Our
algorithm works in a MKL scenario [22], which is able to
naturally deal with a large number of base kernels and
adaptively combine them for clustering; 3) Our algorithm
does not require any base kernel to be completely observed,
which is however necessary for some of the existing imputa-
tion algorithms such as [14]. Besides, our algorithm is
parameter-free once the number of clusters to form is speci-
fied. In [18], a three-step iterative algorithm with proved
convergence is designed to solve the optimization problem
in Eq. (7). Interested readers can refer to [18] for the detail.

3.2 Incomplete MKKM with Mutual Kernel
Completion (MKKM-IK-MKC)

3.2.1 Formulation of Incomplete MKKM with Mutual

Kernel Completion

The proposed MKKM-IK in Section 3.1 which jointly per-
forms kernel completion and clustering is effective, and
achieves promising clustering performance as shown in the
experimental part. However, this algorithm imputes each
incomplete kernel by only utilizing the clustering result H,
while not sufficiently considering that the available informa-
tion from other kernels could also contribute to its comple-
tion. Meanwhile, the optimization of bb in Eq. (7) is inherited
from existing MKKM framework, which could result in
selectingmutually redundant kernels and affect the diversity
of information sources utilized for clustering [5]. Both factors
could adversely affect the clustering performance.

To address the above issues, we aim to further improve the
proposed MKKM-IK by encouraging the incomplete kernel
matrices to mutually complete each other. Besides utilizing
the clustering result H to fill each incomplete kernel matrix,
the improved algorithm proposes to impute each incomplete
kernel matrix by utilizing other incomplete kernel matrices.
To this end, we assume that each kernel Kp resides in the
neighborhood of a linear combination of other kernels, i.e.,Pm

q¼1;q 6¼p bqKq, and minimize kKp �
Pm

q¼1;q 6¼p bqKqkF to guide

the completion of each kernel. It is worth pointing out that
the kernel coefficients in this reconstruction term and in the
combined kernel for clustering are the same. By doing so, the
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reconstruction term naturally induces a regularization on bb

which takes the correlation of base kernels into consideration.
Specifically, with given fKpgmp¼1, the optimization w.r.t bb is
equivalent to

min
bb

1

2
bb>Abb� f>bb; s:t: bb>1m ¼ 1; bp � 0; 8p; (8)

where M 2 Rm�m with elements Mpq ¼ TrðKpKqÞ to mea-
sure the correlation between each pair of kernel matrices Kp

and Kq, A ¼ C�M and f ¼ M1� diagðMÞ, C is a matrix
with all elements m� 2 and diagonal elements m� 1,
1 2 Rm is column vector with all elements one, and diagðMÞ
denotes the diagonal elements ofM.

Eq. (8) can be treated as a regularization on the kernel
combination weights for clustering:

� Its first term, i.e., bb>Abb is helpful to reduce the
redundancy and enforce the diversity of the selected
kernels. A larger Mpq means high correlation
between Kp and Kq, and a smaller one implies that
their correlation is low. By minimizing this term, the
risk of simultaneously assigning bp and bq with large
weights can be greatly reduced if Kp and Kq are
highly correlated. Meanwhile, this regularization
increases the probability of jointly assigning bp and
bq with larger weights as long as Kp and Kq are less
correlated. As a consequence, this criterion is benefi-
cial to promoting the diversity of selected kernels,
and makes the pre-specified kernels more effectively
utilized, leading to improved clustering perfor-
mance. In fact, the theoretical implication of incorpo-
rating this regularization can be well justified from
the perspective of the following commonly used ker-
nel alignment criterion [5]

max
bb;H

Tr Kbb HH>� �� �
HH>�� ��

F
Kbb

�� ��
F

s:t: H>H ¼ Ik; bb>1m ¼ 1; (9)

where Kbb ¼ Pm
p¼1 b

2
pKp and Xk kF¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr X>X

� �q
.

Eq. (9) is equivalent to

max
bb;H

Tr Kbb HH>� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂b>Mb̂b

q s:t: H>H ¼ Ik; bb>1m ¼ 1; (10)

where b̂b ¼ ½b2
1; . . . ;b

2
m�>.

The optimization in Eq. (10) is readily under-
stood. By looking into the numerator and denomina-
tor of Eq. (10) in depth, we observe that: i) The
negative of the numerator of kernel alignment, i.e.,
�TrðKbbHH>Þ, is conceptually equivalent to the
objective of MKKM, i.e., Tr KbbðIn �HH>Þ� �

; and ii)
The denominator, i.e., b̂b>Mb̂b, is a regularization on
the kernel coefficients to prevent bp and bq from
being jointly assigned to a large weight if Mpq is rela-
tively high. From the perspective of regularization,
the effect of bb>Mbb and b̂b>Mb̂b could be treated as the
same. Therefore, by using the same kernel coeffi-
cients in the regularization term and in the combined
kernel for clustering, it is helpful to reduce the

redundancy and enforce the diversity of the selected
kernels for clustering.

� Its second term, i.e., �f>bb, is helpful to reduce the
kernel weights of noisy or irrelevant kernels if there
are any such kernels. Note that our objective is to
maximize f>bb with f ¼ M1� diagðMÞ. If Kp is a
noisy or irrelavant kernel, its correlation with other
kernels will be low, leading to a small fp with f ¼
½f1; . . . ; fm�>. In this case, maximizing f>bb with
‘1-norm constraint would lead to small bp, as shown
in Fig. 7. Consequently, by using the same kernel
coefficients in the regularization term and in the
combined kernel for clustering, it is helpful to reduce
the weights of irrelevant kernels for clustering.

