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Abstract
Object detection in Unmanned Aerial Vehicle (UAV) images
has emerged as a focal area of research, which presents two
significant challenges: i) objects are typically small and dense
within vast images; ii) computational resource constraints ren-
der most models unsuitable for real-time deployment. Current
real-time object detectors are not optimized for UAV images,
and complex methods designed for small object detection of-
ten lack real-time capabilities. To address these challenges,
we propose a novel detector, RemDet (Reparameter efficient
multiplication Detector). Our contributions are as follows:
1) Rethinking the challenges of existing detectors for small
and dense UAV images, and proposing information loss as
a design guideline for efficient models. 2) We introduce the
ChannelC2f module to enhance small object detection perfor-
mance, demonstrating that high-dimensional representations
can effectively mitigate information loss. 3) We design the
GatedFFN module to provide not only strong performance
but also low latency, effectively addressing the challenges
of real-time detection. Our research reveals that GatedFFN,
through the use of multiplication, is more cost-effective than
feed-forward networks for high-dimensional representation.
4) We propose the CED module, which combines the advan-
tages of ViT and CNN downsampling to effectively reduce
information loss. It specifically enhances context information
for small and dense objects. Extensive experiments on large
UAV datasets, Visdrone and UAVDT, validate the real-time
efficiency and superior performance of our methods. On the
challenging UAV dataset VisDrone, our methods not only pro-
vided state-of-the-art results, improving detection by more
than 3.4%, but also achieve 110 FPS on a single 4090.

Introduction
Recent years have witnessed significant progress in object de-
tection techniques, including the success of general detectors
like Faster R-CNN (Girshick 2015), YOLO (Redmon et al.
2016; Redmon and Farhadi 2017), and DETR (Carion et al.
2020). Additionally, researchers have explored lightweight
and efficient architectures tailored specifically for object de-
tection. Despite these advancements, Unmanned Aerial Ve-
hicle (UAV) images present unique challenges due to small
and dense objects. Object detection in UAV images is a criti-
cal research area with applications in surveillance, disaster
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Figure 1: (a) Visualization of real-time detector results on
VisDrone, white characters below the image represent mAP,
model size, and FPS. (b) Kernel density analysis of detection
object width on UAV and COCO datasets.

management, and environmental monitoring. Captured from
an aerial perspective, UAV datasets exhibit a higher preva-
lence and density of small objects compared to traditional
datasets (as illustrated in Figure 1 (b)). For instance, while
the MSCOCO (Lin et al. 2014) dataset contains an average of
7 objects per image, the VisDrone (Zhu et al. 2021) dataset
contains an average of 53 objects.

To address the detection challenges posed by small and
dense objects, Region of Interest (RoI) methods are widely
adopted. RoI Transformer (Ding et al. 2018) and Dogflight
(Ashraf, Sultani, and Shah 2021) can amplify or prioritize
the selection of regions of interest to enhance object vis-
ibility and distinguishability. Besides, current mainstream
UAV detectors tend to employ density cropping methods
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Figure 2: Overview of the proposed RemDet. Our method consists of three components: GatedFFN achieves adaptive weighting
through multiplication, followed by channel fusion. CED utilizes patch merge operations to concatenate channels. ChannelC2f
and decoupled heads are employed for prediction.

(Meethal, Granger, and Pedersoli 2023), achieved through
heavily handcrafted designs, to achieve background suppres-
sion or enhance feature fusion. Unfortunately, these methods
often overlook information loss during backbone feature ex-
traction. While achieving high-performance detection, they
intuitively rely on larger feature extraction networks without
thoroughly exploring key factors, thus neglecting efficient
model design methods.

On the contrary, lightweight models have made signif-
icant progress in the field of generic object detection. By
leveraging techniques such as depthwise separable convolu-
tions (Howard et al. 2019), reparameterization (Ding et al.
2021), and pruning (Ye et al. 2023), they exhibit outstand-
ing performance in object detection tasks. However, research
specifically focused on lightweight models for UAV object
detection remains relatively scarce. QueryDet (Yang, Huang,
and Wang 2022) and CEASC (Du et al. 2023) use sparse con-
volutions in their detection heads to reduce model weights,
which lowers computational requirements. However, they
still rely on complex handcrafted designs and lack hardware
optimization, hindering real-time efficiency.

