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ABSTRACT 

Magnetic resonance imaging (MRI) often contains Rician noise. 
Unlike additive Gaussian noise, the distribution of Rician noise is 

related to the data of the image, making it more difficult to remove. 
It has been shown that the variance stabilizing transformation 
(VST) can transform the Rician noise distribution into a variance 
stabilized Gaussian distribution. Utilizing this property, combined 
with the diffusion model, we proposed an algorithm for the 
removal of Rician noise from MRI. The algorithm first performs 
VST on the MRI containing Rician noise and then carries out 
diffusion denoising. A Gaussian noise sequence is added to the 

diffusion process; afterward, the diffusion process is reversed to 
provide different denoising levels through Markov chain modeling. 
Finally, the denoised image is obtained through the inverse of VST. 
Experimental results demonstrate the performance of our method 
in removing Rician noise from magnetic resonance images 
compared to DDPM denoising alone, while preserving detailed 
information better. Noise removal was also performed for MRI 
with a simple structure. 

Index Terms— Magnetic resonance imaging, Rician noise, 

Noise removal, Variance stabilizing transformation, Diffusion 

modeling. 
 

1. INTRODUCTION 

Magnetic resonance (MR) imaging is a crucial tool in modern 
medicine, offering detailed images for diagnostic purposes. 
However, it comes with challenges including complexity and slow 
imaging speeds, exacerbated by noise interference that can 
degrade image quality. This noise not only complicates further 

image processing tasks such as segmentation, alignment, and 
visualization but also seriously affects the clinician's diagnosis  [1]. 
Therefore, it is crucial to solve the noise problem of MR images. 

Many techniques have been explored for MRI denoising, 
including filtering methods [2-5]. and the prevalent nonlocal 
means (NLM) method, which has been extended for nonlocal 
regions for MRI denoising [6, 7]. Liling Yu et al. introduced a 
promising approach that combining the BM3D algorithm and 
variance stabilized transform for denoising MRI and to accurately 
estimate the noise level of MRI and effectively remove noise in 
MR images [8]. Recently, advancements in deep learning have 

fostered innovative approaches to medical image denoising, 
enhancing model performance by utilizing richer contextual 
information from expanded regions. Jiang et al. developed a 
denoising convolutional neural network with multiple channels, 
which was validated using MRI datasets [9]. Meanwhile, Ran et 
al. introduced a generative adversarial network based on residual 

encoder-decoder architecture for denoising MRI images. This 

approach leverages the residual network and autoencoder to 
effectively preserve the image's structural details and edges [10].  

Denoising diffusion probabilistic models (DDPMs) iteratively 
refine a normal distribution to a data-specific one through a two-
step process: a forward phase that injects noise into the image, and 

a reverse phase that gradually removes it, creating refined data 
samples. This approach has successfully been applied in numerous 
computer vision tasks including image generation, super-
resolution, and MRI reconstruction [11-13]. 

The variance stabilizing transformation (VST) is utilized to 
convert Rician noise in MRI into additive Gaussian noise, 
lessening noise reliance on the initial image and facilitating the 
handling of complex problems by transforming heteroscedastic 
data into homoscedastic data. In 1999, Nowak [14] proposed that 
mode-squaring of MRI can reduce the correlation between image 
data and noise, and then denoising of mode-squared images with 

bias correction could be conducted through filtering. In 2011, Foi 
[15] proposed using the VST framework to estimate and remove 
the Rice distribution noise in MRI. 

This paper evaluates a diffusion model’s efficacy in 
eliminating Rician noise from MRI images post-VST application. 
The process involves applying VST to the noisy image, denoising 
it is using a trained DDPM model, followed by IVST application. 
Results indicate enhanced image visual quality and superior 
denoising outcomes with this method. The performance 
comparison analysis shows that the new method improves the 

visual quality of the image and obtains a better denoising effect. 

 
2. RICIAN NOISE OF MRI 

2.1. Rician noise of MRI 

MR is widely used in medical diagnosis because of its rapid 
imaging and less hazardous characteristics, but noise is often 
introduced during the imaging process. Raw MR data are collected 
in K-space, and the data in K-space consist of two signal parts, the 
real part and the imaginary part, with a phase difference of 90 
degrees. Noise contained in MR images is Gaussian distributed in 
the complex domain [16], and through the application of 
computer-assisted graphical analysis, it is determined that the 

noise contained in the MR images obeys the Rician distribution in 
its entirety.  