According to the aforementioned analysis, we conclude
that the kernel construction term of the proposed MKKM-
IK-MKC naturally induces a regularization term on kernel
coefficients for clustering, which is helpful to better utilize
the pre-specified kernel matrices, leading to significantly
improved clustering performance.

By integrating the above mutual kernel completion term
into the objective of MKKM-IK in Eq. (7), we obtain the
objective function of the proposed algorithm as follows:

min
H;bb;fKpgmp¼1

Tr KbbðIn �HH>Þ� �þ �

2

Xm
p¼1

���Kp �
Xm
q¼1
q 6¼p

bqKq

���2
F

s:t: H 2 Rn�k; H>H ¼ Ik; bb
>1m ¼ 1; bp � 0;8p

Kpðsp; spÞ ¼ KðccÞ
p ; Kp 
 0;8p;

Kbb ¼
Xm
p¼1

b2pKp;

(11)

where � is a regularization parameter to trade-off the
MKKM clustering and mutual kernel completion.

Incorporating the regularization term makes the optimi-
zation problem more challenging. In the following, we
design a three-step alternative algorithm to solve the opti-
mization problem in Eq. (11).

3.2.2 Alternative Optimization of MKKM-IK-MKC

We design a three-step alternative optimization algorithm
to solve the problem in Eq. (11):

i) Optimizing H with fixed bb and fKpgmp¼1. Given bb and
fKpgmp¼1, the optimization in Eq. (11) w.r.t. H reduces
to a conventional kernel k-means problem, which
can be efficiently solved by existing packages.

ii) Optimizing fKpgmp¼1 with fixed bb and H. We adopt a
coordinate descend manner to optimize each Kp.
Specifically, all kernel matrices fKqgmq¼1;q 6¼p are kept
as constant during optimizing Kp. Given bb and H,
the optimization in Eq. (11) w.r.t. each Kp is equiva-
lent to the following optimization problem,

min
Kp

1

2
Kp � T

�� ��2
F

s:t: Kpðsp; spÞ ¼ KðccÞ
p ; Kp 
 0; (12)

where T ¼ Pm
q¼1
q 6¼p

bpþbq�ðm�2Þbpbq
1þðm�1Þb2p

Kq � b2pðIn�HH>Þ
�ð1þðm�1Þb2pÞ

. As

seen, the completion of each Kp is now dependent
on both the clustering result H and combination of
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the other kernels. See the appendix, which can be
found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2019.2892416 for the detailed derivation.

Note that the optimization in Eq. (12) itself is a
semi-definite programming (SDP), which can be
readily solved by existing convex optimization tool-
box such as CVX [23]. However, the high time com-
plexity of SDP problems prevents it from being
applied to medium or large scale applications. To
relieve the intensive computational burden, we pro-
pose to approximately optimize Kp as follows,

min
Kp

Kp � T
�� ��2

F
s:t: Kpðsp; spÞ ¼ KðccÞ

p : (13)

The optimal solution in Eq. (13), denoted as K̂p,
can be readily obtained by filling the missing ele-
ments of Kp with the corresponding ones of T.
After obtaining the solution of Eq. (13), we project
it into the space of positive semi-defined (PSD)
matrices by performing an eigen-decomposition to
make Kp satisfy Kp 
 0. Specifically, let us denote
K̂p ¼ ULLU> as the eigen-decomposition of K̂p.
Then, the optimal PSD approximation of K̂p is
ULLþU>, where LLþ is obtained by setting the neg-
ative diagonal elements of LLþ as zero. This tech-
nique is widely applied in optimization with PSD
constraints and usually produces excellent results.
The detailed derivation of optimizing fKpgmp¼1 can
be found in the appendix, available in the online
supplemental material.

iii) Optimizing bb with fixed H and fKpgmp¼1. Given H and

fKpgmp¼1, the optimization in Eq. (11) w.r.t. bb is the

following quadratic programming with linear con-
straints,

min
bb

1

2
bb> A�Mð Þ þ 2

�
diagðdÞ

� �
bb� f>bb

s:t: bb>1m ¼ 1; bp � 0; 8p;
(14)

where d ¼ ½d1; . . . ; dm�> is a column vector with dp ¼
Tr KpðIn �HH>Þ� �

, A 2 Rm�m with all entries m� 2
and diagonal ones m� 1, M 2 Rm�m measures the
mutual correlation of each pairwise kernel via Mpq ¼
Tr KpKq

� �
, f ¼ M1m � diag Mð Þ and 1m is a m-dimen-

sion column vector with all elements one. As seen
from Eq. (14), the correlation among base kernels
has been incorporated via M, which is helpful to
reduce the redundancy and enhance the diversity of
selected kernels [5], leading to improved clustering
performance. The detailed derivation of optimizing
bb can be found in the appendix, available in the
online supplemental material.

In sum, our algorithm for solving Eq. (11) is outlined in
Algorithm 1. The computational complexity for the pro-
posed MKKM-IK-MKC is Oðn3 þmn3 þm3Þ per iteration,
where n and m are the total number of whole samples and
base kernels, respectively. It is worth pointing out that Kp

can be calculated in parallel since each of them are indepen-
dent. By this way, our algorithm shall scale well to the num-
ber of kernels.

4 GENERALIZATION ANALYSIS OF THE PROPOSED

ALGORITHMS

Generalization error for k-means clustering has been stud-
ied by fixing the centroids obtained in the training process
and generalizing them for testing; see, e.g., [24], [25]. In this
section, we study how the centroids obtained by the pro-
posed MKKM-IK and MKKM-IK-MKC generalize onto test
data by deriving generalization bounds via exploiting the
reconstruction error.