This raises a question: Is it possible to balance the ef-
ficiency and accuracy of UAV detection through device-
friendly operations rather than heavily handcrafted designs?

To address the challenges of detecting small and dense ob-
jects as well as achieving high-speed inference, in this paper,
we propose RemDet (Reparameter efficient multiplication
Detector), a one-stage anchor-free detector designed for real-
time UAV object detection. Our approach rethinks the design
of UAV detectors with the overarching goal of reducing in-
formation loss. Specifically, for small object detection, we
introduce ChannelC2f and Context Enhanced Downsample
(CED). The former extends the C2f with additional channels,
providing a simple yet effective enhancement for small object

detection. The latter combines the advantages of lightweight
detectors (Sandler et al. 2018) and ViT (Dosovitskiy et al.
2020) downsampling, effectively enhancing contextual in-
formation and reducing information loss. To meet the most
demanding real-time detection requirements, we introduce
GatedFFN. This model employs cost-efficient operations to
achieve high-dimensional representation. Additionally, Gat-
edFFN reparameterizes two convolutions, effectively balanc-
ing performance and speed. The maximum version, RemDet-
X, trained on high-resolution UAV images, achieves an mAP
of 40%, with inference latency as low as 9 ms on a single
NVIDIA 4090 GPU, achieving 110 FPS.

The main contributions of our research include:
1. We rethink the design of UAV detectors, discarding com-

plex handcrafted designs. By exploring information loss,
we effectively enhanced small object detection using a
simplest structure.

2. Following the principle of reducing information loss, our
research revealed that high-dimensional representation
alone can reduce information loss and enhance small ob-
ject performance. We validate our analysis through empir-
ical results (see Figure 4 (b)), theoretical exploration (in
Section 3.2), and visual representations (Figure 4 (a)).

3. To address the challenging real-time requirements, where
complex designs and multi-feature fusion are impractical
for accuracy improvement, our study reveals that multi-
plication, rather than feed-forward networks, serve as a
cost-effective and simpler high-dimensional representa-
tion. Our designs, based on this insight, reduces informa-
tion loss while maintaining low latency.

Related Work
Object Detection for UAV images Unlike general object
detection, UAV object detection has always focused on de-



signing methods that transition from coarse to fine granularity.
Addressing the non-uniform distribution of small objects in
images, ClusDet (Yang et al. 2019) utilized a clustering-based
scale estimation method, effectively enhancing small object
detection. UFPMP-Det (Huang, Chen, and Huang 2022) first
merged sub-regions provided by a coarse detector through
clustering to suppress the background, then packaged the re-
sults into a mosaic for single inference. AMRNET (Wei et al.
2020) significantly expanded the coarse-to-fine framework
through two specially designed modules. CZDet (Meethal,
Granger, and Pedersoli 2023), based on density cropping
method, first detected density-cropped regions and basic cat-
egory objects during inference, then inputs them into the sec-
ond stage of inference. Additionally, YOLC (Liu et al. 2024)
adaptively searched for clustered regions based on CenterNet
(Duan et al. 2019), adjusted them to appropriate scales, and
improves the loss function to enhance performance. How-
ever, most of these works are designed for detection heads or
feature fusion layers, neglecting the information loss during
the backbone stage. Above all, their real-time performance is
also hindered by heavily handcrafted design.

Real-time detection of UAV images In real-time UAV de-
tection, one-stage detectors like YOLO (Jocher 2020; Li et al.
2022; Wang, Bochkovskiy, and Liao 2023) are widely used.
The YOLO series has consistently aimed for real-time object
detection, showcasing strong vitality through continuous up-
dates and iterations. YOLOv8 (Jocher, Chaurasia, and Qiu
2023), in particular, improved real-time performance with
its simple and effective C2f and decoupled head. However,
on UAV images, the efficient extraction modules designed
for these detectors often perform poorly due to background
interference, as the objects to be detected are small and dense.
Designing modules solely to enhance small object detection
often fails to balance real-time performance.