The original signal is reconstructed using the discrete Fourier 
inverse transform to obtain the image domain data of MR. Due to 
the linearity and orthogonality of the Fourier transform, the 
reconstructed MR image data are still complex Gaussian noise. 
For the subsequent image processing and visual requirements, the 
reconstructed data is modeled which changes the complex 
Gaussian distributed noise to a Rician distribution [17]. 

The observed MRI is the magnitude image obtained from the 
reconstructed data by the modulo operation, 

2 2

1 2( cos ) ( sin )Z r n r n = + + + ，        (1) 
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where Z  is the MRI complex signal; 
1n  and 

2n are the additive 

Gaussian white noises with a mean value of 0, the same standard 
deviation and independent of each other; the amplitude and phase 

of the original MRI are r  and , respectively. 

The above equation shows that the noise in the modal image 

Z   observed by MRI is no longer additive Gaussian noise but 
changes to a Rician distribution associated with the image data 
with a probability density function of 

2 2

22
02 2

( | , ) ( ),

z R
z zr

P z r e I
 

+
−

=                      (2) 

where
0I   denotes the zero-order modified Bessel function. The 

inference from Eq. 3 shows that the low-intensity region of the 

signal-to-noise ratio (SNR) has a Rayleigh distribution, the high-
intensity region of the SNR obeys a Gaussian distribution. 

 
3. METHODS 

The proposed method, termed V-DDPM, encompasses three steps: 

(1) variance stabilizing transformation (VST) of noisy MRI data, 
(2) noise removal utilizing DDPM, and (3) inverse transformation 
applied to the denoised MRI data.  

3.1. Variance stabilizing transformation (VST) 

The distribution of Rician noise is related to the image data, and 
its variance varies with the data. VST is an algorithm capable of 
converting the Rician distribution into an additive Gaussian 
distribution. After the VST transformation, the MRI noise is 

changed into a Gaussian distribution with a stable variance so that 
it can be denoised by a variety of filtering methods that are 
applicable to Gaussian noise. After that, the inverse transform of 
VST is performed to obtain the denoised MRI [17]. 

The VST algorithm formula can be defined as 

 
2

2

1
( ) ,

2

Z
f Z a


= − +                                   (3) 

where Z  and  have the same meaning as in Eq. 4 and a  is a 

constant, 

 
2

max
max 2

1
( ) .

2

Z
a f Z


= − −                               (4) 

Let the denoising method be   , and the image D   is 

obtained after denoising the image ( )f Z , which contains additive 

Gaussian noise after VST conversion, 

 ( ( )).D f Z=                 (5) 

The final denoised image I   can be obtained by unbiased 

estimation of VST inversion on D , 

 
2

2

( )
.

1( )
2

D a
I

D a

 −


− +
            (6) 

3.2. The Denoise Diffusion Probability Model (DDPM) 

 
Fig. 1: Diagram of the DDPM framework. 

The Denoise Diffusion Probability Model (DDPM) is a class of 

generative models that mainly includes two processes: a forward 
process and a reverse process, as shown in Fig. 1. 

Different from generative networks such as the generative 
adversarial network (GAN), variational autoencoder (VAE) and 
normalized flow model (NFM), diffusion model progressively 
introduces noise into the image during the forward process until 
the image is corrupted into complete Gaussian noise, and then they 
learn to restore the image from Gaussian noise to the real image 
during the reverse sampling process. The diffusion model is a 
parameterized Markov chain throughout the processes [11]. 