Algorithm 1. The Proposed MKKM-IK-MKC

1: Input: fKðccÞ
p gmp¼1; fspgmp¼1, � and �0.

2: Output:H; bb and fKpgmp¼1.

3: Initialize bbð0Þ ¼ 1m=m; fKð0Þ
p gmp¼1 and t ¼ 1.

4: repeat

5: K
ðtÞ
bb ¼ Pm

p¼1

�
bðt�1Þ
p

	2

Kðt�1Þ
p .

6: UpdateHðtÞ by solving kernel k-means with given K
ðtÞ
bb .

7: Update each KðtÞ
p withHðtÞ and fKðt�1Þ

q gmq¼1;q 6¼p by Eq. (12).

8: Update bbðtÞ by solving Eq. (14) with givenHðtÞ and
fKðtÞ

p gmp¼1.
9: t ¼ tþ 1.
10: untilmaxfjbðt�1Þ

1 � b
ðtÞ
1 j; . . . ; jbðt�1Þ

m � bðtÞ
m jg 	 �0

Before defining the reconstruction error of k-means, we
need to model the absence of views. Specifically, let the indi-
cator function tðxðpÞÞ denote the absence of the pth view of
the observation x, i.e., if the pth view is observed, then
tðxðpÞÞ ¼ 1; otherwise its value needs to be optimized. Note
that tðxðpÞÞ is a random variable depending on x, whose dis-
tribution is unknown.

Let Ĉ ¼ ½Ĉ1; . . . ; Ĉk� be the learned matrix composed of
the k centroids and b̂b the learned kernel weights by the pro-
posed MKKM-IK and MKKM-IK-MKC. Effective k-means
clustering algorithms should have the following reconstruc-
tion error small

E min
y2fe1;...;ekg

fb̂bðxÞ � Ĉy
��� ���2

H


 �
; (15)

where fb̂bðxÞ ¼ ½b̂1tðxð1ÞÞf>
1 ðxð1ÞÞ; . . . ; b̂mtðxðmÞÞf>

mðxðmÞÞ�>;
e1; . . . ; ek form the orthogonal bases of Rk. We show how
the proposed algorithms achieve this goal.

Let us define a function class first:

F ¼
n
f : x 7! min

y2fe1;...;ekg
fbbðxÞ � Cy

�� ��2
H

���bb>1m ¼ 1; bp � 0;

C 2 Hk; tðxðpÞi ÞtðxðpÞj Þf>
p ðxðpÞi Þf>

p ðxðpÞj Þ 	 b; 8p; 8xi 2 X
o
;

(16)

whereHk stands for the multiple kernel Hilbert space.

Theorem 1. For any d > 0, with probability at least 1� d, the
following holds for all f 2 F :

E½fðxÞ� 	 1

n

Xn
i¼1

fðxiÞ þ 4
ffiffiffi
p

p
mbG1nðbb; tÞ

n
þ 4

ffiffiffiffiffiffiffiffi
pm

p
bG2nðbb; tÞ
n

þ
ffiffiffiffiffiffi
8p

p
bk2ffiffiffi
n

p þ 4b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1=d

2n

r
;

(17)
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where

G1nðbb; tÞ , Eg sup
bb;t

Xn
i¼1

Xm
p;q¼1

gipq < bptðxðpÞ
i Þ;bqtðxðqÞi Þ >

" #
;

(18)

G2nðbb; tÞ ¼ Eg sup
bb;t

Xn
i¼1

Xk
c¼1

Xm
p¼1

gicpbptðxðpÞ
i Þ

" #
; (19)

and gipq; gicp; i 2 f1; . . . ; ng; p; q 2 f1; . . . ;mg; c 2 f1; . . . ; kg
are i.i.d. Gaussian random variables with zero mean and unit
standard deviation.

Note that if all the views are accessible, we have
G1nðbb; tÞ 	 m2

ffiffiffi
n

p
and G2nðbb; tÞ 	 mk

ffiffiffi
n

p
. This implies that

with an ideal access to all views, the proposed algorithms

will have generalization bounds of order Oð ffiffiffiffiffiffiffiffi
1=n

p Þ. How-
ever, when the number of absent views are increasing, the
values of G1nðbb; tÞ and G2nðbb; tÞ will become lager, making it
more difficult to learn and more training examples are
required to secure a given clustering accuracy.

According to Theorem 1, for any learned b̂b; Ĉ, to achieve
a small

E½fðxÞ� ¼ E min
y2fe1;...;ekg

fb̂bðxÞ � Ĉy
��� ���2

H


 �
;

the corresponding 1
n

Pn
i¼1 fðxiÞ needs to be as small as possi-

ble. Assume that bb and C are obtained by minimizing
1
n

Pn
i¼1 fðxiÞ and that H is constructed according to Eq. (3),

we have

1

n

Xn
i¼1

fðxiÞ 	 TrðKbbðIn �HH>ÞÞ; (20)

because the proposed algorithms pose a constraintH>H ¼ Ik
which will make the corresponding centroids non-optimal
for minimizing 1

n

Pn
i¼1 fðxiÞ. This means that the proposed

objectives are upper bounds of 1
n

Pn
i¼1 fðxiÞ. Thus, minimiz-

ing TrðKbbðIn �HH>ÞÞ will ensure a small 1
n

Pn
i¼1 fðxiÞ for

good generalization, which also verifies the good generaliza-
tion ability of the proposed algorithms. The detailed proof
are provided in the supplemental material, available online.