Our work focuses on achieving a balance between small
object detection and real-time performance, using more
hardware-friendly designs rather than heavily handcrafted
designs for UAV detection.

Method
Exploring Designs for Efficient Models
In order to further enhance model performance in complex
scenarios, researchers have begun investigating factors that
affect detection performance, with an increasing focus on the
information bottleneck theory.

Principles for Hidden Layer Design We rethink the infor-
mation bottleneck definition to gain design insights. Simply
put, the input variable is defined as X and the output variable
as Y . The hierarchical structure of a DNN forms a Markov
chain, which can approximately represent all relationships
and data. Each layer of the DNN relies solely on the input
data from the previous layer, meaning that if any layer loses
information about Y , it cannot be recovered in deeper layers.

We define the mutual information within the layer as
I(X;Y ) and describe this process concisely using mathe-
matics. The input variable X has high resolution and low
dimensionality, representing the lower-level representation of
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Figure 3: RemDet design process evaluated using FLOP,
latency, and mAP.

the data; whereas Y , as the prediction, has high dimensional-
ity and low resolution. This implies that the neural network
essentially performs data compression throughout the pro-
cess. In statistics, we denote the X related to the prediction
of Y as X ′. Under the constraint I(X ′;Y ), finding X ′ can
be expressed as the minimization of the Lagrangian function.
I(X;Y |X ′) represents the information between X and Y
that is not captured by X ′, and by replacing the constraint
with it, the formula can be equivalently expressed as:

Lp(x′|x) =I(X;X ′) + βI(X;Y |X ′) (1)

Where β ≥ 0. We further explain its optimization objective:
β represents the relaxation variable balancing complexity
I(X;X ′) and irrelevance I(X;Y |X ′). It can be observed
that when irrelevance is 0 and I(X;X ′) is minimized, the
Lagrangian function achieves its minimum value. This im-
plies that X ′ also reaches its minimum value. In DNN, this
indicates that X ′ should be as simple as possible, i.e., find-
ing the minimal information from X that satisfies the
conditions.

Due to the complexity of the data X , it is difficult to find
the minimal sufficient statistic. When using Y ′ for predic-
tion, we have I(X;X ′) ≥ I(Y ;Y ′). More generally, for any
neural network, it can be expressed as:

I(Y ;X) ≥I(Y ;hi) ≥ I(Y ;hi+1) ≥ I(Y ;Y ′) (2)

Where hi represents the intermediate information. The above
equation holds with equality only if each layer is a sufficient
statistic of its input. Therefore, the goal of each layer is to
optimally capture all information relevant to the output
in its input and discard all irrelevant parts.

Dimension Expansion Design Principle In (Tishby and
Zaslavsky 2015), the importance of designing compact DNN
is emphasized, focusing on reducing the number of layers
and minimizing the units per layer. YOLOv9 (Wang, Yeh,
and Liao 2024) employs a feature-sharing approach to enable
each layer to acquire relevant information from the preceding
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Figure 4: (a) Visualization of model features as channel expansion increases. (b) Comparison of Multiplication and ConvFFN.

layer. While theoretically effective, this method incurs high
training costs, posing significant challenges to model training.
Conversely, other efficient structures like LeYOLO (Hollard
et al. 2024), guided by the information bottleneck principle,
utilize a simple inverted bottleneck structure to enhance inter-
layer information interaction. However, this design lacks
detailed explanation. In (Han et al. 2021), a search on channel
dimensions was conducted, resulting in the design principle
of maintaining constant channel dimensions within layers
and linearly increasing them between stages.