The forward process continuously adds Gaussian noise to the 
image so that it gradually approaches a Gaussian distribution 
associated with the input data. Here, the non-noisy data are 

denoted as tx  , 0~ ( )tx q x  . 0( )q x   are the original data 

distributions not corrupted by noise; then, the relationship between 

the noisy state at moment t  and the previous moment is: 

 
1 1( | ) ( ; 1 , ),t t t t t tq x x x x − −= −   I                   (7) 

where {0,1,..., }t T , denotes the Gaussian noise distribution,

t  is the noise variance modifier associated with the moment t , 

and I  is a unit matrix with the same dimensions as the initial state 

0x . Then, the joint distribution of 1 2, ,..., Tx x x  under input 0x  can 

be described as: 

 1 2 0 1

1

( , ,..., | ) ( | ).
T

T t t

t

q x x x x q x x −

=

=                    (8) 

The noisy state at moment t  conditional on the input 0x  can 

be obtained directly by Markov chain modeling as 

 
0 0( | ) ( ; ,(1 ) ),t tt tq x x x x =  −  I               (9) 

where 1t t = − , 
1

t

t ll
 

=
= . 

According to Eq. 8, the relationship between tx   and 1tx −

which are the noisy state  at time t  and time 1t −  can be obtained 

as 

 1 11 ,t t t t tx x  − −=  + −                      (10) 

where
1 ~ ( , )t − 0 I . 

The relationship between tx   and the input 0x   can be 

obtained by constant substitution recursion as 

0 1t ttx x  =  + −            (11) 

where 
1 2, , ~ ( , )t t  − − 0 I   and 2t −   combine two Gaussian 

distributions. The above derivation process utilizes two Gaussian 

distributions with different variances 2

1( , ) 0 I   and 

2

2( , ) 0 I  added together to equal a new Gaussian distribution 

2 2

1 2( ,( ) ) + 0 I . 

The backward process estimates the noise distribution by 
learning based on the existing noisy state, further obtains the state 
of the previous moment, and gradually constructs the real data 
from the Gaussian distribution. According to the result of the 

forward process, the posterior distribution ( ) ~ ( ; , )t tp x x 0 I   of 

the noisy state Tx  at moment T  can be considered; then, the joint 

distribution 1 2( , ,..., )Tp x x x   is also a Markov chain, which is 

defined as: 
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1 2 1

1

( , ,..., ) ( ) ( | ).
T

T T t t

t

p x x x p x p x x  −

=

=                   (12) 

Then, the 
1tx −

 at moment 1t −  can be obtained from state 
tx  

at the previous moment t , and its conditional distribution can be 

expressed as follows:   

 
1 1( | ) ( ; ( , ), ( , )),t t t t tp x x x x t x t  − −=                (13) 

through the noise estimation network at time t, the mean value of 

noise is ( , )tx t   and the variance is ( , )tx t  , and    is the 

parameter of the noise estimation network. 

When the input is 
0x  , the true conditional distribution 

between 
1tx −

 and 
tx  is 

 1 0 1 0( | , ) ( ; ( , ), ),t tt t t tq x x x x x x − −=  I              (14) 

where the noise posterior distribution parameters t  and t  are: 

 
11 1

( ), .
11

tt
t tt t t

tt t

x
 

   
 

−−
= −  = 

−−
         (15) 

Using the noise estimation network   to estimate the true 

noise distribution mean t  , the noise distribution mean in the 

above equation can be estimated as: 

 
1

( , ) ( ( , )).
1

t
t t t

t t

x t x x t 


 

 
= − 

−
            (16) 

According to the formula, the noisy state tx   at moment t  

satisfies
0 1t ttx x  =  + −   ; then, the noisy state 1tx −   at 

moment 1t −  can be described as 

 1

1 1
( ( , )).

1

t
t t t

t t

x x x t




 
−

−
= − 

−
               (17) 

Then, according to the estimation of the noise distribution, the 
noise estimation network at different moments can be gradually 

back sampled to obtain the real data distribution based on the 
above equation. 

 
4. EXPERIMENTS 

4.1. Experiment Data 

The data utilized in the crafting of this article were sourced from 
the NYU fastMRI Initiative database, accessible at 
fastmri.med.nyu.edu [18, 19]. While the NYU fastMRI 
investigators supplied the data, they did not engage in the analysis 
or contribute to writing of this report. A continually updated list of 
NYU fastMRI investigators is available at fastmri.med.nyu.edu. 