5 EXPERIMENTAL RESULT

5.1 Experimental Settings

The proposed algorithm is experimentally evaluated on 13
widely used MKL benchmark data sets shown in Table 2.
They are Cornell, Texas, Washington and Wisconsin1,
Oxford Flower17 and Flower1022, Columbia Consumer
Video (CCV)3 and Caltech1014. The original features for the
first four data sets are available. For each of these datasets,
we obtain two kernel matrices by applying a linear kernel to
the features of each view. For CCV, we generate three base
kernels by applying a Gaussian kernel on its SIFT, STIP and
MFCC features, where the widths of the three Gaussian

kernels are set as the mean of all pairwise sample distances,
respectively. For Flower17, Flower102 and Caltech101 data
sets, all kernel matrices are pre-computed and can be pub-
licly downloaded from the above websites. Meanwhile, Cal-
tech101-5 means the number of samples belonging to each
cluster is 5, and so on.

We compare the proposed algorithms with several com-
monly used imputation methods, including zero filling (ZF),
mean filling (MF), k-nearest-neighbor filling (KNN) and the
alignment-maximization filling (AF) proposed in [14] and
partial multi-view clustering (PVC) [7]. The algorithms in
[15], [17], [26] are not incorporated into our experimental
comparison since they only consider the absence of input
features while not the rows/columns of base kernels. Com-
pared with [16], the imputation algorithm in [14] is much
simpler and more computationally efficient. Therefore, we
choose [14] as a representative algorithm to demonstrate the
advantages and effectiveness of joint optimization on impu-
tation and clustering. The widely used MKKM [3] is applied
with these imputed base kernels. These two-stage methods
are termed MKKM+ZF, MKKM+MF, MKKM+KNN and
MKKM+AF in this experiment, respectively. We do not
include the EM-based imputation algorithm due to its high
computational cost, even for small-sized samples. The Mat-
lab codes of kernel k-means and MKKM are publicly down-
loaded from https://github.com/mehmetgonen/

lmkkmeans. Additionally, we also provide the results of
the proposed MKKM-IK with three different initializations
for comprehensive comparison, including MKKM-IK+ZF,
MKKM-IK+MF and MKKM-IK+KNN. Meanwhile, the pro-
posed MKKM-IK with mutual kernel completion, is termed
MKKM-IK-MKC in comparison.

Following the literature [27], all base kernels are cen-
tered and scaled so that we have kpðxi; xiÞ ¼ 1 for all i
and p. For all data sets, it is assumed that the true num-
ber of clusters is known and it is set as the true number
of classes. To generate incomplete kernels, we create the
index vectors fspgmp¼1 as follows. We first randomly select
roundð" � nÞ samples, where roundð�Þ denotes a rounding
function. For each selected sample, a random vector
v ¼ ðv1; . . . ; vmÞ 2 ½0; 1�m and a scalar v0 ðv0 2 ½0; 1�Þ are
then generated, respectively. The pth view will be pres-
ent for this sample if vp � v0 is satisfied. In case none of
v1; . . . ; vm can satisfy this condition, we will generate a
new v to ensure that at least one view is available for a
sample. Note that this does not mean that we require a
complete view across all the samples. After the above
step, we will be able to obtain the index vector sp listing
the samples whose pth view is present. The parameter ",
termed missing ratio in this experiment, controls the per-
centage of samples that have absent views, and it affects
the performance of the algorithms in comparison. Intui-
tively, the larger the value of " is, the poorer the cluster-
ing performance that an algorithm can achieve. In order
to show this point in depth, we compare these algo-
rithms with respect to ". Specifically, " on all the data
sets is set as ½0:1 : 0:1 : 0:9�.

The widely used clustering accuracy (ACC), normalized
mutual information (NMI) and purity are applied to evalu-
ate the clustering performance. For given xi ð1 	 i 	 nÞ, let
ci and yi be its predicted cluster label and the provided

1. http://lamda.nju.edu.cn/code_PVC.ashx
2. http://www.robots.ox.ac.uk/vgg/data/flowers/

3. http://www.ee.columbia.edu/ln/dvmm/CCV/
4. http://files.is.tue.mpg.de/pgehler/projects/
iccv09/
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ground-truth label, respectively. Let c ¼ ½c1; . . . ; cn�> and
y ¼ ½y1; . . . ; yn�> denote the predicted cluster labels of a clus-
tering algorithm and the provided ground-truth labels of
x1; x2; . . . ; xn, respectively. The clustering accuracy (ACC)
is defined as follows,

ACC ¼
Pn

i¼1 dðyi;mapðciÞÞ
n

; (21)

where dðu; vÞ is the delta function that equals one if u ¼ v
and equals zero otherwise, and mapðciÞ is the permutation
mapping function that maps each cluster label ci to the
equivalent label from data. The best mapping can be found
by using the Kuhn-Munkres algorithm [28]. The mutual
information between y and c, denoted asMIðy; cÞ, is defined
as follows:

MIðy; cÞ ¼
X

yi2y; c0j2c
pðyi; c0jÞlog 2

pðyi; c0jÞ
pðyiÞpðc0jÞ

; (22)

where pðyiÞ and pðc0jÞ are the probabilities that a sample
arbitrarily selected from data belongs to the clusters yi and
c0j, respectively, and pðyi; c0jÞ is the joint probability that the
arbitrarily selected samples belongs to the clusters yi and c0j
at the same time. The normalized mutual information
(NMI) is then defined as follows:

NMIðy; cÞ ¼ MIðy; cÞ
maxðHðyÞ;HðcÞÞ ; (23)

where HðyÞ and HðcÞ are the entropies of y and c,
respectively.