In summary, the information bottleneck theory guides us in
enhancing the mapping relationship between X and Y . The
core objective is to create a cleaner and more compact struc-
ture to achieve simpler intra-layer mappings. Additionally,
the design between layers must maintain consistent input and
output dimensions. This brings us to the next design goal:
enhancing intra-layer information.

How to Design Efficient Modules?
Design for Enhanced Information Interaction After es-
tablishing inter-layer design guidelines, our focus shifts to
enhance intra-layer information interaction. (Shwartz-Ziv and
Tishby 2017) delve into the essence of hidden layers, empha-
sizing their role in learning from input X while compressing
Y information without labels. Our experimental investiga-
tions center on a Multilayer Perceptron (MLP), a common
choice for dimension expansion when learning from X .

To assess the impact of this operation on UAV detection,
we introduce ConvFFN, which employs only two 1×1 convo-
lutions as its backbone, with scaled hidden layer dimensions.
The detailed design of ConvFFN is provided in the appendix.
Surprisingly, with a channel expansion set to 3, ConvFFN
performs comparably to a baseline (Jocher, Chaurasia, and
Qiu 2023) that includes dense computations and residual
connections, while reducing parameters and computation
by approximately 10%. This phenomenon underscores the
heightened optimization benefits of minimizing information
loss in UAV datasets, where smaller objects prevail compared
to general datasets. Visualizing features across different chan-
nel expansions (Figure 4 (a)), we observe a significant am-
plification in feature weights as hidden dimensions increase.

This amplification is indicative of enhanced modeling capa-
bilities. Under consistent input-output dimensions, the model
more effectively accomplishes the tasks of ‘learning’ and
‘compression’. We deem that higher representations enhance
inter-layer interaction and are a form of “learning”.

Multiplication Resulting in Higher Representations In
deep learning, the MLP serves as a simple and common
modeling approach, often used for processing input-output
data. However, for pixel-sparse images with small correla-
tions, the operations of MLP can become redundant. There-
fore, we need a more efficient method for mapping to high-
dimensional.

Gated Linear Units (GLU) (Dauphin et al. 2017) in natural
language processing has been considered an alternative to
recurrent neural networks (RNNs). We specifically focus on
the gating part within GLU, which involves element-wise
multiplication.

We analyze the dimension expansion of MLP and GLU
from a mathematical perspective. To simplify the analysis, we
just consider the case of one-output channel transformation,
single-element input. To align the two methods, we assume
that the input element x ∈ Rd×1 and map it to wT

1 x and
wT

2 x. These two elements are then combined in an MLP.
Specifically, the representation of MLP is

wT
0 x =wT

1 x+ wT
2 x

=(

d∑
i=1

wi
1x

i) + (

d∑
j=1

wj
2x

j) (3)

Where w0 ∈ Rd×2. Represent the multiplication in the same
way:
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2x
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wi
1w

j
2x

ixj (4)



where w1, w2 ∈ Rd×1. By computing the polynomial sum,
it obtain (d+1)d

2 distinct terms. From a parameter perspec-
tive, multiplication incurs no additional computational cost.
Moreover, given that d ≫ 2, we observe that d2+d

2 ≥ 2d,
indicating higher dimensionality after element-wise multi-
plication. However, during multiplication, wT

2 x is discarded
but implicitly included in the output. As a result, the dimen-
sion of the output is halved compared to the original. As the
dimension increases, the impact of wT

2 x becomes more pro-
nounced. This shows that when hidden layers are expanded
in low dimensions, The closer the performance of multiplica-
tion will be to MLP. We conducted a series of experiments,
as shown in Figure 4 (b). The results not only support our
conjecture but also reveal that as the dimensionality exten-
sion increases, the gains in accuracy from higher dimensions
for both methods become closer to each other. Further, the
computational demand for multiplication is lower, allowing
us to compensate for the implicit dimension loss resulting
from polynomial addition by increasing dimension expansion.
Notably, Figure 4 (b) illustrates that the computational cost
of channel-expanded multiplication (to 9) is comparable to
that of MLP (with 7), yet the mAP improves by 0.3%.