The foremost objective of the fastMRI initiative is to explore the 
potential of machine learning in assisting with the reconstruction 
of medical images. To verify the denoising effect of the algorithm 
proposed in this paper for different MR images, two MR images 
of different tissues were selected for denoising experiments. The 
selected images were knee MRI (coronal proton density-weighted 
images without fat suppression) and brain MRI (axial T1-
weighted, T2-weighted images on 3 Tesla magnets), which were 

coaligned with each other and resampled to 512 × 512 pixels. 

To obtain the simulated image containing Rician noise 

contamination, the noise-containing image Z   was generated. 
Noise at 2%, 4%, 5%, 6% and 10% levels were added in the 

experiment. The MRI after adding different levels of Rician noise 

is shown in Fig. 2, where a) is an MRI without noise. 

 

 
Fig. 2: MRI with different noise levels. 

The noise-containing image can be represented as 

2 2( ( ( ))) ( ( ( ))) ,Z r randn size r randn size r = +  +     (18) 

where 
max%

100

t
percentNoise S =   , t   denotes the proportion 

of noise, maxS  denotes the maximum value of pixels in the image, 

( ( ))randn size r   generates data mirroring the dimensions of the 

original images, characterized by a mean and standard deviation 
of t are 0 and 1, respectively. 

4.2. Evaluation 

The experiments were conducted to objectively analyze the 
denoising effect using two performance parameters, the peak 
signal-to-noise ratio (PSNR) and mean structural similarity [20] 
(SSIM), and to compare the visual effects of the denoised images. 
The PSNR is defined as 

 max
10 2

10 log .
RMSE

S
PSNR


=                                (19) 

The root mean square error is 

 
1

1
( ),

L

RMSE i i

i

I S
L


=

= −                               (20) 

where L  is the image size of the image, S  is the original image, 

and I  is the denoised image. The average SSIM serves as a metric 
to quantify the level of structural resemblance between two images, 
with its numerical range spanning from -1 to 1. A higher value 
signifies a greater similarity in structure exhibited by the two 
images. Typically, the average SSIM of an entire image is obtained 
by averaging the local SSIMs within the image. Local SSIM is 
defined as 

 
1 2

2 2 2 2

1 2

(2 )(2 )
( , ) ,

( )( )

x y x y

x y x y

c c
SSIM x y

c c

  

   

+ +
=

+ + + +
         (21) 

where x  and y  represent the localized image segments acquired 

through windowing of the initial and enhanced images, 

correspondingly, x  , 2

x   and x y   are the mean, variance and 

covariance within the image blocks, respectively, and 1c  and 2c  

are two constants. 

 
5. RESULTS 

Table 1 shows the PSNR values of different denoising algorithms 

for brain MRI and knee MRI after the denoising process and gives 
the PSNR values of images denoised directly using NLM filtering. 
From Table 1, it can be seen that the effect of NLM denoising of 
MR images that contain Rician noise is poor. 

2252

Authorized licensed use limited to: Zhejiang Normal University. Downloaded on May 30,2024 at 05:29:08 UTC from IEEE Xplore.  Restrictions apply. 



However, the V-DDPM algorithm significantly improves the 
denoising effect compared to the NLM algorithm, and the PSNR 
value of the denoised image increases by about 3-7 dB. 

Table 2 shows the average SSIM value of each algorithm. 
From the data in Table 2, it can be seen that the improved 
algorithms significantly increase the average SSIM value of the 
image. The quantitative comparison of the performance 
parameters in Table 1 and Table 2 illustrates that the improved 
algorithm using V-DDPM for denoising MRI improves the 
denoising effect, and the performance is significantly improved. 

Table 1: PSNR comparison of different denoising methods. 

Experimental images arithmetic 
noise intensity 

2% 4% 5% 6% 10% 

Brain 

MRI 

T1 
weighted 

NLM 33.3325 29.4872 25.1943 24.8636 23.6427 

DDPM 35.2222 35.6652 32.3311 32.3882 30.3397 

V-DDPM 36.7163 37.0754 33.2581 33.3408 31.4371 

T2 
weighted 

NLM 35.3803 31.4159 27.2590 25.6261 23.1634 

DDPM 39.2534 36.3294 34.5555 33.2638 31.5829 

V-DDPM 41.5381 37.8101 35.7872 34.3307 31.6997 

Knee 

MRI 
PD 

NLM 30.0282 29.2603 27.3144 25.8140 21.5747 

DDPM 34.0089 34.7506 32.8248 29.4193 26.4311 

V-DDPM 35.3773 35.9246 33.8013 30.1087 27.5984 

Table 2: SSIM comparison of different denoising methods. 