For all algorithms, we repeat each experiment for 50
times with random initialization to reduce the affect of ran-
domness caused by k-means, and report the best result.
Meanwhile, we randomly generate the “incomplete” pat-
terns for 10 times in the above-mentioned way and report
the statistical results. The aggregated ACC and NMI are
used to evaluate the goodness of the algorithms in compari-
son. Taking the aggregated ACC for example, it is obtained
by averaging the averaged ACC achieved by an algorithm
over different ". All experiments are conducted on a PC
machine with an Intel(R) Core(TM)-i7-5820, 3.3 GHz CPU
and 16G RAM in MATLAB environment.

5.2 Experimental Results on WebKB Datasets

We conduct experiments on four WebKB datasets, includ-
ing Cornell, Texas, Washington and Wisconsin, to compare
with PVC [7], which requires to access the original features
and is only able to handle two views clustering tasks. Table 1
reports the aggregated ACC, NMI and the standard devia-
tion, where the one with the highest performance is shown
in bold. From Table 1, we observe that: i) The proposed
MKKM-IK with zero, mean and KNN initializations consis-
tently achieve comparable or better clustering performance
among the MKKM methods with absent kernels on Cornell,
Texas and Washington, and a little inferior to MKKM+KNN
onWisconsin; ii) The proposed MKKM-IK-MKC further sig-
nificantly improves MKKM-IK and demonstrates the best
performance in all the data sets; and iii) The improvement
of MKKM-IK-MKC over existing algorithms is more signifi-
cant. For example, it improves the second best algorithm
(PVC) by nearly five percentage points on Texas in terms of
aggregated clustering accuracy. We also provide the ACC
and NMI comparison of the above algorithms with different
missing ratios on Cornell, as shown in Fig. 1. These results
are consistent with the ones reported in Table 1. Meanwhile,
we provide the results on other three data sets in the appen-
dix, available in the online supplemental material due to
space limit.

TABLE 2
Datasets Used in Our Experiments

Dataset #Samples #Kernels #Classes

Cornell 195 2 5
Texas 187 2 5
Washington 230 2 5
Wisconsin 265 2 5

Flower17 1360 7 17
Flower102 8189 4 102

Caltech101-5 510 48 102
Caltech101-10 1020 48 102
Caltech101-15 1530 48 102
Caltech101-20 2040 48 102
Caltech101-25 2550 48 102
Caltech101-30 3060 48 102

CCV 6773 3 20

TABLE 1
Aggregated ACC and NMI Comparison (mean�std) of Different Clustering Algorithms on Cornell,

Texas, Washington and Wisconsin Data Sets

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF PVC MKKM-IK (proposed)

[14] [7] ZF MF KNN MKC

ACC

Cornell 33:47� 1:03 33:05� 0:81 33:50� 1:11 35:84� 1:25 35:71� 1:21 36:66� 1:32 36:86� 1:24 36:33� 1:36 47:50� 1:21
Texas 35:84� 0:71 37:12� 1:11 34:67� 0:80 37:39� 0:99 38:69� 1:36 37:83� 0:88 38:55� 0:82 37:36� 0:85 43:48� 0:93
Washington 46:36� 1:08 43:66� 0:96 45:39� 1:13 47:12� 1:07 42:65� 0:94 46:71� 1:01 46:47� 1:06 46:37� 0:94 49:69� 0:81
Wisconsin 45:75� 1:06 43:93� 1:13 46:70� 0:93 45:75� 0:91 34:45� 0:86 44:89� 1:06 43:52� 1:03 44:47� 1:13 49:99� 0:88

NMI

Cornell 9:96� 0:57 9:34� 0:54 10:18� 0:83 12:57� 0:89 5:58� 0:66 13:25� 0:85 13:31� 0:93 12:92� 0:97 25:84� 1:19
Texas 9:87� 0:57 8:15� 0:62 9:22� 0:57 12:02� 0:78 3:42� 0:46 12:64� 0:81 12:38� 0:71 12:16� 0:63 20:81� 0:95
Washington 23:23� 1:03 22:49� 0:96 22:24� 1:17 23:36� 0:98 11:41� 0:60 22:62� 0:99 22:60� 0:79 22:42� 0:94 25:85� 0:81
Wisconsin 20:06� 0:79 20:12� 1:03 21:22� 0:75 19:88� 0:76 3:05� 0:30 19:21� 0:97 19:17� 0:93 19:05� 0:87 23:81� 0:82

LIU ET AL.: MULTIPLE KERNEL k-MEANS WITH INCOMPLETE KERNELS 1197

Authorized licensed use limited to: Zhejiang Normal University. Downloaded on March 05,2025 at 07:31:36 UTC from IEEE Xplore.  Restrictions apply. 



5.3 Experimental Results on Caltech101

Caltech101 has been widely used as a benchmark dataset to
evaluate the performance of multiple kernel clustering [5].
Here we also compare all the above-mentioned algorithms
on this data set where the number of samples for each cluster
varies in the range of 5; 10; � � � ; 30. The PVC algorithm is not
included into comparison since it can only handle two views
clustering tasks and is required to assess original features.

The clustering results of different algorithms with the
variation of missing ratio are reported in Fig. 2. As can
be seen, compared with existing two-stage imputation
algorithms, three curves corresponding to our proposed
MKKM-IK with different initializations are on the top when
the missing ratio varies from 0.1 to 0.9 in terms of ACC and
NMI, indicating its superior clustering performance. Mean-
while, the proposed MKKM-IK-MKC further significantly

improves the performance of MKKM-IK. Taking the
results in Fig. (2c) for example. The proposed MKKM-IK
with different initializations demonstrate the overall satis-
fying performance. However, MKKM-IK-MKC further sig-
nificantly improves its performance. Moreover, from the
Figs. 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, and 2k, we clearly
see that the improvement of our algorithms over the com-
pared ones is more significant with the increase of number
of samples. The aggregated ACC and NMI are also
reported in Table 6. We again clearly see the advantages of
our algorithms over the other ones in terms of ACC and
NMI. These results have well demonstrated the effective-
ness and advantages of incorporating kernel reconstruc-
tion in clustering.