We also observe that the multiplication resembles the
form of a kernel function. The kernel function is defined
as K(x, z) = ϕ(x) · ϕ(z), where · is expressed as an inner
product. In fact, we perform element-wise polynomial mul-
tiplication in formula 4, with wT

2 x serving as the mapping
function (ϕ(z)) to increase the result’s dimensionality.

Consequently, we now adopt the multiplication as our
primary design approach.

Module Design Our model design, as depicted in Figure 5,
provides a clear exposition of our approach. Based on C2f,
we employ a double-branch multiplication, eliminating the
Bottleneck structure, and utilize 1×1 and 3×3 depthwise
convolutions as reparameterized convolutions in the main
branch. Notably, (Wang et al. 2020) emphasizes that direct
channel compression may compromise expressive capacity.
To address this concern, we set the channel expansion fac-
tor to 3, enhancing inter-layer information. Finally, a 1×1
convolutional layer is positioned at the end of the model to
compress in-layer information for efficient output. Collec-
tively, these design choices constitute what we refer to as a
lightweight structure—the GatedFFN.

In the Neck layer, we merely scale the C2f (see in Fig-
ure 5) channels creating a structure known as ChannelC2f.
Specifically, we increase the overall channel expansion from
0.5 to 1.0 and reduce the Bottleneck’s expansion ratio from 1
to 0.25, thereby minimizing dense computations. Thus, we
enhance intra-layer information solely by adjusting channel
expansions.

Context Enhanced Downsample Module
In neural networks, downsampling modules are used to re-
duce the resolution of feature maps. As far as we know,
deepening the downsampling module is an efficient way to
mitigate information loss resulting from resolution reduction.
For this purpose, EfficientViT (Liu et al. 2023) and RepViT
(Wang et al. 2024) deepen the module and incorporate an
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Figure 5: Structure of the IB, C2f, and proposed GatedFFN.

additional FFN at the end for information compression. In
contrast, lightweight CNNs employ simpler modules, such as
3×3 convolutions with a stride of 2 for downsampling, which
is extremely fast. However, due to insufficient network depth,
concerns arise regarding information loss and performance
degradation. In ViT (Dosovitskiy et al. 2020), downsampling
is typically achieved using Patch Merge layers, effectively in-
creasing the channel expansion of layers to avoid information
loss. Additionally, Convnext (Liu et al. 2022) explores how to
adapt CNNs using ViT designs in detail. However, due to the
difficulty of Patch Merge in gaining an advantage over convo-
lutions in classification tasks, exploration of downsampling
layers was abandoned. This raises a question: Can combining
depthwise separable convolutions and Patch Merge improve
performance on UAV images?

To address this issue, we adopted the Inverted Bottleneck
and changed the stride to 1 while setting the input dimension
expansion to 1. It is worth noting that the performance of
depthwise separable convolutions is limited by the loss of
channel information during the split convolution operation.
To enhance information capture, we inserted Patch Merge
after the depthwise convolution, allowing the subsequent
pointwise convolution to obtain richer information. Detailed
design specifications can be found in the appendix. We named
the entire module the Context Enhanced Downsample (CED).
The CED module effectively mitigates information loss while
maintaining high-speed inference.

Experiment
Experimental Setup
Datasets To evaluate our method, we conduct UAV de-
tection experiment on the VisDrone (Zhu et al. 2021) and
UAVDT (Du et al. 2018), and also included the MSCOCO
(Lin et al. 2014) dataset as an additional benchmark. Vis-
Drone comprises 8,599 aerial images across 10 categories,
with 6,471 images for training and 548 images for validation,
all at a resolution of 2,000×1,500 pixels. Since the evaluation
server is currently closed, we followed related works and used
the validation set for performance evaluation. MSCOCO con-
tains over 330,000 images with multiple annotations across
80 categories. UAVDT includes 23,258 training images and
15,069 testing images, with a resolution of 1,024×540 pixels
across 3 classes.