Experimental images arithmetic 
noise intensity 

2% 4% 5% 6% 10% 

Brain 

MRI 

T1 
weighted 

NLM 0.7901 0.7413 0.6872 0.6867 0.5374 

DDPM 0.9705 0.9623 0.9414 0.9312 0.8820 

V-DDPM 0.9765 0.9766 0.9573 0.9368 0.8947 

T2 
weighted 

NLM 0.8089 0.7359 0.6916 0.6856 0.5853 

DDPM 0.9729 0.9686 0.9477 0.9255 0.8921 

V-DDPM 0.9824 0.9733 0.9598 0.9346 0.9089 

Knee 

MRI 
PD 

NLM 0.7413 0.7354 0.7046 0.6992 0.5795 

DDPM 0.9579 0.8794 0.8703 0.7916 0.7524 

V-DDPM 0.9662 0.8855 0.8789 0.7952 0.7646 

 

Fig. 3 contains some of the data from Table 1. Fig. 3a) shows 
the PSNR of the T2-weighted brain MRI with different noise 
intensity. The curve of the V-DDPM algorithm is at the top. The 
comparison shows that PSNR decreases with the increase of noise 
intensity. Moreover, it can be found that when the noise intensity 
is greater than 5%, the PSNR values of V-DDPM and DDPM are 

very close, and the VST module plays a small role. Fig. 3b) 

includes the PSNR of the PD knee MRI, the results are similar to 
a). The difference is that the overall effect will be worse than the 
effect on the brain MRI. 

 

 
Fig. 3: the PSNR of T2-weighted brain MRI and PD knee MRI with 

different noise intensity 

To comparatively analyze the visual effect of denoising, Fig. 

4 show the recovered images obtained by different algorithms 
after denoising T2-weighted Brain MRI containing 6% Rician 
noise intensity. As seen from the figures, the image restoration 
effect of the NLM algorithm after denoising is general, and little 

information content is lost. Compared with them, the improved 
algorithm removes the noise more effectively and achieves the 
best visual effect, and the visible noise is obviously reduced, 

which indicates that the improved algorithm effectively protects 

the edge and detail information of the image while removing the 
noise, the difference from the original image is small. 

According to the experimental results, from a visual point of 
view, Fig. 5 shows the MRI of the human knee, which has a simple 
structure, little detail, and clear outline. After the V-DDPM 
algorithm, the noise reduction effect is better. Although it contains 
some noise points, the structure is clear, and the detail content 
recovery ability is better than other algorithms. 

 

Fig. 4: Comparison of  results on T2-weighted Brain MRI. The initial row 

showcases the entire image, while the subsequent row presents an amplified 

version of the identical region.  A comprehensive comparison of detailed 

information is evident within the designated yellow box area. 

 

Fig. 5: Comparison of experiment results on Knee MRI. The initial row 

showcases the entire image, while the subsequent row presents an amplified 

version of the identical region.  A comprehensive comparison of detailed 

information is evident within the designated yellow box area. 

6. CONCLUSION 

In conclusion, we propose an algorithm, V-DDPM, that combines 
VST and DDPM in this paper. Given that the noise present in MRI 
scans follows a Rician distribution, it can be observed that the 

Rician noise conforms to a Rayleigh distribution under low SNR 
and adheres to a Gaussian distribution under high SNR. First, the 
MR data containing noise is subjected to VST to approximate the 
noise to Gaussian noise, then it is denoised by the DDPM 
algorithm, and finally undergoes IVST to generate a denoised 
image. Theoretical analysis and experimental results verify that 
the V-DDPM algorithm can efficiently remove Rician noise from 
MRI when the noise content is low and can effectively protect the 

image details and edge information. Compared with other 
algorithms, the PSNR and SSIM values of the V-DDPM algorithm 
are improved, and the effect is more easily observed visually. This 
result confirms that the present algorithm offers some advantages 
for dealing with Rician noise in medical MRI. 
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