5.4 Experimental Results on Flower17 and
Flower102

We also compare the clustering performance of the above-
mentioned algorithms on flower17 and flower102 data
sets, which have been widely used as benchmarks in multi-
ple kernel learning. The clustering results are shown in
Fig. 3 and Table 3. Again, we observe that the proposed
MKKM-IK outperforms the traditional imputation based
algorithms, and MKKM-IK-MKC significantly improves
MKKM-IK. Taking the result in Fig. (3a) for example, the
proposed MKKM-IK-MKC exceeds the second best one by
over ten percentage in terms of clustering accuracy when
the missing ratio is 0.1. This superiority is consistently
kept with the variation of missing ratio. Similar results can
also be found from Figs. (3c) and (3d). Meanwhile, the
aggregated ACC and NMI are also reported in Table 3,

Fig. 1. ACC and NMI comparison with the variation of missing ratios on
Cornell dataset. For each given missing ratio, the “incomplete patterns”
are randomly generated for 10 times and their averaged results are
reported. The results on other data sets are provided in the appendix,
available in the online supplemental material due to space limit.

Fig. 2. ACC and NMI comparison with the variation of missing ratios on Caltech101. For each given missing ratio, the “incomplete patterns” are ran-
domly generated for 10 times and their averaged results are reported.
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from which we also identify the superiority of the proposed
MKKM-IK and MKKM-IK-MKC.

5.5 Experimental Results on CCV

We finally evaluate the performance of the proposed algo-
rithms on CCV dataset, and report the results in Fig. 4 and
Table 4. We once again observe that the proposed MKKM-
IK and MKKM-IK-MKC significantly outperforms the com-
pared ones in terms of ACC and NMI. Also, we observe
that the proposed MKKM-IK-MKC is a little inferior to
MKKM-IK from Fig. (4a) when the missing ratio is over 0.6.
This is because there might be little useful information
available for mutual kernel completion when the missing
ratio of kernel matrices is relatively large.

In sum, we attribute the superiority of our algorithms to: 1)
the joint optimization on imputation and clustering; and 2)
themutual kernel completion. On one hand, the imputation is
guided by the clustering results, which makes the imputation
more directly targeted at the ultimate goal. On the other hand,
this meaningful imputation is beneficial to refine the cluster-
ing results. These two learning processes negotiate with each

other, leading to improved clustering performance. In con-
trast, MKKM+ZF, MKKM+MF, MKKM+KNN and MKKM
+AF algorithms do not fully take advantage of the connection
between the imputation and clustering procedures. This
could produce imputation that does not well serve the subse-
quent clustering as originally expected, affecting the cluster-
ing performance. Moreover, the proposed mutual kernel
completionwell utilizes the available information to complete
kernels, which further boosts the clustering performance.

5.6 The Robustness of MKKM-IK-MKC to Noisy or
Irrelevant Kernels

To explore the robustness of MKKM-IK-MKC to noisy or
irrelevant kernels, we design an additional toy data experi-
ment to explore what will happen if there are noisy or irrele-
vant kernels in the kernel set. To do so, we generate a
random positive semi-definite (PSD) matrix to simulate the
kernel matrix obtained with an irrelevant kernel function,
and add it into the present kernel set of Flower17 dataset as
the last kernel matrix. After that, we perform the aforemen-
tioned algorithms on this dataset and report the results in
Fig. 6. As observed, the proposed MKKM-IK-MKC signifi-
cantly outperforms the compared ones when the missing
ratio is less than 0.5. When the missing ratio is greater than
0.6, MKKM-IK-MKC demonstrates comparable or slightly
inferior performance when compared with the proposed
variants without kernel construction. This is because the
imputation from other kernel matrices may not be accurate
anymore when there are a significant number of missing
entries in these kernels, which in turn adversely affects the
resultant clustering. Meanwhile, according to the aforemen-
tioned analysis, the kernel reconstruction term is able to
reduce the kernel weights of irrelevant kernels, which is
helpful to achieve robust clustering performance in the
presence of irrelevant kernels.

Fig. 3. ACC and NMI comparison with the variation of missing ratios on Flower17 and Flower102. For each given missing ratio, the “incomplete
patterns” are randomly generated for 10 times and their averaged results are reported.

TABLE 3
Aggregated ACC and NMI Comparison (mean�std) of Different Clustering Algorithms on Flower17 and Flower102

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK (proposed)

[14] ZF KNN MF MKC

ACC

Flower17 37:33� 0:46 37:19� 0:43 38:11� 0:43 42:37� 0:46 43:84� 0:65 43:79� 0:57 43:90� 0:55 54:09� 0:49
Flower102 17:95� 0:12 17:90� 0:14 18:17� 0:16 18:37� 0:18 21:89� 0:16 21:90� 0:11 21:81� 0:14 28:07� 0:17

NMI

Flower17 37:63� 0:42 37:63� 0:40 38:46� 0:34 41:86� 0:30 42:98� 0:48 42:94� 0:52 42:98� 0:41 53:10� 0:19
Flower102 37:35� 0:09 37:37� 0:10 37:75� 0:12 37:64� 0:12 39:65� 0:10 39:67� 0:06 39:61� 0:16 45:29� 0:07