Evaluation Measures The metric we use to evaluate and
compare the performance of various methods is the COCO-
style Average Precision (AP). Additionally, we report the



Model imgsz test APval
95 APval

50 APval
75 APval

s APval
m APval

l Latency(ms) FLOPs(G)

YOLOv6-v3.0-N 640 o 19.0 32.8 18.7 9.9 29.0 41.3 11.9 3.9
YOLOv8-N 640 o 19.1 33.0 18.9 10.6 28.9 38.3 4.3 4.1
YOLOv7-Tiny 640 o 19.4 35.1 18.5 10.5 29.1 41.0 3.8 4.2
RTMDet-Tiny 640 o 20.3 33.5 21.2 10.2 32.9 47.1 13.2 5.1
RemDet-Tiny 640 o 21.8 37.1 21.9 12.7 33.0 44.5 3.4 4.6

QueryDet 800 o 19.6 35.7 19.0 - - - 288 -
RetinaNet 800 o 20.2 36.9 19.5 - - - 14.7 210
Faster-RCNN 800 o 21.4 40.7 19.9 11.7 33.9 54.7 21.2 285
RTMDet-L 640 o 23.7 37.4 25.5 12.5 38.7 50.4 13.9 50.4
CenterNet 800 o 27.8 47.9 27.6 21.3 42.1 49.8 95.2 1855
HRDNet 1333 o 28.3 49.3 28.2 - - - - 421
GFLV1 1333 o 28.4 50.0 27.8 - - - 525 -
CEASC 1333 o 28.7 50.7 28.4 - - - 43.8 150
RemDet-L 640 o 29.3 47.4 30.3 18.7 43.4 55.8 7.1 67.4
RemDet-X 640 o 29.9 48.3 31.0 19.5 44.1 58.6 8.9 114

ClusDet 1000 o+ca 26.7 50.6 24.7 17.6 38.9 51.4 273 -
DMNet 1500 o+ca 28.2 47.6 28.9 19.9 39.6 55.8 290 -
CDMNet 1000 ca 29.2 49.5 29.8 20.8 40.7 41.6 - -
GLASN 600 o+ca 30.7 55.4 30.0 - - - - -
AMRNet 1500 o+aug 31.7 - - 23.0 43.4 58.1 - -
YOLC 1024 o+ca 31.8 55.0 31.7 24.7 42.3 45.0 441 151
CZDet 1200 o+dc 33.2 58.3 33.2 26.0 42.6 43.4 - -
UFPMP-Det 1333 o+ca 36.6 62.4 36.7 - - - 152 205
RemDet-X† 1024 o+ca 40.0 61.9 42.8 30.4 52.5 54.6 9.0 182

Table 1: Comparison in terms of AP (%), Latency, and FLOPs on VisDrone. o, ca, aug respectively stand for the original
validation set, cluster-aware cropped images, and augmented images. ”-” indicates that the result is not reported.

Model APval
95 APval

50 APval
75 APval

s APval
m APval

l

R-FCN 7.0 17.5 3.9 4.4 14.7 12.1
FRCNN+FPN 11.0 23.4 8.4 8.1 20.2 26.5
CenterNet 13.2 26.7 11.8 7.8 26.6 13.9
ClusDet 13.7 26.5 12.5 9.1 25.1 31.2
DMNet 14.7 24.6 16.3 9.3 26.2 35.2
CDMNet 16.8 29.1 18.5 11.9 29.0 15.7
GLSAN 17.0 28.1 18.8 - - -
CEASC 17.1 30.9 17.8 - - -
AMRNet 18.2 30.4 19.8 10.3 31.3 33.5
YOLC 19.3 30.9 20.1 10.9 32.2 35.5
RemDet-L† 20.6 34.5 22.1 13.9 31.4 30.3

Table 2: Comparison in terms of AP (%) on UAVDT.

average precision for small, medium, and large objects to
assess our method’s performance in detecting small objects.
Efficiency is represented using GFLOPs and latency.