Fig. 4. ACC and NMI comparison with the variation of missing ratios on
CCV. For each given missing ratio, the “incomplete patterns” are ran-
domly generated for 10 times and their averaged results are reported.
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We report the kernel combination weights learned by the
aforementioned algorithms in Fig. 7. As can be seen from the
Fig. 7h, the kernel combination weight corresponding to the
noisy kernel (indexed by 8) learned by the proposedMKKM-
IK-MKC is zero. This clearly demonstrates the advantage of
incorporating kernel reconstruction into the objective. How-
ever, it is not the case for the rest of algorithms in comparison.
The kernel weights corresponding to the last kernel learned
by these algorithms are considerably greater than zero. This
is because the kernel combination weight bp is updated by

Eq. (6) at each iteration, where ap ¼ TrðKpðI�HH>ÞÞ and ap
is a limited positive number. This makes its weight bp usually
not zero. From this toy data experiments, we observe that the
proposedMKKM-IK-MKC can automatically reduce the ker-
nelweights of noisy or irrelavent kernels and achieve promis-
ing clustering performance.

5.7 Alignment Between the Original Kernels and the
Imputed Ones

Besides comparing the above-mentioned algorithms in terms
of clustering performance,wewould like to gainmore insight

on how close the imputed base kernels (as a by-product of
our algorithm) are to the ground-truth, i.e., the original, com-
plete base kernels. To do this, we calculate the alignment
between the ground-truth kernels and the imputed ones. The
kernel alignment, a widely used criterion tomeasure the sim-
ilarity of two kernel matrices, is used to serve this purpose
[27]. We compare the alignment resulted from our algorithm
with those from existing imputation algorithms. The results
under various missing ratios are shown in Fig. 5. As
observed, the kernels imputed by the proposed MKKM-IK
align with the ground-truth kernels much better than those
obtained by the existing imputation algorithms.

In particular, MKKM-IK+KNN wins the MKKM+AF
by more than 9 percentage points on Caltech101 when the
missing ratio is 0.9, as shown in Fig. (5a). The aggregated
alignment and the standard deviation are reported in
Table 5. We once again observe the significant superiority of
the proposed MKKM-IK to the compared ones. These
results indicate that our algorithm can not only achieve bet-
ter clustering performance, but is also able to produce better
imputation result by exploiting the prior knowledge of

TABLE 4
Aggregated ACC and NMI Comparison (mean�std) of Different Clustering Algorithms on CCV

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK (proposed)

[14] ZF KNN MF MKC

ACC

CCV 14:96� 0:17 14:99� 0:15 15:87� 0:19 16:13� 0:22 17:50� 0:26 17:69� 0:31 17:96� 0:21 18:96� 0:24

NMI

CCV 11:25� 0:12 11:34� 0:14 12:11� 0:17 12:25� 0:19 13:30� 0:18 13:54� 0:23 13:70� 0:15 15:75� 0:16

Fig. 5. Kernel alignment between the original kernels and the imputed kernels by different algorithms under different missing ratios. For each given
missing ratio, the “incomplete patterns” are randomly generated for 10 times and their averaged results are reported. The results on Caltech101-5,
Caltech101-10 and Caltech101-15 are provided in the appendix, available in the online supplemental material due to space limit.
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“serve clustering”. It is worth pointing out that the kernel
matrices imputed by the proposed MKKM-IK-MKC does
not algin well with the original ones on some datasets such
as Flower17 and Flower102, as shown in Figs. (5d) and (5e).
This is because each incomplete kernel matrix is approxi-
mately optimized while the equality constraint in Eq. (12)
may not be strictly guaranteed to keep anymore. This would
reduce the alignment between the imputed kernel matrices
and the original ones. The alignment results on Caltech101-
5, Caltech101-10 and Caltech101-15 are provided in the
appendix, available in the online supplemental material
due to space limit.

From the above experiments, we conclude that the pro-
posed algorithm: 1) effectively addresses the issue of row/
columns absence in multiple kernel clustering; 2) consis-
tently achieves performance superior to the comparable
ones, especially in the presence of intensive absence; and 3)
can better recover the incomplete base kernels by taking
into account the goal of clustering. In short, our algorithm
well utilizes the connection between imputation and clus-
tering procedures and mutual kernel completion, bringing
forth significant improvements on clustering performance.

5.8 Convergence and Parameter Sensitivity

The proposed MKKM-IK is theoretically guaranteed to con-
verge to a local minimum according to [29]. In our experi-
ments, we observe that the objective value of this algorithm
does monotonically decrease at each iteration and that it
usually converges in less than 20 iterations. One examples
of the evolution of the objective value on Flower17 are dem-
onstrated in Fig. (8a).

Different from MKKM-IK which is parameter-free, the
newly proposed MKKM-IK-MKC introduces a parameter �
to balance the objective of incomplete MKKM and kernel
reconstruction. We conduct an additional experiment to
show the effect of this parameter on the clustering perfor-
mance. In Fig. 8b, we plot the ACC of MKKM-IK-MKC by
varying � from 2�15 to 215 respectively, where the results of

TABLE 6
Aggregated ACC and NMI Comparison (mean�std) of Different Clustering Algorithms on Caltech101

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK (proposed)

[14] ZF KNN MF MKC

ACC
5 26:04� 0:34 25:60� 0:25 27:28� 0:30 29:02� 0:31 28:91� 0:20 28:91� 0:24 28:88� 0:38 35:81� 0:30
10 19:71� 0:19 19:67� 0:23 21:51� 0:20 22:53� 0:22 22:67� 0:18 22:83� 0:27 23:04� 0:18 31:65� 0:21
15 17:13� 0:24 17:09� 0:16 18:89� 0:13 20:34� 0:18 20:64� 0:15 20:59� 0:22 20:81� 0:18 30:49� 0:25
20 15:67� 0:12 15:65� 0:22 17:29� 0:16 18:89� 0:20 19:29� 0:11 19:37� 0:17 19:52� 0:12 30:11� 0:31
25 14:65� 0:18 14:58� 0:13 16:24� 0:13 17:71� 0:20 18:12� 0:15 18:16� 0:21 18:36� 0:21 29:38� 0:21
30 14:15� 0:12 14:05� 0:14 15:51� 0:16 17:13� 0:18 17:54� 0:28 17:60� 0:18 17:77� 0:12 28:40� 0:19

NMI

5 64:30� 0:16 63:93� 0:13 65:89� 0:21 66:53� 0:14 66:51� 0:12 66:50� 0:13 66:57� 0:21 70:10� 0:20
10 53:57� 0:11 53:63� 0:08 55:24� 0:11 55:70� 0:20 55:75� 0:15 55:80� 0:15 55:98� 0:14 61:52� 0:17
15 47:39� 0:13 47:38� 0:12 48:82� 0:11 49:70� 0:14 49:90� 0:10 49:93� 0:10 50:01� 0:15 57:11� 0:21
20 43:11� 0:10 43:08� 0:17 44:54� 0:12 45:58� 0:15 45:90� 0:14 45:94� 0:06 46:07� 0:11 54:29� 0:28
25 39:98� 0:10 39:88� 0:11 41:47� 0:09 42:45� 0:15 42:88� 0:15 42:88� 0:18 42:99� 0:12 51:96� 0:12
30 37:78� 0:08 37:66� 0:12 39:15� 0:13 40:29� 0:11 40:65� 0:14 40:74� 0:10 40:88� 0:11 49:81� 0:12

TABLE 5
Aggregated Alignment between the Original Kernels and the Imputed Kernels (mean�std) on All Data Sets

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK (proposed)

[14] ZF KNN MF MKC

Flower17 80:05� 0:09 80:03� 0:09 81:44� 0:06 86:49� 0:07 89:04� 0:07 89:04� 0:06 89:09� 0:06 81:42� 0:08
Flower102 75:55� 0:05 75:55� 0:05 73:34� 0:03 75:24� 0:05 77:75� 0:05 77:75� 0:05 78:07� 0:05 73:82� 0:18
Caltech101-5 74:02� 0:32 74:42� 0:27 75:50� 1:06 84:51� 0:16 82:46� 0:95 82:93� 0:92 84:36� 0:98 84:98� 0:10
Caltech101-10 76:16� 0:18 76:63� 0:15 77:67� 0:32 85:89� 0:18 88:08� 0:24 88:49� 0:24 89:93� 0:20 85:39� 0:05
Caltech101-15 74:99� 0:09 75:47� 0:11 77:38� 0:25 85:35� 0:13 88:85� 0:13 89:28� 0:15 90:61� 0:09 84:51� 0:05
Caltech101-20 75:73� 0:13 76:20� 0:12 78:68� 0:21 86:02� 0:10 89:95� 0:14 90:34� 0:14 91:59� 0:09 84:66� 0:02
Caltech101-25 75:12� 0:10 75:58� 0:11 78:46� 0:18 85:71� 0:12 89:91� 0:17 90:27� 0:18 91:47� 0:14 84:22� 0:04
Caltech101-30 75:59� 0:08 76:01� 0:07 79:09� 0:12 86:11� 0:08 90:47� 0:09 90:78� 0:07 91:91� 0:05 84:29� 0:03
CCV 83:34� 0:05 84:94� 0:05 80:85� 0:05 83:69� 0:05 84:86� 0:06 86:41� 0:06 87:25� 0:06 87:25� 0:06

Fig. 6. Clustering accuracy and NMI comparison with the variation of
missing ratios on Flower17 with an additional noisy kernel. For each
given missing ratio, the “incomplete patterns” are randomly generated
for 10 times and their averaged results are reported.

LIU ET AL.: MULTIPLE KERNEL k-MEANS WITH INCOMPLETE KERNELS 1201

Authorized licensed use limited to: Zhejiang Normal University. Downloaded on March 05,2025 at 07:31:36 UTC from IEEE Xplore.  Restrictions apply. 



MKKM-IK+ZF is also incorporated as a baseline. From this
figure, we observe that the newly proposed MKKM-IK-
MKC significantly outperforms MKKM-IK+ZF and shows
stable performance across a wide range of � values.

We end up this section by discussing the convergence of
the proposed MKKM-IK-MKC. Though the objective value
of our algorithm cannot be theoretically guaranteed tomono-
tonically decrease at each iteration due to the approximate
optimization Kp in Eq. (12), we experimentally observe that
it usually takes less than 10 iterations to satisfy the stopping
criterion and demonstrates superior clustering performance.

6 CONCLUSION

While MKC algorithms have recently demonstrated promis-
ing performance in various applications, they are not able to
effectively handle the scenario where base kernels are
incomplete. This paper proposes to jointly optimize the ker-
nel imputation and clustering to address this issue. It makes
these two learning procedures seamlessly integrated to
achieve better clustering. The proposed algorithm effec-
tively solves the resultant optimization problem, and it
demonstrates well improved clustering performance via
extensive experiments on benchmark data sets, especially
when the missing ratio is high. In the future, we plan to fur-
ther improve the clustering performance by considering the
correlations of different base kernels [16], [30], [31].

Moreover, the proposed algorithm is generic. We are going
to extend it to other MKC algorithms that work with kernel
such as spectral clustering [32]. Also, designing proper crite-
ria [33], [34] for mutual kernel completion to satisfy various
requirements of clustering tasks is interesting and worth
exploring in future.
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