Implementation Details Using PyTorch and MMDetec-
tion, we trained one-stage models from scratch on the Vis-
Drone and UAVDT datasets for 300 epochs, with a learning
rate of 1e-2, and applied data augmentation techniques such
as mixup and Mosaic. For two-stage models, we utilized pre-
trained backbone networks. On MSCOCO, we kept the same
parameters, except for a momentum of 0.937, a weight decay
of 5e-4, and a learning rate decay of 1e-2 every 10 epochs.
The input size for the YOLO series models was 640×640,
while for other models it was 1,333×800. All experiments
were conducted on 8 NVIDIA RTX 4090 GPUs, with infer-
ence performed on a single 4090 GPU.

Comparison with SOTA on UAV Datasets

Comparison Results on VisDrone Our proposed model
demonstrates significant improvements over existing models
in terms of the key evaluation metric, mean Average Precision
(mAP), on the VisDrone dataset. Additionally, to emphasize
real-time performance, we compare our model with real-
time general object detectors. Notably, the field of real-time
lightweight UAV detection lacks comprehensive research.
Our smallest model, RemDet-Tiny, achieves outstanding per-
formance with an inference speed of 3.4 ms, surpassing the
baseline (Jocher, Chaurasia, and Qiu 2023) by 2.7%.

When trained on the original validation set, as shown in
Table 1, our model outperforms the previous state-of-the-
art lightweight model, CEASC (Du et al. 2023), by 0.8%,
while reducing computational complexity by 35%. Compared
to QueryDet (Yang, Huang, and Wang 2022), our model
achieves a 9.6% improvement. Furthermore, after incorporat-
ing the Cluster-Aware Crops method, our model aligns input
image sizes with YOLC, achieving the best performance
to date with an mAP of 40%. This represents an 8.2% im-
provement over YOLC and a 6.8% improvement over CZDet.
Remarkably, on a single 4090 GPU (without any model ac-
celeration techniques), our model achieves a 9 ms inference
speed, underscoring the effectiveness of our detector design.

However, our model shows a slight disadvantage in detect-
ing large objects compared to other models. We attribute this
to the intricate and heavily handcrafted designs used in com-
peting methods, which can effectively detect large objects
in UAV images. In contrast, our simpler design prioritizes
high-speed inference capability and strong generalization.
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Figure 6: Visualization of the results of RetinaNet, CEASC, GFL and RemDet on the VisDrone and UAVDT datasets.

Figure 7: Ablation for each stage using different expansions.

Comparison Results on UAVDT Based on our experimen-
tal results using the UAVDT dataset (as shown in Table 2),
we have demonstrated that the proposed method outperforms
the current state-of-the-art model, YOLC, achieving the high-
est performance (20.6%). Additionally, compared to other
methods, our approach significantly improves the accuracy
of small object detection by 3%, although it performs worse
for large objects. Furthermore, our methods can be combined
with these handcrafted designs to obtain performance gains,
even though it may introduce additional inference overhead.

Ablation Study
Ablation of Overall Design In our research, the block ra-
tios for each stage are (3:6:6:3). This ratio was determined
through neural architecture search (NAS) applied to the
MSCOCO dataset. However, when dealing with UAV im-
ages, we aim to find the optimal block ratio by removing
redundant modules for lightweight models.

To achieve this, we initially set all stage blocks to 3 and
progressively increased them to 6. The experimental results
are detailed in Appendix. Finally, We adopted a (3:3:6:3)
block ratio, eliminating unnecessary blocks. In our CED mod-
ule, the original channel expansion ratio was 1. Increasing
it to 2 would enhance model performance, but at the cost of
higher computation and latency. Thus, we aimed for a balance
to maximize channel information expansion. Notably, chan-
nel expansion significantly improved stage 1 performance
(Figure 7), leading us to remove it from other stages. This
operation reduced model inference time to 3.7 ms, with only
a 0.1% performance drop. For detailed exploration of ours
models, refer to Figure 3.

Base Detector Backbone APval
95 APval

50 APval
s APval

m APval
l Param ↓ FLOPs ↓

YOLOv5-S CSPDarknet 18.6 32.9 10.5 27.9 38.5 7.0M 5.0G
RemDet 20.7 ↑ 2.1 36.2 ↑ 3.3 12.1 ↑ 1.6 31.1 ↑ 4.8 40.7 ↑ 2.2 8.3M 6.0G

RTMDet CSPNeXt 21.8 35.2 11.5 35.2 49.5 8.9M 9.3G
RemDet 22.8 ↑ 1.0 35.8 ↑ 0.6 11.4 ↓ 0.1 35.5 ↑ 0.3 48.8 ↓ 0.7 9.9M 10.1G

YOLOv8-S CSPDarknet 23.1 38.7 13.9 34.8 42.3 11.1M 14.3G
RemDet 24.6 ↑ 1.5 41.3 ↑ 2.6 15.0 ↑ 1.1 36.5 ↑ 1.7 46.7 ↑ 4.5 11.5M 14.7G

FasterRCNN (1×) ResNet50 16.3 29.5 9.1 25.6 27.3 41.4M 208G
RemDet 19.0 ↑ 2.7 34.2 ↑ 4.7 11.6 ↑ 2.5 29.1 ↑ 3.5 30.6 ↑ 3.3 39.1M 187G

RetinaNet (100e) ResNet50 8.0 14.6 3.3 14.3 18.4 36.5M 210G
RemDet 15.9 ↑ 7.9 27.7 ↑ 13.1 7.1 ↑ 3.8 26.8 ↑ 12.5 35.0 ↑ 16.6 31.9M 190G

DyHead (2×) ResNet50 13.8 24.6 7.1 22.5 25.5 38.9M 110G
RemDet 17.2 ↑ 3.4 29.1 ↑ 4.5 9.6 ↑ 2.5 27.5 ↑ 5.0 31.7 ↑ 6.2 36.7M 91G

Table 3: Comparing AP(%) and GFLOPs/Param of various
detectors on VisDrone with our approach.

Model APval
95 APval

50 APval
s APval

m APval
l Param FLOPs

YOLOv6-3.0-N 36.2 51.6 16.8 40.2 52.6 4.3M 5.5G
YOLOv8-N 37.3 52.6 18.8 41.0 53.5 3.0M 4.1G
YOLOv7-Tiny 37.5 55.8 19.9 41.1 50.8 5.2M 6.2G
RemDet-Tiny 39.5 55.8 21.0 43.9 54.0 3.2M 4.6G

YOLO-MS-XS 43.1 60.1 24.0 47.8 59.1 4.5M 8.7G
YOLOv6-v3.0-S 43.7 60.8 23.6 48.7 59.8 17.2M 21.9G
YOLOv8-S 44.9 61.8 26.0 49.9 61.0 11.1M 14.3G
RemDet-S 45.5 62.8 27.8 50.5 60.0 11.9M 16.0G

Table 4: Comparison of AP(%) and params/FLOPs with the
real-time approaches on MSCOCO.

More Ablation Experiments To validate our methods,
we combine RemDet’s backbone with various detectors, as
shown in Table 3. Surprisingly, when combined with other de-
tectors, our method consistently improves detection accuracy.
Furthermore, we trained RemDet on the MSCOCO dataset
(as shown in Table 4). In comparison to all minimal versions
of generic detectors, our approach provides the most SOTA
results, surpassing our baseline by 2.3% on the COCO. We
believe that our sufficiently simple structure contributes to
powerful generalization, while also significantly enhancing
small object detection accuracy on generic datasets.

Conclusion
In this paper, we present RemDet, a novel UAV object detec-
tor with a focus on small and dense objects in UAV imagery.
Our approach involves designing modules that enhance inter-
layer information while mitigating information loss. To meet
real-time requirements, we explore cost-efficient multiplica-
tion operations, adopt reparameterization, and remove un-
necessary components. Our experiments show that RemDet



achieves state-of-the-art results and high-speed inference.
However, further enhancements are needed for large objects.
We hope this work inspires future research in UAV detectors.
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